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Abstract.
Multiagent research provides an extensive literature on formal

Belief-Desire-Intention (BDI) based models describing the notions
of teamwork and cooperation, but adversarial and competitive rela-
tionships have received very little formal BDI treatment. Moreover,
one of the main roles of such models is to serve as design guide-
lines for the creation of agents, and while there is work illustrating
that role in cooperative interaction, there has been no empirical work
done to validate competitive BDI models.

In this work we use the Adversarial Activity model, a BDI-based
model for bounded rational agents that are operating in a gen-
eral zero-sum environment, as an architectural guideline for build-
ing bounded rational agents in two adversarial environments: the
Connect-four game (a bilateral environment) and the Risk strategic
board game (a multilateral environment). We carry out extensive sim-
ulations that illustrate the advantages and limitations of using this
model as a design specification.

1 Introduction
Formal Belief-Desire-Intention (BDI) [1] based models of cooper-
ation and teamwork have been extensively explored in multiagent
worlds. They provide firm theoretical foundations and guidelines for
the design of cooperative automated agents [4, 2]. However, as coop-
eration and teamwork led the research agenda, little work was done
on providing BDI-based models for adversarial or competitive inter-
actions that naturally occur in multiagent environments. The desire
to adapt BDI-based models for competitive interactions comes from
their successful implementation in teamwork domains [5] and the
limitations of classical solutions in complex adversarial interactions.

Recently, the Adversarial Activity (AA) model [6] was presented:
a formal BDI-based model for bounded rational agents in zero-sum
adversarial environments. Alongside the model were also presented
several behavioral axioms that should be used when an agent finds it-
self in an Adversarial Activity. However, the discussion in [6] lacked
empirical work to validate the advantages as well as the limitations
of those behavioral axioms in adversarial domains. Our aim here is
to fill that gap, demonstrate how the AA model can be used as a de-
sign specification, and investigate its usefulness in bounded rational
agents. We will explore whether AA-based agents can outperform
state of the art solutions in various adversarial environments.

2 Overview of the Adversarial Activity Model
The AA model provides the specification of capabilities and men-
tal attitudes of an agent in an adversarial environment from a single
adversarial agent’s perspective. The model describes both bilateral
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and multilateral instantiations of zero-sum environments, in which
all agents are adversarial (i.e., there are no cooperative or neutral
agents). Alongside the model, there exist several behavioral axioms
that the agent can follow:
A1. Goal Achieving Axiom. This axiom is a simple and intuitive
one, stating that if the agent can take an action that will achieve its
main goal (or one of its subgoals), it should take it.
A2. Preventive Act Axiom. This axiom relies on the fact that the
interaction is zero-sum. It says that the agent might take actions that
will prevent its adversary from taking future high beneficial actions,
even if they do not explicitly advance the agent towards its goal.
A3. Suboptimal Tactical Move Axiom. This axiom relies on the fact
that the agent’s reasoning resources are bounded, as is the knowledge
it has about its adversaries. In such cases the agent might decide to
take actions that are suboptimal with respect to its limited search
boundary, but they might prove to be highly beneficial actions in the
future, depending on its adversaries reactions.
A4. Profile Manipulation Axiom. This provides the ability to ma-
nipulate agents’ profiles (the knowledge one agent holds about the
other), by taking actions such that the adversary’s reactions to them
would reveal some of its profile information.
A5. Alliance Formation Axiom This axiom allows the creation of
temporary task groups when, during the interaction, several agents
have some common interests that they wish to pursuit together.

A6. Evaluation Maximization Axiom. In a case when all other ax-
ioms are inapplicable, the agent will proceed with the action that
maximizes the heuristic value as computed in its evaluation function.

3 Empirical Evaluation
We will use two different experimental domains. The first one is the
Connect-Four board game, which will allow us to evaluate the model
in a bilateral interaction. The second domain is the well-known Risk
strategic board game of world domination.

The embedding of behavioral axioms into the agent design, in both
domains, was done by providing new functions, one for each of the
implemented axioms (denoted as AxiomNV alue(), where N is the
number of the axiom in the model). These functions return a possible
action if its relevant precondition holds. The preconditions are the
required beliefs, as stated in the axiom formalizations, formulated
according to the relevant domain. The resulting architecture resem-
bles a rule-based system, where each function returns its value and
the final selection among the potential actions is computed in a “De-
cide” function, whose role is to select among the actions (if there is
more than a single possible action) and return its final decision.

3.1 A Bilateral Domain—Connect4
We built an experimental environment where computer agents play
the connect-four game against one another, and we have control over
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the search depth, reasoning time, and other variables. We built six
different agents, each with a different evaluation function (H1-H6),
ranging from a naive function to a reasonable function that can win
when playing against an average human adversary.

We had 12 different agents: 6 alpha-beta and 6 axiom-augmented
agents, each using one of the evaluation functions. We staged a
round-robin tournament among all agents, where each agent played
with 3 different depth searches (3, 5, and 7) against all other agents
and possible search depths. The tournament was played twice: once
for the agents playing as the first player (yellow), and the other time
for them playing as the second (red) player (i.e., 11 opponents * 3
own depth * 3 opponent depth * 2 disc colors = 198 games).

The results of the tournament are summarized in Figure 1. The fig-
ure shows the percentage of winning games for each of the 12 agents,
where the agent names are written as R 1 for regular agent using H1,
and A 3 shows the results for axiom-embedded agents using H3. The
results clearly indicate that all agents improved their performance
following the integration of axioms. The agents with naive heuristics
(A 1 and A 2) showed only a small improvement, which usually re-
flected additional wins over their “regular” versions (R 1 and R 2),
while the mid-ranged functions (H4 and H5) showed the largest im-
provement, with additional wins over different agents that were not
possible prior to the embedding of axioms. Overall, we see that the
best two agents were A 4 and A 6, with a single win advantage for
the A 6 player, which in turn led A 5 by 7 wins.

Figure 1. Connect-Four experiment results

3.2 A Multilateral Domain—Risk
Our next domain is a multilateral interaction in the form of the Risk
board game. The game is a strategy board game that incorporates
probabilistic elements and strategic reasoning in various forms. Risk
is too complicated to solve using classical search methods.We used
the Lux Delux3 environment which provides a large number of com-
puter opponents implemented by different programmers and employ-
ing varying strategies. We chose to work with exactly the same subset
of adversaries that was used in [3], which contains 12 adversaries of
different difficulty levels (Easy, Medium, and Hard): (1) Angry (2)
Stinky (3) Communist (4) Shaft (5) Yakool (6) Pixie (7) Cluster (8)
Bosco (9) EvilPixie (10) KillBot (11) Que (12) Nefarious.

The basic agent implementation and evaluation function were
based on the one described in [3], as it proved to be a very successful
evaluation function-based agent, which does not use expert knowl-
edge about the strategic domain. The next step was to augment the
original agent with the implementation of the adversarial axioms (we
used continent ownership as a subgoal).

Experiment 1: The game map was “Risk classic”, card values
were set to “5, 5, 5, . . . ”, the continent bonus was constant, and start-
ing position and initial army placement were randomized. Each game
had 6 players, randomized from the set of 14 agents described above.
Figure 2 shows results of running 1741 such games, with the winning
percentage of each of the agents (we use the agent number from the

3 Downloadable from http://sillysoft.net/lux/.

above list instead of their names). The worst agent was Angry (#1)
with a 0.44% win percentage, while the best was KillBot (#10) with
32.54%. Looking at our agents, we can see that the basic heuristic
agent (denoted as “He” and whose bar is colored in blue) managed
to achieve only 11.79%, whereas its axiom-augmented version Ax
(colored red on the graph) climbed all the way up to 26.84%, more
than doubling the winning percentage of its regular version.

Figure 2. Winning percentage on “Risk classic” map

Experiment 2: In the second experiment we compared the perfor-
mance of both kinds of agents on randomly-generated world maps.
The results show approximately the same improvement, from 9.16%
with the regular heuristic agent, to a total of 21.36% with its axiom-
augmented version.
Experiment 3: We fixed a five-agent opponent set (agent 1 through
5), and ran a total of 2000 games on the classic map setting: 1000
games with agent He and the opponent set, and 1000 games with
agent Ax and the opponent set. The results show that even when play-
ing against very easy opponents, in which the regular heuristic agent
led the group with a winning percentage of 31.8%, the integration
of the axioms managed to lift the agent to an impressive winning
percentage of 57.1%.

Figure 3. Winning percentage with fixed opponents

4 Conclusions
We have presented an empirical evaluation of the Adversarial Ac-
tivity model for bounded rational agents in a zero-sum environment.
Our results show that bounded-rational agents can improve their per-
formance when their original architectures are augmented with the
model’s behavioral axioms, even as their evaluation functions re-
mained unchanged.
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