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1 INTRODUCTION

We study coalition formation in characteristic function games
(CFGs) [4, 5]. Consider a -person cooperative game where

is the set of agents. A coalition is any non-empty
subset of , i.e. such that . In CFGs a char-
acteristic function assigns real values (worths) to
coalitions such that the function may be incomplete. A coalition
structure is a partition of into mutually disjoint coalitions
in which, for all , , we have , and

. The value of a coalition structure is called
social welfare, and it is defined as . Given
a set of agents together with a characteristic
function , our aim is to find a coalition structure with
maximum social welfare. It is shown in [5] that finding a social wel-
fare maximizing coalition structure is a -complete problem, and
that the number of coalition structures is and .

Motivated by the observations in [6, 7] that genetic algorithms
provide a useful tool for searching the maximal sum of the values
of coalitions, we show that simulated annealing (SA) [1, 3] provides
also a very competitive approach to the problem. We observe that
the SA algorithm with a suitable neighbourhood relation often finds
better values or even the optimal coalition structures well before the
state-of-the-art algorithms in [2, 4, 5].

2 SA FOR COALITION FORMATION

Algorithm 1 shows our SA algorithm for optimizing the social wel-
fare of a CFG. The algorithm takes a characteristic function

for an -agent CFG as its input. Additional inputs are iteration
limit , initial temperature , and the cooling ratio . is
to keep track of the number of iterations. records the coali-
tion structure with the highest social welfare among the ones seen. At
each iteration a random neighbour solution of coalition structure

is picked according to a specific neighbourhood .
The search proceeds with an adjacent coalition structure of the
original coalition structure , if yields a better social welfare
than . Otherwise, the search is continued with with probabil-
ity . The temperature decreases after each itera-
tion according to an annealing schedule where .

The performances of SA algorithms are very sensitive to param-
eter adjustments as well as to neighbourhood selection. Given a set
of agents together with a characteristic function , let denote
the set of all coalition structures that can be formed. The neighbour-
hood is a function which maps coalition
structures to the sets of their neighbour coalition structures.
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We found out that the following two neighbourhoods are particu-
larly appropriate for Alg. 1. Split/merge neighbourhood, in which

if and only if can be obtained
from by either (i) splitting one coalition in into two dis-
joint coalitions in , or (ii) merging two distinct coalitions of

into a single coalition in . Shift neighbourhood, in which
if and only if can be obtained from

by shifting exactly one agent from a coalition to another coali-
tion.

Algorithm 1

Inputs: c_max, t_init, alpha
External: V()
c = 0;
t = t_init;
CS = random initial coalition structure;
CS_best = CS;
while c < c_max do
CS’ = random neighbour of CS in Neighbour(CS);
if V(CS’) > V(CS) then

CS = CS’;
if V(CS)>V(CS_best) then CS_best=CS;

else
with probability eˆ((V(CS’)-V(CS))/t)

CS = CS’;
c = c+1;
t = alpha*t;

return CS_best;

3 EXPERIMENTAL RESULTS

We have implemented the Alg. 1 in C, and evaluated its performance
on CFG problems. As our benchmarks we use problems from [2, 4,
5, 6]. In the following we present experimental results considering in
particular solution quality, robustness, and runtime performances of
various algorihms.

The Fig. 1 (left) shows a robustness comparison of split/merge and
shift neighbourhoods for the SA algorithm on 300 randomly gener-
ated 10-agent CFG problem instances. For each problem instance,
an incomplete characteristic function was generated to assign ran-
dom coalition values between . An exhaustive search was first
used to find social welfare maximizing coalition structures, and then
the SA algorithm was used to find optimal solutions in the following
way. For both neighbourhoods, we executed 11 runs on every prob-
lem instance with approximately optimal parameters and

. The runtime limit for each run was set to 100000 coalition
structures. We plot the minimum execution times of 11 runs to find
an optimal social welfare. The shift neighbourhood is much more
robust than the split/merge. SA with shift neighbourhood is able to
find the optimum solution in 298 of the 300 instances. In contrast,
SA with the split/merge times out in 136 instances without finding
an optimum solution. Tne SA with the shift neighbourhood is mostly
able to find the optimum values with substantially fewer search steps
than SA with the split/merge. Irrespective of the parameter variation
the behaviour of the shift neighbourhood was superior.

To compare the solution qualities of SA with the two different
neighbourhoods, we investigate the behaviours on 100 randomly
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Figure 1. Comparisons of neighbourhood relations on random CFGs.

generated 20-agent CFG problem instances, again random coalition
values in . Fig. 1 (right) shows the correlation between the solu-
tion quality of SA with the split/merge neighbourhood and SA with
the shift neighbourhood. The plot illustrates the maximum social
welfares found, measured from 11 runs per neighbourhood. The run-
time limit was set to coalition structures, and we
used the approximately optimal annealing schedule where
and . These results clearly show that SA with the shift
neighbourhood outperforms SA with the split/merge neighbourhood.

We have also implemented in C algorithms presented in [2, 4, 5],
and a random search on the graph induced by the neighbourhood
relations. We compared the performances of SA, Random search
and the anytime algorithms on a set of randomly generated 10-agent
CFGs with coalition’s values picked randomly from a uniform dis-
tribution . Fig. 2 shows the cumulative solution qualities over
runtime (measured as seen coalition structures), on a representative
problem instance. The initial temperature for SA is and

is fixed to 0.8. Both SA and Random search are run only once.
The SA algorithm finds good solutions very quickly. The SA with
the shift neighbourhood finds the optimum within short runtime, and
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Figure 2. A comparison of SA, Random search and Anytime algorithms.

also SA with the split/merge neighbourhood climbs very close to
the optimum. Random search with both neighbourhoods manages
to find quickly relatively good solutions. However, as SA with the
split/merge, Random search do not find any maximal social welfare.
The anytime algorithm searches for a long time without finding good
solutions, but then finally sees a coalition structure with maximal so-
cial welfare.

Finally, we conducted further experiments on 100 random 20-
agent CFGs with coalition’s values in . For each problem in-
stance, we collected the minimal, median and maximal social wel-
fares measured from 11 runs per algorithm. In these tests, the run-
time limit for all algorithms was set to coalition
structures. We used the SA with the shift neighbourhood, and the SA
parameters were the approximately optimal and .
The results are consistent with the results of the previous experi-
ments. For all problem instances the SA algorithm substantially out-
performs the anytime algorithms in [2, 4, 5]. Notably, every social
welfare found with the anytime algorithms [2, 4, 5] is smaller than 2,
whereas the SA always finds social welfares better than 9. The results
with the SA provide an improvement in the order of a factor 5.
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[1] V. Černý, ‘Thermodynamical approach to the traveling salesman prob-

lem: An efficient simulation algorithm’, J. of Optimization Theory and
Applications, 45, 41–51, (1985).

[2] V.D. Dang and N.R. Jennings, ‘Generating coalition structures with fi-
nite bound from the optimal guarantees’, in Proc. 3rd Int. Conf. on Au-
tonomous Agents and Multi-Agent Systems, 546–571, 2004.

[3] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, ‘Optimization by sim-
ulated annealing’, Science, 220, 671–680, (1983).

[4] K.S. Larson and T.W. Sandholm, ‘Anytime coalition structure gener-
ation: An average case study’, J. Expt. Theor. Artif. Intell., 12, 23–42,
(2000).

[5] T. Sandholm, K. Larson, M. Andersson, O. Shehory and F. Tohmé,
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