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Abstract. Conflict-based diagnosis is a recently proposed proba-
bilistic method for model-based diagnosis, inspired by consistency-
based diagnosis, that uses a measure of data conflict, called the diag-
nostic conflict measure, to rank diagnoses. In this paper, this method
is refined using an abductive method that reuses part of the computa-
tion of the diagnostic conflict measure.

1 INTRODUCTION

Conflict-based diagnosis is a recently proposed probabilistic method
for model-based diagnosis that is inspired by consistency-based diag-
nosis, and uses a measure of data conflict, called the diagnostic con-
flict measure, to rank diagnoses. The probabilistic information that
is required to compute the diagnostic conflict measure is represented
by means of a Bayesian network. This Bayesian network contains
sufficient information to compute abductive diagnoses as well.

In this paper, conflict-based diagnosis is augmented with an abduc-
tive method, similar in spirit to the probabilistic method employed by
GDE [2]. The method reuses part of the computation of the diagnos-
tic conflict measure. In essence, abductive diagnosis is used to rank
conflict-based diagnoses with equal conflict-based rankings.

2 PRELIMINARIES

2.1 Model-based Diagnosis

In model-based diagnosis, the structure and behaviour of a system is
represented by a logical diagnostic system SL = (SD, COMPS),
where (i) SD denotes the system description, which is a finite set
of logical formulae, specifying structure and behaviour, and (ii)
COMPS is a finite set of constants, corresponding to the components
of the system; these components can be faulty. The system descrip-
tion consists of behaviour descriptions specifying normal and abnor-
mal (faulty) functionalities of the components, and of connections of
inputs and outputs of components.

A logical diagnostic problem is defined as a pair PL =
(SL, OBS), where SL is a logical diagnostic system and OBS is a
finite set of logical formulae, representing observations.

Two types of model-based diagnosis are distinguished: (i)
consistency-based diagnosis [2, 6], and (ii) abductive diagnosis [1].
Let ΔC consist of the assignment of abnormal behaviour to the set
of components C ⊆ COMPS and normal behaviour to the remain-
ing components COMPS − C, then, adopting the definition from
[3], ΔC is a consistency-based diagnosis of the logical diagnostic
problem PL iff the observations are consistent with both the system
description and the diagnosis; formally: SD ∪ ΔC ∪ OBS � ⊥.
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Figure 1. The graphical representation of a Bayesian diagnostic system
corresponding to the full-adder in [6].

In the abductive approach, the behavioural assumptions ΔC are
called an abductive diagnosis if the system description SD and the
behavioural assumptions ΔC imply the set of observations OBS; for-
mally: SD ∪ ΔC � OBS.

2.2 Bayesian Diagnostic Problems

Let P (X) be a joint probability distributions of the set of discrete
binary random variables X, where for a singleton x and x̄ denote
the values ‘true’ and ‘false’, respectively. A Bayesian network B
is then defined as a pair B = (G, P ), where the acyclic directed
graph G = (V, E) represents the relations between the random vari-
ables defined in P (X), where each random variable corresponds to
a unique vertex.

A Bayesian diagnostic system is denoted by SB = (G, P ), where
P is a joint probability distribution of the vertices of G, interpreted as
random variables, and G is obtained by mapping a logical diagnostic
system SL to a Bayesian diagnostic system as follows: (i) component
c is represented by its input Ic and output Oc, where each arc points
from input to the output, (ii) to each component c there belongs an
abnormality vertex Abc. An example is given in Figure 1.

Let the set of values of the abnormality variables Abc, with c ∈
COMPS, be denoted by

δC = {abc | c ∈ C} ∪ {abc | c ∈ COMPS − C},

which establishes a link to ΔC in logical diagnostic systems.
In this paper, the set of observed input and output variables are

referred to as Iω and Oω , whereas the unobserved input and output
variables will be referred to as Iu and Ou respectively. Let iω denote
the values of the observed inputs, and oω the observed output values.
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The set of observations is then denoted as ω = iω ∪ oω . The fol-
lowing assumptions are used in the remainder of this paper: (i) the
probabilistic behaviour of a component that is faulty is independent
of its inputs, and (ii) normal components behave deterministically.
These are realistic assumptions, as it is unlikely that detailed func-
tional behaviour is known for a component that is faulty, whereas
when the component is not faulty, it is certain it behaves as intended.

A Bayesian diagnostic problem, denoted by PB = (SB, ω), con-
sists of (i) a Bayesian diagnostic system and (ii) a set of observations
ω [5, 4].

2.3 Conflict-based Diagnosis

The theory of conflict-based diagnosis uses the diagnostic conflict
measure to solve Bayesian diagnostic problems [4], where a numeric
value is assigned to each diagnosis to order them. Define ω = iω ∪
oω as the observations, then the diagnostic conflict measure (DCM),
denoted by confδC

(ω), is defined as

confδC
(ω) = log

P (iω | δC)P (oω | δC)

P (iω, oω | δC)
. (1)

Using the independence properties from Bayesian diagnostic prob-
lems we obtain:
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(ω) = log
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Intuitively, if the probability of the individual occurrence of the ob-
servations is smaller than that of the joint occurrence (if the numera-
tor is smaller than the denominator), then the observations do ‘like’
or support each other. Thus, a smaller value of the DCM indicates
a better fit between observations and component behaviours. There-
fore, the DCM imposes an ordering on diagnoses, where the lower
the DCM for a diagnosis is, the better the diagnosis fits the diagnos-
tic problem. A diagnosis is a conflict-based diagnosis, if its DCM is
non-positive, and it is also called minimal, if it has the least DCM
value in comparison to the other conflict-based diagnoses.

3 ABDUCTIVE CONFLICT-BASED DIAGNOSIS

In the ranking obtained by conflict-based diagnosis there may be
cases, where the diagnoses have the same DCM. This has motivated
us to develop a method which offers a way to distinguish such diag-
noses. This method makes use of abductive computations, for which
parts of the computation of the DCM are reused.

3.1 The Relation between Abductive and
Consistency-based Reasoning

In our probabilistic setting, the consistency condition requires that
the probability of the occurrence of the observations given the diag-
nosis is non-zero. Formally, in consistency-based reasoning, we are
searching for diagnoses δC with P (iω, oω | δC) > 0. Note that the
set of abnormality assumptions δC is given knowledge.

In abductive reasoning, on the other hand, the observations have
to be implied by the system descriptions and the abnormality as-
sumptions δC . This means that we are looking for abnormality as-
sumption δC that can be explained by the observations; formally:
P (δC | iω, oω). Using Bayes’ rule the following relationship be-
tween consistency-based and abductive reasoning can be established:

P (δC | iω, oω) =
P (iω, oω | δC)P (δC)

P (iω, oω)
, (3)

where 1/P (iω , oω) is a normalisation constant. The maximum
a-posteriori assignment (MAP) diagnosis, defined as δ�

C =
argmax

δC
P (δC | iω, oω), is the natural probabilistic analogue to

the concept of subset-minimal abductive diagnosis [7].
According to Equation (3), computation of abductive diagnoses

requires the computation of consistency-based diagnoses.

3.2 Abductive Probabilistic Computations

Next, a formula to compute abductive diagnoses of Bayesian diag-
nostic problems is derived, which is used to distinguish between
equally ranked conflict-based diagnoses.

Note that the numerator P (iω, oω | δC) in Equation (3) is also the
denominator of the DCM in equations (1) and (2); according to [4]:

P (iω, oω | δC) = P (iω)
X
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In contrast to Equation (2), the factor P (iω) is not divided out.
The denominator of the abductive formulas is computed as:
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It is now possible to derive the abductive computational form:
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At first sight, it seems computationally infeasible to compute
P (δc | iω, oω) in this manner. However, the computation can be
simplified as P (δC | ω) is only used to rank diagnoses and thus the
denominator need not be used as it is the same for all diagnoses; only
the numerator has to be computed. The computation of the numera-
tor is easy, since the second term

P
iu

P (iu) · · · is already computed
as part of the denominator of the DCM (see Equation (2)). Only the
probability P (δc) needs to be computed, which is a product of the in-
dividual probabilities for (ab)normal behaviours of the components.

4 CONCLUSIONS

In this paper a method was described to augment conflict-based di-
agnosis with probabilistic abductive diagnosis. The refinement of
conflict-based diagnosis by abduction has the virtue that it reuses part
of the computation required for finding conflict-based diagnoses.
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