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1 Introduction

Several explanation and interpretation tasks, such as diagnosis, plan
recognition and image interpretation, can be formalized as abductive
reasoning. A number of approaches, including recent ones [1, 4], ad-
dress the problem based on a task-independent representation of a
domain which includes an ontology or taxonomy of hypotheses.

In this paper we adopt a similar representation, but we also deal
with abduction as an iterative process where, like in model-based
diagnosis, further observations are proposed to discriminate among
candidate explanations; in addition, we take into account costs of ob-
servations and actions. In fact, discrimination also involves refining
hypotheses, but this is performed down to an appropriate level which
depends on the cost of actions (e.g. repair actions or therapy) to be
taken based on the results of abduction, and on the cost of additional
observations, which should be balanced with the benefits, in terms of
more suitable actions, of better discrimination.

The presence of a domain representation with abstractions has a
significant impact on this trade-off. In general, a better assessment
of the situation at hand, based on additional observations, leads to a
more focused action. However, the cost of observing the same phe-
nomenon at different levels of abstraction may vary significantly; in
fact, it could involve more or less costly medical or technical tests, or
computationally complex image processing, possibly with additional
costs due to the delay before taking an action.

Moreover, the knowledge base could have been designed indepen-
dently of the explanation/action task (e.g. diagnosis and repair), and
could therefore include a detailed description of the domain which
is not necessary for the task; more generally, the convenience of a
detailed discrimination may depend on the specific case at hand.

By explicitly considering abstractions in the iterative abduction
process, we can often reduce the observation costs significantly, yet
maintaining the ability to exploit detailed observations and knowl-
edge when convenient (similar advantages have been shown in in-
ductive classification with abstractions, e.g. [6]).

In the following, we first describe the knowledge we expect to
be available. We then describe a basic iterative abduction loop and,
finally, we concentrate on the criterion for selecting the next step
in the loop: either performing a next observation at some level of
detail, or stopping because the estimated most convenient choice is
performing the action(s) associated with the current hypotheses.

2 Domain Representation

The basic elements of the domain model are a set of abducibles
(atomic assumptions) A = {A1, . . . , An} and a set of manifesta-
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tions M = {M1, . . . , Mm}. Each abducible Ai is associated with
an IS-A hierarchy Λ(Ai) containing abstract values of Ai as well as
their refinements at multiple levels; similarly, each manifestation Mj

is associated with an IS-A hierarchy Λ(Mj). We assume that the di-
rect refinements v1, . . . , vq of a value V in a hierarchy (either Λ(Ai)
or Λ(Mj)) are mutually exclusive, and at most one of the leaf val-
ues in a hierarchy is true in each situation, i.e. we allow at most one
instance for each abducible and observation; moreover, for each leaf
value v of an abducible an a-priori probability p(v) is given.

The hypotheses space S(A) for the abduction task is the set of all
of the combinations γ of values drawn from one or more distinct hi-
erarchies Λ(Ai), while the manifestations space S(M) is the set of
all of the combinations ω of values drawn from distinct hierarchies
Λ(Mj). The relationships between the abducibles and the manifes-
tations are defined by the domain knowledge K ⊆ S(A) × S(M).

Given an instance of manifestations ω ∈ S(M) and an instance
of abducibles γ ∈ S(A), (γ,ω) ∈ K means that ω is a possible
observation set corresponding to the hypothesis set γ.

We associate costs with values of both abducibles and manifesta-
tions. Let C ∈ Λ(Ai) be a value belonging to the IS-A hierarchy of
Ai; its cost ac(C) is the cost of the action to be taken when Ai takes
value C (e.g. a repair action if Ai represents a component and C de-
notes one of its fault modes). Let c1, . . . , cq be the children of C in
Λ(Ai), i.e. the possible refinements of value C. We assume that:

max({ac(c1), . . . , ac(cq)}) ≤ ac(C) ≤

q∑
k=1

ac(ck)

i.e. the action that we take for a value C of Ai costs no less than the
most expensive action for its refinements and no more than taking
the actions for all of such refinements. As for the manifestations, let
O ∈ Λ(Mj) be a value belonging to the IS-A hierarchy of Mj ; its
cost oc(O) is the cost of making the observation which refines value
O into one of its children o1, . . . , oq in Λ(Oj).

We can associate an action cost also with any instance γ

= {C1, . . . , Cr} ∈ S(A) of abducibles simply as ac(γ) =∑r

i=1
ac(Ci), i.e. we assume that independent actions are taken for

each of the abducibles values that appear in γ. With a slightly more
complex computation we can also associate an action cost with a set
of instances Γ = {γ1, . . . , γs} representing the cumulative action
cost if Γ is the final set of explanations. For each abducible Ai s.t.
(a value of) Ai appears at least in one γ ∈ Γ, we compute a new
hierarchy Λ(Ai, Γ) by considering the portion of Λ(Ai) up to the
least upper bound LUB(Ai, Γ) that covers all of the values of Ai

that appear in Γ and by further removing from such a sub-tree all of
the values that do not appear in Γ.

In this way, it may happen that the cost ac(C) of a value C ∈
Λ(Ai, Γ) is larger than the sum of the costs ac(ck) of its children,
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since not all of the children of C defined in Λ(Ai) need to appear
in Λ(Ai, Γ). We therefore update (with a bottom-up computation)
the ac costs in Λ(Ai, Γ) to new costs ac∗ in order to reestablish this
property. The action cost of Γ is then computed just as:

ac(Γ) =
∑
Ai∈Γ

ac
∗(LUB(Ai, Γ))

3 Iterative Abduction

We rely on the following generic loop for iterative explanation:
Input is a set of values ωI = {O1, . . . , Ot} representing the ini-

tial observations, i.e. the values of a set of manifestations {M1, . . . ,

M t} ⊆ M.

Generate a set Γ of candidates (i.e. explanations of ωI ).
loop

O := NextStep(Γ);
if O = STOP then exit
else

perform observation to refine O into one of its children ok;
Γ := Update(Γ, ok)

end

That is, we assume that one or more initial observations are given;
that there is a way to generate candidate explanations based on them
(see below), and to update candidates based on additional observa-
tions; and we proceed with selecting and performing one observation
at a time, which, of course, is in general suboptimal, as in [3, 2].

In this paper we aim at providing a general approach to the se-
lection of the next step; we do not provide a general approach to
candidate generation and update which could involve a mix of ab-
duction and consistency reasoning; its formulation would depend on
the way K is represented. With hierarchies of abducibles, moreover,
abstract as well as detailed assumptions may take part in explana-
tions; a general criterion which is suitable in this setting is the pref-
erence for least presumptive explanations [5], which generalize min-
imal (wrt set inclusion) explanations: an explanation that (also based
on the IS-A hierarchy) implies another explanation is not least pre-
sumptive. In the following we assume that the candidates computed
at each iteration represent the least presumptive explanations of the
observations collected so far.

4 Choosing the Next Step

Let Γ be the current candidate set and let OBS be the set of possi-
ble observations (including refinements of previous observations). In
order to decide whether to stop or to proceed with a new observation
O ∈ OBS, we select the minimum among:

• the action cost ac(Γ) associated with Γ
• for each O ∈ OBS, the estimated cost c(O), which is the sum

of the cost oc(O) of observing O and the expected cost of the
candidate set after observing O, i.e.:

c(O) = oc(O) +

q∑
k=1

p(ok) · c(Γk)

where Γ1, . . . , Γq are the possible candidate sets that would result
by observing O and getting values o1, . . . , oq respectively, p(ok)
is the probability of getting value ok (computed based on current
candidates Γ as in [3, 2]) and c(Γk) is the estimated cost of Γk as
detailed in the following.

If ac(Γ) is the minimum among the costs, we stop; otherwise we
observe the O with the smallest c(O).

Let Γk = {γ1, . . . , γs} be one of the candidate sets involved in
the above formula (note that each candidate γi may contain ground
as well as abstract causes) and ac(Γk) be its action cost, i.e. the cost
of stopping at Γk, which must be compared with the estimated cost
of acting after a further discrimination and refinement.

In principle, this estimation step would require to simulate all the
possible observation sequences and outcomes and, for each of them,
to assess the point where it is convenient, on average, to stop and
perform the actions; in order to avoid such an intractable search, we
assume that the abductive process will continue as follows: first, one
of the γi ∈ Γk will be isolated; then, γi is refined level by level, up
to a point where performing an action is estimated to be convenient.
Therefore the estimated cost of Γk is:

c(Γk) = min(ac(Γk), ic(Γk) + rac(Γk))

where ic(Γk) is the estimated cost of isolating a single γi ∈ Γk and
rac(Γk) is the estimated additional refinement and action cost once
some γi has been isolated.

In this proposal, we estimate the cost ic(Γk) as follows:

ic(Γk) =

s∑
i=1

−p(γi) · log(p(γi)) · oc(γi)

where −log(p(γi)) is the estimated number of observations needed
for isolating γi [3] and oc(γi) is an estimate of the cost of a sin-
gle observation3. The cost rac(Γk) of refining its members γi =
{Ci,1, . . . , Ci,ri

} until an action is taken is estimated by:

rac(Γk) =

s∑
i=1

(
p(γi) ·

ri∑
j=1

c(Ci,j)

)

where c(Ci,j) is the estimated cost associated with Ci,j .
In case action costs do not depend on the current context, each

cost c(Ci,j) can be pre-computed offline with a bottom-up visit of
the taxonomies of the causes. In this proposal we have adopted a
formula similar to the one for c(Γk), i.e.:

c(Ci,j) = min(ac(Ci,j), ic(Ci,j) + rac(Ci,j))

where ic(Ci,j) is the estimated cost of isolating a single child of Ci,j

in the hierarchy and rac(Ci,j) is the estimated additional refinement
and action cost once some child of Ci,j has been isolated4.
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