
From constraint representations of sequential code and
program annotations to their use in debugging1

Mihai Nica and Franz Wotawa2

1 Introduction

Debugging, i.e., the detection, localization, and correction of bugs,
has been considered an important task in software engineering. A lot
of research has been devoted to debugging but mainly to fault de-
tection. In this paper we focus on fault localization, which is based
on the constraint representation of programs. For this purpose, pro-
grams are converted into their equivalent constraint satisfaction prob-
lem (CSP). A solution of the corresponding CSP is a diagnosis can-
didate. Besides the source code, a failure revealing test case has to be
given. For more information regarding CSP we refer to [2].

The work described in this paper is most closely to the work of
Ceballos et al. authors [9], where constraint programming is used
for fault localization. There approach requires that the programmer
provides contracts, i.e., pre- and post-conditions, for every function.
However, the authors do not investigate the complexity of solving the
resulting problem and the scalability to larger programs. In particu-
lar, they do not consider structural decomposition or other methods
for improving constraint solving, which would make the approach
feasible.

In order to complement previous research, we investigate the com-
plexity of solving the CSP corresponding to a debugging problem
that comprises the source code and the test case. In the past, in order
to find problem classes which are tractable, much work has been done
on the structural decomposition of CSPs. Gottlob et al. proposed the
hypertree decomposition, and they showed that this decomposition
method generalizes other important methods [3, 4]. The hypertree
width, a characteristic of the structure of the constraint system, is a
measure for the complexity of solving a CSP and, therefore, a mea-
sure for the complexity of the debugging problem. In other words, by
performing a hypertree decomposition we can obtain a metric for the
complexity of debugging.

2 Example

In this section we use a small example program to motivate fault
localization using constraint-based reasoning with integrated anno-
tations. For the program in Figure 1 assume that Line 3 is changed
to ’while (i <= x) {’ which leads to an obviously wrong im-
plementation. If we are only interested in finding single faults at the
statement level, we use the following process. Statement by state-
ment we go through the program and assume the current statement
to be faulty. All other statements are considered to work as expected.

1 This research has been funded in part by the Austrian Science Fund (FWF)
under grant P20199-N15 and by the FIT-IT research project Self Properties
in Autonomous Systems(SEPIAS) which is funded by BMVIT and the FFG

2 Technische Universität Graz, Institute for Software
Technology, 8010 Graz, Inffeldgasse 16b/2, Austria,
{mihai.nica,wotawa}@ist.tugraz.at. Authors are listed
in alphabetical order.

{ x ≥ 0 ∧ y ≥ 0 } // PRE-CONDITION
1. i == 0;
2. r == 0;
3. while (i < x) {

{ r == i · y } // INVARIANT
4. r = r + y;
5. i = i + 1;

}
{ r == x · y } // POST-CONDITION

Figure 1. A program for computing the product of two natural numbers

When assuming a statement to be faulty, we cannot derive a value
for those variables defined in the statement. A variable is said to
be defined within a statement if a value is assigned to the variable.
Such a semantics for faulty statements is implemented in the previ-
ous model-based diagnosis approaches of debugging, e.g., in [5].

We now assume that Line 1 of the multiplication program behaves
faulty. In this case the variable i in Line 1 is assigned the undefined
value ?, that means: 1.i =?;. Because of this change, we are not
able to decide whether the condition in Line 3 evaluates to true or
false. Hence, no values for r or i can be determined, and finally, we
cannot contradict the expected value. As a consequence Line 1 is a
valid diagnosis accordingly to model-based diagnosis [6]. The same
happens when assuming Line 2 to be faulty. In this case r has no
value assigned. From the other information we know that the sub-
block of the while is executed once. Hence, we receive the following
equation, where the available information is given in parentheses:

4. {r =? ∧ y=2} r = r + y; {r=0}
This equation can be solved by setting the value of r (before ex-

ecuting the statement) to -2 which does not contradict the value ?.
A similar situation occurs for the other statement, and hence, there is
no way of excluding even a single statement from the list of possible
bug candidates. This problem of not being able to exclude statements
is due to the fact of missing information. In order to overcome this
problem we have to combine verification information and debugging.
For this purpose we consider program annotations which can also be
used for verification based on Hoare’s calculus like the one given
in Figure 1. When now using the same procedure for finding single
faults, only Lines 1 and 3 remain as diagnosis results. We now prove
that Line 2 can be excluded and it is easy to see that the same argu-
ment applies to Line 4 and 5 as well. If assuming Line 2 to be faulty,
we receive the following equation:

{ r == i · y ∧ i==1 ∧ x==0 ∧ y==2}

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-797

797



4. r = r + y;
{r==0}

From i==1 and i==0we derive r==0 before executing the state-
ment. Hence, we obtain r to be 2 after the execution which contra-
dicts the expected value of r. Statement 2 is no single fault diagnosis
anymore.

This simple example shows that the integration of verification in-
formation that is based on program annotations really improves de-
bugging. Hence,a representation of programs and there annotations
as constraints together with a constraint solver can be used to check
correctness assumptions of program statements.

3 Debugging process

The whole conversion algorithm of programs into their equivalent
CSP representation and its use in debugging is described in [10]. We
only briefly discuss the overall diagnosis process that comprises the
following steps:

1. Remove loops: The first step is to remove all while statements and
recursive function calls by ’unrolling’. For this purpose a while
statement is converted into a nested if-statement. A similar proce-
dure is done for recursive functions. Since, the maximum number
of iterations is known for a given test case, the resulting loop-free
program behaves in the same way like the original program.

2. SSA Conversion: In the second step, the loop-free program is con-
verted into its static single assignment (SSA) form. In the SSA
form every variable is defined once. For more information regard-
ing the SSA form we refer to [1]. In this step the assertions are
also converted.

3. The CSP’s hyper-tree: From the SSA form we build the constraints
system and its corresponding hyper-tree. This is done by mapping
every program variable to its corresponding constraint variable.
Every assignment is mapped directly to a constraint. The behavior
of the constraints is given by the semantics of the corresponding
statements.

4. Diagnosis: In the diagnosis step, we use the resulting CSP and the
given test case directly for solving the obtained debugging prob-
lem. For this purpose we use the TREE* algorithm [7]. The algo-
rithm requires an acyclic CSP, which can be obtained by applying
for example hyper-graph decomposition [3, 4] or other decom-
position methods. The combination of TREE* and composition
method is described in [8].

When using the debugging process, the complexity of debugging
is equivalent to the complexity of solving a CSP. [4] states that the
complexity of solving a CSP is related to the hyper-tree width of
the CSP as follows: The time need it to find a solution for a CSP
with n variables as input and a corresponding hyper-tree width of
k is in the worse case O(nk log n). Hence, knowing the hyper-tree
width of CSPs of programs is important in practice. In Table 2 we
report first results regarding the hyper-tree width of some small pro-
grams comprising while- and if-statements. The table comprises the
lines of code (LOC), the lines of code of the corresponding SSA
form (LOC2), the number of while-statements (#W), the number of
If-statements (#I), the number of considered iterations (#IS), and the
hyper-tree width (HW) for each program. The hyper-tree width of the
programs varies from 3 to more than 30, which indicates that comput-
ing diagnosis candidates is a complex task when relying on CSP rep-
resentation of programs. Another important issue is that the hyper-
tree width increases when the number of considered iterations (dur-
ing the unrolling step) increases. Whether there is an upper-bound or
not is still an open issue.

Name LOC LOC2 #W #I #IS HW
BinSearch 27 40 1 3 1 3
BinSearch 27 112 1 3 4 8
Binomial 76 82 5 1 1 3
Binomial 76 1155 5 1 30 ≥ 30
Hamming 27 62 5 1 1 2
Hamming 27 989 5 1 10 ≥ 14
Huffman 64 78 4 1 1 2
Huffman 64 342 4 1 20 ≥ 12
whileTest 60 88 4 0 1 2
whileTest 60 376 4 0 9 8

Permutation 24 41 3 1 1 3
Permutation 24 119 3 1 7 6
Permutation 24 1231 3 1 100 6

Adder 63 70 0 5 - 3
SumPowers 21 33 2 1 1 2
SumPowers 21 173 2 1 15 10
SumPowers 21 1376 2 1 100 10
IscasC432 162 162 0 0 - 9

ComplexHypertree 12 30 1 0 1 3
ComplexHypertree 12 370 1 0 30 17
ComplexHypertree 12 1076 1 0 100 17

Figure 2. The hyper-tree width for different sequential programs

4 Conclusions

In this paper we discussed the compilation of programs into their
equivalent CSP representation and its use for fault localization. As-
sertions like pre- and post-conditions or invariants can be easily inte-
grated. Moreover, CSP solvers can be directly used for debugging.

Solving CSPs depends also on their structural properties. The
structural properties of the CSP corresponding to a given problem,
represent an indicator for the complexity of program debugging.

In this paper, we give first results of the debugging complexity
using hyper-tree width. The results show that debugging requires a
lot of computational resources.

REFERENCES
[1] Marc M. Brandis and H. Mössenböck. Single-pass generation of static

assignment form for structured languages. ACM TOPLAS, 16(6):1684–
1698, 1994.

[2] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[3] Georg Gottlob, Nicola Leone, and Francesco Scarcello. On Tractable

Queries and Constraints. In Proc. DEXA 2001, Florence, Italy, 1999.
[4] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP

decomposition methods. AI, 124(2):243–282, 2000.
[5] Wolfgang Mayer, Markus Stumptner, Dominik Wieland, and Franz

Wotawa. Can ai help to improve debugging substantially? debugging
experiences with value-based models. In ECAI, pages 417–421, Lyon,
France, 2002.

[6] Raymond Reiter. A theory of diagnosis from first principles. AI,
32(1):57–95, 1987.

[7] Markus Stumptner and Franz Wotawa. Diagnosing tree-structured sys-
tems. AI, 127(1):1–29, 2001.

[8] M. Stumptner and F. Wotawa. Coupling CSP decomposition methods
and diagnosis algorithms for tree-structured systems. In Proc. 18th IJ-
CAI, pages 388–393, Acapulco, Mexico, 2003.

[9] R. Ceballos and R. M. Gasca and C. Del Valle and D. Borrego Diag-
nosing Errors in DbC Programs Using Constraint Programming Lecture
Notes in Computer Science, Vol. 4177, Pages 200-210, 2006.

[10] Paper waiting to be reviewed by Informatica. http://www.informatica.si/

M. Nica and F. Wotawa / From Constraint Representations of Sequential Code and Program Annotations to Their Use in Debugging798


