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1 INTRODUCTION

Real-life complex systems are often required to offer high reliability
and quality of service and must be provided with self-management
abilities, even in faulty situations. They are expected to be self-aware
of their current state and survive autonomously the occurrence of
faults, still managing to provide the desired functionality. In other
words, such systems must be self-healing [2].

Designing self-healing systems requires to be able to evaluate the
joint degree of self-awareness and reactiveness. In the artificial in-
telligence community, these two properties are better known as di-
agnosability [3, 1], i.e. the capability of a system to exhibit different
observables for different anticipated faulty situations, and repairabil-
ity, i.e. the ability of a system and its repair actions to cope with any
unexpected situation.

Checking separately diagnosability and repairability leads to a
conservative assessement of self-healability. In this paper, we show
that neither standard diagnosability nor repairability of every antici-
pated fault are necessary to achieve self-healability. Our main contri-
bution consists of defining self-healability as a joint property bridg-
ing diagnosability and repairability, which requires a new definition
of diagnosability that allows diagnosable subsets of faults to overlap,
as opposed to the standard definitions which rely on a partition.

2 MAIN CONCEPTS

The presented framework, which is relevant for state based or event
based systems, adopting the generic viewpoint defined in [1], is il-
lustrated with discrete event systems 3 as our current objective is to
apply it to service oriented architectures like Web Services in the
framework of the WS-DIAMOND European project [4].

Observations and Faults : The set of observable events is O =
{o1, . . . , ono}. Complementing O with the set of unobservable
events U = {u1, . . . , unu} determines the whole set of events of
the system E = O ∪ U . The occurrence of basic faults that might
occur on the system are represented as specific unobservable events
noted fi. In the following, we restrict ourselves to the single fault
assumption (i.e. only one fault can be present in the system at a given
time). The system can then be either in a nominal mode (absence of
fault) or in one of the nf fault modes. The set of all possible system
modes is hence given by F = {f0, f1, ..., fnf}, where f0 = ok.

T denotes the set of (infinite) possible trajectories (i.e. sequences
of events) occurring in the system, while OBS is the set of all possi-
ble sequences of observable events. A trajectory τ ∈ T corresponds
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3 We assume the liveness of the observations [3].

to only one observable σ, while one σ may correspond to several
disctint trajectories.
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The above figure represents the global model of a discrete-event
system. The set of fault modes is F = {ok, f1, f2, f3, f4}. Fault
events are not observable, the other events being observable. o1o

∞
5

is both a trajectory and the observable obtained over that trajectory
including an infinite sequence of o5. o2o2f2o

∞
2 is another trajectory

yielding the observable o∞2 . f1o
∞
2 is yet another trajectory which,

interestingly enough, yields the same observable o∞2 , which means
these two trajectories cannot be discriminated from the observations.

Macrofaults: It is not always possible to know with certainty in
which mode a system is. It is often even not necessary with respect
to reparability. It is why we define the concept of macrofault that
represents the belief state referring to the system mode. A macrofault
can be seen as an abstraction of system modes. For instance, if a
pipe can be in the two basic fault modes leaking or blocked, it can
also be said to be in an abnormal macrofault mode, where abnormal
corresponds to leaking or blocked.

A macrofault Fj is described by a non empty set of fault modes.
With our single fault assumption, an ’occurrence’ of Fj means that
exactly one of the faults fi ∈ Fj has occurred in the system. For
instance, the macrofault {f1, f2} represents the fact that either f1 or
f2 has occurred . A macrofault may be a singleton (Fj = {fi}). If
all basic faults appear in a set of macrofaults E(F) ⊆ 2F , then it is
called a covering set.

Repairs : A repair plan is defined in a simplified way as, for our
purpose, only the existence of such repair plans and their matching
to (basic) faults is relevant.

The set of available repair plans is denoted R = {r1, ..., rnr}.
The predicate Repair relates repair plans to (macro)faults:
Repair(rk, Fi) means that applying the repair plan rk brings back
the system into a nominal state, under the condition that the system
is in one of the modes described by the macrofault Fi

4 For instance,
4 rok , the (void) repair plan such that Repair(rok, ok), is assumed to exist.
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the repair plan r1 such that Repair(r1, {f1, f2}) can be executed
only if either f1 or f2 has occured.

Having a repair plan for a macrofault is equivalent to hav-
ing a repair plan for all the basic faults belonging to the macro-
fault, hence the following property : Repair(rk, Fj) ≡ ∀fi ∈
Fj , Repair(rk, {fi}).

3 SELF-HEALABILITY

Self-healability is intuitively defined by “A system is self-healing if,
and only if, after the occurrence of any basic fault, a diagnosis is
issued that automatically raises a repair plan fitted to the fault.” Be-
hind this intuitive definition, two properties of the system are hidden:
diagnosability and repairability.

Diagnosability : Diagnosability relies on the notion of fault sig-
natures [1]. Intuitively, a fault signature is the association between a
fault and a set of possible observables.

We use the following notations :

• The predicate yields(fi, σ) means that there exists at least one
trajectory in which fi ∈ F is present and that yields the ob-
servable σ ∈ OBS. The predicate yields can be generalized to
macro-faults: yields(Fj , σ) means that it ∃fi ∈ Fj such that
yields(fi, σ). σ is then called an elementary signature, or e-
signature of the fault Fi,

• MF (σ) is the (unique) macrofault containing all faults that may
yield σ, i.e. MF (σ) = {fi such that yields(fi, σ)}. MF can be
generalized to sets of e-signatures: MF (Σ) =

S
σ∈Σ MF (σ).

In this work, we are not interested in checking that any basic fault
can be diagnosed, but we are interested in finding the level of diag-
nosability of a system. This is why the partition of faults classically
used is replaced by a set of macrofaults possibly sharing common
faults. Still, each macrofault must be associated to distinct observ-
ables and the corresponding sets of observables need to form a par-
tition. Hence the following new definition for diagnosability that ex-
tends the classical definition and is suitable for self-healability.

Definition 1 (Diagnosability of a set of macrofaults) The cover-
ing set E(F) is diagnosable, noted Diagnosable(E(F)), iff there
exists a partition π = {Σ1, . . . , Σm} of the observables OBS such
that: E(F) = {MF (Σj), Σj ∈ π}.

Example: A first straightforward set of macrofaults is E�(F) =
{F} = {{ok, f1, f2, f3, f4}} in which faults are indistinguish-
able: obviously it is diagnosable, the partition being π� =
{{o1o5∞, o∞1 , o∞2 , o3o

∞
2 , o∞3 , o∞4 , o∞6 }} = {OBS}.

The set of macrofaults E1(F) = {{ok}, {f1, f2}, {f1, f3}, {f4}}
is diagnosable with π1 = {{o1o5∞}, {o∞2 , o3o

∞
2 }, {o∞1 , o∞3 , o∞6 },

{o∞4 }}. Note that E1(F) also corresponds to another partition
π2 = {{o1o5∞}, {o∞2 , o3o

∞
2 , o∞6 }, {o∞1 , o∞3 }, {o∞4 }}. E2(F) =

{{ok}, {f1}, {f2}, {f3}, {f4}} is not diagnosable because there are
some cases in which f1 and f2 cannot be discriminated, there is no
partition of observables associated to it (the same for f1 and f3).

Repairability : A macrofault Fj is repairable if and only if there
exists a repair plan that repairs it. Repairable(Fj) ≡ ∃rk such that
Repair(rk, Fj). The repairability of a set of macrofaults is then
defined as the repairability of all the macrofaults in the set.

Definition 2 (Repairability) A set of macrofaults E(F)
is repairable, noted Repairable(E(F)), iff ∀Fj ∈
E(F) Repairable(Fj).

Example : If the only repair plan is r, with Repair(r, {f1, f3}),
we indeed get Repairable({f1, f3}), and also Repairable({f1}) and
Repairable({f3}). However, the system is not repairable since the
faults f2 and f4 are not repairable.

Self-healability : Our definition for self-healibility directly de-
rives from the definitions of diagnosability and repairability.

Definition 3 (Self-healing set of macrofaults) A set E(F)
is self-healing iff it is diagnosable and repairable, i.e.
SelfHealing(E(F)) ≡ Diagnosable(E(F)) and
Repairable(E(F)).

Definition 4 (Self-healing system) A system is self-healing iff there
exists a self-healing covering set E(F).

Example : If Repairable(ok), Repairable({f1,f3}), Repai-
rable({f1,f2}) and Repairable(f4), then the set E1(F) =
{{ok}, {f1, f2}, {f1, f3}, {f4}} is diagnosable and repairable.
The system is self-healing. If Repairable(ok), Repairable({f1,f3}),
Repairable(f2) and Repairable(f4) then the system is not self-healing
as there does not exist a repair plan for {f1, f2}.

Due to lack of space, the algorithm to check whether a system is
self-healing is not given.

4 CONCLUSION AND PERSPECTIVES

The main contributions of this paper are first a new and original def-
inition of diagnosability which allows to diagnose possibly overlap-
ping sets of non-discriminated faults, and then using that definition,
to propose a thorough and integrated definition of the self-healability
of a dynamic system. Interestingly enough, diagnosability of each
basic fault is not required but what is needed is a diagnosability level
that can be matched to the existing repairs. As far as we know, it is
the first time that such a definition is issued.

We are currently applying our work to web services in the frame-
work of the WS-DIAMOND European project [4], in which we in-
vestigate a number of extensions to address more sophisticated and
realistic cases, mostly in terms of the characterization of repair plans,
their properties and conditions of applicability. One of the problems
is how to deal with multiple faults that may appear sequentially. An-
other interesting issue refers to temporal conditions that may restrict
the applicability of repairs and be in conflict with the time needed to
diagnose a fault.
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