
Incremental Diagnosis of DES by Satisfiability1

Alban Grastien and Anbulagan
NICTA and Australian National University

Abstract. We propose a SAT-based algorithm for incremental di-
agnosis of discrete-event systems. The monotonicity is ensured by a
prediction window that uses the future observations to lead the cur-
rent diagnosis. Experiments stress the impact of parameters tuning
on the correctness and the efficiency of the approach.

1 Diagnosis by SAT

Diagnosis is the AI problem of determining whether a system is run-
ning correctly during a time window, and of identifying any failure
otherwise. Consider a system which is completely modeled by a DES
(basically a finite state machine) denoted Mod . This system is run-
ning and generates observations. The goal of the diagnosis is to de-
termine from the model and the observations whether faulty events
occurred on the system. The problem can be reduced to finding par-
ticular paths on the DES consistent with the observations [4]. Since
failures are rare events, we can consider paths that minimize the num-
ber of faults.

In [2], we proposed to solve the DES diagnosis problem with sat-
isfiability (SAT) algorithms. SAT is the problem of finding an assign-
ment of the variables of a given Boolean formula in such a way as
to make the formula evaluate to true. Given an upper bound on the
number of transitions in the paths that are considered, a diagnosis
problem – finding a particular path – can be encoded as a SAT prob-
lem. The SAT-based algorithm then simply uses SAT solver to look
for a path with increasing number of faults until a diagnosis is found.

2 Incremental Diagnosis by SAT

Incremental diagnosis (ID) consists in computing the diagnosis for
a temporal window, and then updating this diagnosis to consider a
larger temporal window. The incremental diagnosis can serve for
two purposes. First, it is used when the observations for the latter
temporal window are not immediately available: a diagnosis for the
first temporal window is computed, and then must be updated as the
other observations are provided. This is typically the case for on-line
diagnosis, where the system is monitored while it is running.

Second, an incremental approach can be used to simplify a non-ID
problem. Given a diagnosis task on a large temporal window, the win-
dow is sliced into small windows to obtain simpler diagnosis prob-
lems. In both cases, the complexity of the ID must be independent
of the previous diagnoses. This paper considers the second approach
where all the observations are available. The on-line problem con-
tains additional issues mostly independant from ID.

1 This research was supported by NICTA in the framework of the SuperCom
project. NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Centre of Excellence
program.

Consider that the observations on a window are denoted Obs, and
denote ⊕ the concatenation of two windows. Note that the concate-
nation may be non-trivial in case of uncertain observations [3]. Given
the diagnosis of Obs1, given the observations Obs2, the incremental
diagnosis is the computation of the diagnosis of Obs1 ⊕ Obs2. The
complexity of the incremental diagnosis of Obs1 ⊕ Obs2 given the
diagnosis of Obs1 must not depend on the size of Obs1. It is wise
to perform the diagnosis of Obs1 in such a way as to ease the ID of
Obs1 ⊕ Obs2. In this case, the complexity of the diagnosis of Obs1
must not depend on the size of Obs2.

Rather than diagnosing the whole period (t0, tn), we do an ID and
diagnose n windows of size λ (ti+1 = ti +λ). The n diagnoses must
be consistent with each other: the path computed for (t1, t2) must be
a continuation of the path computed for (t0, t1). However, when the
diagnosis of (t0, t1) is computed, we cannot be sure that the extracted
path will be consistent with the next observations. In diagnosis, there
is usually a delay between the occurrence of an event and the re-
ception of observations proving this occurrence. However, this delay
is generally bounded: it is unlikely an observation will explain what
happened several days or weeks ago. Thus, we ensure that the path of
(t0, t1) is consistent not only with observations (t0, t1) but also with
the observations (t1, t1 + μ). This way, the diagnosis for this win-
dow should be globally consistent. The period of time (t1, t1 + μ) is
called prediction window of the diagnosis window (t0, t1). Note that
the diagnosis is approximate as the best global path may be lost if it
includes the early occurrence of many faults.

Algorithm 1 Incremental Diagnosis(Mod ,I,Obs,Que,λ,μ)

1: S(0) := I(0); // I represents the initial states
2: for i := 0 ; i < n ; i ++ do // Diagnoses the window (ti, ti+1)
3: while no solution found for (ti, ti + λ) do
4: for (k := 0 ; k < K and no solution found ; k ++) do
5: F := Mod(ti, ti + λ + μ) ∪ Obs(ti, ti + λ + μ) ∪

Quek(ti, ti + λ) ∪ S(i);
6: if SAT(F) is satisfiable then
7: extract path(SAT(F));
8: S(i + 1) := extract state(SAT(F));
9: if no solution found for (ti, ti + λ) then // path reset

10: S(i) = ∅

We propose Algorithm 1 for the ID of (t0, tn). Let K be the max-
imum number of faults that can occur during λ time steps. For each
window (ti, ti + λ), the SAT solver tries to find a path starting from
state S(i), consistent with the observations (ti, ti + λ + μ) by in-
creasing the number of faults (lines 4–8). F is the CNF that models
the set of contraints on the path we are looking for. When the path is
found, the function extract path extracts the path computed dur-
ing (ti, ti + λ). The function extract state computes S(i + 1)

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-787

787



in order to force the next path to be a prolongation of the current path.
If no path is found starting from S(i) for (ti, ti + λ), the path for

the previous window is not consistent with the new observations. For
complexity reasons, backtracking is not allowed. The algorithm sim-
ply tries to find a new path that does not start from the previous path
(line 10). We call this a path reset. When a path reset is performed,
the path of (t0, tn) is not globally consistent. However for most sys-
tems, it can be expected that the misinterpretation of the observations
will be only localised on a small time frame.

3 Empirical Validation

The experiments are conducted on an Intel Pentium 4 PC running at
3 GHz CPU, under Linux using MINISAT v2.0 [1]. For this study,
we use the system presented in [2]. The maximum number of faults
K is set to 1 + λ/2 in the experiment.

n 100 200 299 300 400 500 599 600 699 700 799 800 899 900 999 1000

t 116 19 >2d >2d 268 127 >2d 153 832 669 185 574 151 370 >2d 3204

Table 1. Runtime in seconds of MINISAT solver on nID satisfiable
problem instances with n observations

Table 1 shows the runtime required by MINISAT to find a scenario
consistent with the n observations and containing k(n) � n/8 faults.
In this Table, t >2d means that the instance cannot be solved in 2
days. Note that this computation is not a diagnosis in the sense that
it should first be proved that there is no path with k′ faults where
k′ < k(n), which is usually more expensive as these problems are
unsatisfiable. Note that the runtime does not increase linearly but in a
chaotic way, such as the difference between n = 999 and n = 1000.

We now run Algorithm 1 on the scenario of 1 000 observations
by varying the parameter λ in the range of {2, 5, 10, 20, 40} and the
parameter μ in the range of {0, 10, 20, 30, 40, 50, 100}.

Quality of the diagnosis Figure 1a presents the percentage of
path resets, and Figure 1b gives the number of faults computed for
each pair of parameters. These measure the quality of the diagnosis.
An accurate diagnosis should have no reset and the smallest num-
ber d(0, 1000) of faults consistent with the observations (this value
is unknown but less than 128). As expected, the number of resets
decreases when the size of the prediction window increases. In this
example, a value μ = 100 is sufficient to avoid any reset. The Fig-
ure 1b also shows that a large diagnosis window partially avoids the
bad-quality results of small prediction windows though it generates
a big number of path reset. This is simply because enlarging the size
of the diagnosis windows makes the incremental diagnosis more and
more look like non incremental diagnosis.

Runtime Figure 1c gives the number of calls to MINISAT, Fig-
ure 1d presents the total runtime of MINISAT, and Figure 1e presents
the total runtime including the preprocessing time. All the computa-
tions are done in less than one hour, which is better than the incom-
plete computations of Table 1.

The runtime generally increases when μ increases. Thus, a trade-
off might be required here between quality and efficiency. Note that
the tendency is inverted when λ is large because the number of path
restart decreases; for large diagnosis windows, large prediction win-
dows increase quality and efficiency. Finally, note that the small-

est runtime is not achieve with smallest diagnosis windows but with
medium-large diagnosis windows.

0 10 20 30 40 50 100
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 tr

aj
ec

to
ry

 r
es

et
s

λ=2
λ=5
λ=10
λ=20
λ=40

Size μ of the prediction window
0 10 20 30 40 50 100

20

40

60

80

100

120

N
b.

 o
f f

au
lts

 d
ia

gn
os

ed

λ=2
λ=5
λ=10
λ=20
λ=40

Size μ of the prediction window

a. Nb. of path resets. b. Nb. of diagnosis faults.

0 10 20 30 40 50 100
0

200

400

600

800

1000

1200

N
b.

 o
f c

al
ls

λ=2
λ=5
λ=10
λ=20
λ=40

Size μ of the prediction window
0 10 20 30 40 50 100

0

100

200

300

400

500

600

700

800

S
ol

ve
r 

ru
nt

im
e 

in
 s

ec
on

ds

λ=2
λ=5
λ=10
λ=20
λ=40

Size μ of the prediction window

c. Nb. of calls to MINISAT. d. Total runtime of MINISAT.

0 10 20 30 40 50 100
0

500

1000

1500

2000

2500

T
ot

al
 r

un
tim

e 
in

 s
ec

on
ds

λ=2
λ=5
λ=10
λ=20
λ=40

Size μ of the prediction window
100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

R
un

tim
e 

in
 s

ec
on

ds

2–100
5–100

10–100
20–100
40–100
40–0

Nb. of observations

e. Total runtime. f. Runtime of ID solving.

Figure 1. Results of our incremental algorithm on nID problems.

Incremental runtime Figure 1f shows the evolution of the SAT
runtime during the incremental diagnosis for some pairs 〈λ,μ〉 (other
pairs lead to similar results). The experiments clearly show a linear
runtime for most pairs of parameters. Note however that small pre-
diction windows potentially generates picks of computation.

These results validate our approach. The incremental algorithm
of DES can be performed using SAT algorithms, and the runtime is
lower than in a non-incremental approach. The results stress the im-
portance of the parameters λ and μ both for efficiency and for diag-
nosis correctness. These parameters should be tested off-line before
running the diagnosis to address the quality of diagnosis required and
the resources available.

REFERENCES
[1] N. Eén and N. Sörensson, ‘An extensible SAT-solver’, in Sixth Interna-

tional Conference on Theory and Applications of Satisfiability Testing
(SAT-03), (2003).

[2] A. Grastien, Anbulagan, J. Rintanen, and E. Kelareva, ‘Diagnosis of
discrete-event systems using satisfiability algorithms’, in Proc. of 19th
AAAI, pp. 305–310, (2007).

[3] A. Grastien, M.-O. Cordier, and Ch. Largouët, ‘Incremental diagnosis of
discrete-event systems’, in Sixteenth International Workshop on Princi-
ples of Diagnosis (DX-05), pp. 119–124, (2005).

[4] G. Lamperti and M. Zanella, Diagnosis of Active Systems, Kluwer Aca-
demic Publishers, 2003.

A. Grastien and Anbulagan / Incremental Diagnosis of DES by Satisfiability788


