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Abstract. We propose a supervised approach to enable accurate
determination of the number of clusters in object identification. We
use the aggregated attribute values of the data set to be clustered as
explanatory variables in the prediction model. Attribute aggregation
can be done in linear time with respect to the number of data items,
so our method can be used to predict the number of clusters with a
low computational burden. To deal with skewed target values, we in-
troduce a two-stage method as well as a method using a higher-order
combination of explanatory variables. Experiments demonstrate our
methods enable more accurate prediction than existing methods.

1 INTRODUCTION

Object-identification problems, in which it is necessary to determine
whether names appearing in documents or database records corre-
spond to the same real world object, are important in information
retrieval and integration. Typical examples of object-identification
problems include disambiguating namesakes in Web search results
and establishing correspondence between an abbreviated author
name in bibliographic databases and a particular person. Object-
identification problems are generally solved by clustering data that
contain an ambiguous name and by regarding data in the same clus-
ter as corresponding to the same object.

Among the various clustering algorithms, the most widely used are
k-means and hierarchical algorithms including single-linkage. One
problem in using the k-means clustering algorithm, though, is that
a user has to specify the number of clusters as a parameter before
starting the clustering procedure. If we use a hierarchical clustering
algorithm for object identification, we must specify the number of
clusters or a stopping condition so that the algorithm stops the clus-
tering and outputs the results after a certain number of clusters have
been found.

Determining the number of clusters as a parameter in an object-
identification problem is not easy. One reason for this difficulty is
that the number of corresponding objects varies considerably from
name to name. For example, in the DBLP computer science bibliog-
raphy3, which is commonly used as a test collection for object iden-
tification, we observed that the number of corresponding full names
(clusters) k and the frequency f of abbreviated names obey a power-
law distribution: f(k) = αk−γ (α and γ are parameters).

In a power-law distribution, a very large number of data items with
low values coexist with a few data items with very high values. Thus
the average value of the data is meaningless, and there are no “typ-
ical” data values. For example, in the data set we used, the average

1 Kyoto University, Japan, email: oyama@i.kyoto-u.ac.jp
2 Kyoto University, Japan, email: ktanaka@i.kyoto-u.ac.jp
3 http://dblp.uni-trier.de/

number of full names per abbreviated name is 1.5, but setting the pa-
rameter of the number of clusters to 1 (which means doing no cluster-
ing) or 2 for all names is not meaningful because that results in very
poor performance for names with very many clusters. Therefore, we
need to use a different number of clusters for each clustering problem
with a distinct ambiguous name.

2 SUPERVISED-LEARNING APPROACH

Previous methods to determine the number of clusters take an “unsu-
pervised” approach and treat each clustering problem independently
[1, 2, 3]. In contrast, we take a supervised approach that uses other
clustering problems for which we know the true numbers of clus-
ters to predict the number of clusters for an unknown problem. We
think this is a reasonable approach for object identification where
we solve many similar clustering problems for different names in the
same domain. Our approach avoids unnecessary clustering for data
sets with one cluster because model-based prediction of the numbers
of clusters is used. This is especially effective for object identifica-
tion when the numbers of clusters follow a power-law distribution
and one-cluster problems (problems with no need for clustering) are
a large proportion of the problems.

Assume we have pairs of a data set Sj to cluster and the true
number of clusters in it, yj , where the pairs are denoted as T =
{(S1, y1), (S2, y2), . . . , (S|T |, y|T |)}. Using T as training data, we
construct a function fT that gives a prediction y of the number of
clusters for an unknown data set S. We can consider various forms
of function fT . Among them, one of the simplest models is a linear
model, y =

P
i wixi + b, where {xi} are explanatory variables that

characterize the data set to be clustered, and {wi} and b are parame-
ters determined from the training data T .

The number of clusters should be predicted efficiently. The com-
putational cost of k-means is O(kn) and that of a hierarchical clus-
tering method is O(n2). Therefore, in practice, the prediction of the
number of clusters should be done in linear time with respect to
the number of data. Our model should return the number of clus-
ters given a data set cluster, so we need explanatory variables that
characterize the statistics of the set of data rather than each datum.
In addition, efficiently computing explanatory variables is required.
Aggregations of attribute values of the data items to be clustered are
good candidates for such explanatory variables. We devised several
types of variables that might be correlated with the number of clus-
ters. The explanatory variables we will introduce can be computed
in linear time with respect to the number of data items. We can eas-
ily compute the value of the aggregated variables by using aggregate
functions such as count(), max(), min(), and avg(), which are avail-
able in most database systems.
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We use support vector regression [4] to determine the parameters
in the linear model. One difficulty in building a model to predict val-
ues from a skewed distribution like a power-law distribution is that
there is a large imbalance in the numbers of available training data for
different target values. A large portion of the training data is shared
by the data items with a target value of 1, and there are relatively few
data items with large target values. If we use such training data, there
is a risk of obtaining a model that underestimates the target values.

To overcome the problem of imbalance between the numbers of
training data for different target values, we introduce a method that
successively applies two different models when predicting the num-
ber of clusters: (1) One model determines whether a given data set
is composed of one cluster or multiple clusters. (2) The other model
determines the number of clusters for a data set predicted to be com-
posed of multiple clusters by the previous model. In ecology, a sim-
ilar two-stage method is used to build a model to predict the abun-
dance of rare species [5], although the learning methods used in each
stage are different from ours.

Another extension is that we use a model that is nonlinear to the
explanatory variables rather than a linear model. Specifically, we
consider a model using combinations of the explanatory variables.
Using a higher-order model with large expressive power helps avoid
the risk of under-fitting the training data, which sometimes occurs
when applying a simple linear model to skewed data. In our imple-
mentation, we adopt a kernel trick and use a quadratic polynomial
kernel: k(x,z) = (〈x, z〉 + 1)2. By using the kernel in support
vector learning, we can virtually use the conjunctions of explanatory
variables in the model without actually computing the values of con-
junctions.

3 EXPERIMENTS

We took the disambiguation of abbreviated author names in a bib-
liographic database as an example task. From the DBLP data, we
randomly selected 2,000 abbreviated names corresponding to more
than one paper. We did not use abbreviated names that corresponded
to only one paper because there is obviously only one cluster (full
name) for them. For each selected abbreviated name, we collected
bibliographic data containing the name as an author and computed
the value of the following explanatory variables: (1) Number of pa-
pers with the target abbreviated author name, (2) Number of different
coauthors in the data set, (3) Number of different words appearing in
the paper titles, (4) Number of different journals or conference pro-
ceedings in which the papers are published, (5) Difference between
publication years of the newest and oldest papers, (6) Standard devi-
ation of publication years of papers in the data set, (7) Frequency of
last names used in abbreviated names in the database, (8) Percentage
of abbreviated names with a particular letter among the abbreviated
names.

We applied 10-fold cross validation. We used SVMlight 4, which
implements support vector regression to build the regression models
as well as binary support vector machines used in building two-stage
models. As the metric, we used the root mean square error (RMSE)
between the true number of clusters (full names) and the predicted
number of clusters given by a model.

We compared the Caliński and Harabasz (C&H) method [1], the
Hartigan method [2], a method using an average threshold, x-means
[3], the basic learning-based method (Linear (1 stage)), a two-stage
method (Linear (2 stages)), nonlinear regression using a polynomial
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kernel (Polynomial (1 stage)), and a two-stage method using a poly-
nomial kernel in each stage (Polynomial (2 stages)). For C&H, Har-
tigan, and x-means, we simply applied the methods for the clustering
problems in the test sets and did not use the training sets. For the
method using an average threshold, we applied the single-linkage
method for each clustering problem in the training set and calculated
the average of the thresholds that resulted in the true numbers of
clusters. We then applied the single-linkage method to each cluster-
ing problem in the test sets and determined the number of clusters by
using the average threshold as the clustering-stopping condition.

The overall RMSE for each method is shown in Table 1. The four
learning-based methods outperformed the other methods. Among the
four learning-based methods, the two-stage model and the model
with the polynomial kernel outperformed the basic model, and their
combination gave the results with the smallest errors.

Table 1. RMSE for each method

C & H 3.063 Linear (1 stage) 1.819
Hartigan 2.279 Linear (2 stages) 1.490
Threshold 2.231 Polynomial (1 stage) 1.145
X-means 2.585 Polynomial (2 stages) 1.114

4 CONCLUSION

We described a supervised, model-based approach to predicting the
number of clusters in a data set, which is more efficient and accurate
than existing approaches. In addition, it enables us to avoid unnec-
essary clustering for one-cluster problems, which are a large propor-
tion of the problems. As explanatory variables used in the predic-
tion model, we used aggregated attribute values of the data set to be
clustered, which can be computed efficiently. We described a basic
learning-based method using a linear model as well as two extended
methods: a two-stage method and a method using combinations of
explanatory variables. Experimental results in author disambigua-
tion showed that our learning-based methods outperformed existing
methods and that the two extensions improved the performance of
the basic linear model.
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