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Abstract. An important design goal in Learning Classifier Systems
(LCS) is to equally reinforce those classifiers which cause the level of
reward supplied by the environment. In this paper, we propose a new
method for action set formation in LCS. When applied to a Zeroth
Level Classifier System with Memory registers (ZCSM), our method
allows the distribution of rewards among classifiers which result in
the same memory state, rather than those encoding the same memory
update action.

1 INTRODUCTION

This paper introduces a new method for action set formation (asf )
in Learning Classifier Systems, and tests it in partially observable
environments requiring memory. The operation of asf is responsi-
ble for choosing the classifiers that will receive the reward supplied
by the environment, for some performed action. When new classi-
fiers are generated, the system has no way of knowing how good
these are. Their strengths depend on the actions in the contexts under
which they trigger, and on the other classifiers in the population with
which they interact. As classifiers are added to the population, these
are assigned an initial strength value. Then, by repeated usage, the
strength update component will gradually converge towards a better
estimate of their qualities. But since the system has to perform at the
same time it is building its rule base, it is forced to act despite its un-
certainty about the environment, and selecting from among an ever
changing population of insufficiently tested classifiers. The method
introduced here, iasf, eliminates some of the noise to which the qual-
ity estimation component is subjected, with the goal of improving
system performance.

2 BACKGROUND

In the mid-1990s, Wilson [7] proposed ZCS as a simplification of
Holland’s original LCS [3]. Most importantly, he left out the mes-
sage list which acted as memory in the original system. Thus, Wil-
son’s models had no way of remembering previously encountered
states and could not perform optimally in partially observable envi-
ronments where an agent can find itself in a state that is indistin-
guishable from another state. However, the best action to undertake
is not necessarily the same in both states. Wilson proposed [7] a so-
lution for this problem in the form of memory registers to extend the
classifiers. Cliff & Ross [2] follow this suggestion and implement
ZCSM, extending ZCS with a memory mechanism. In their exper-
iments they observed that ZCSM can efficiently exploit memory in
partially observable environments.
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Stone & Bull extensively compared ZCS to the more popular XCS
in noisy, continuous-valued environments [6] and found that what
makes XCS so good in deterministic environments (namely; its at-
tempt to build a complete, maximally accurate and maximally gen-
eral map of the payoff landscape) becomes a disadvantage as the level
of noise in the environment increases. ZCS’s partial map, focusing
on high-rewarding niches in the payoff landscape then becomes an
advantage. This suggests ZCS as an adaptive control mechanism in
multi-step, partially observable, stochastic real-world problems.

3 INTUITIVE ACTION SET FORMATION

ZCS works on a population P of rules which together present a so-
lution to the problem with which the system is faced. As it interacts
with the environment, the system is triggered on reception of a sen-
sory input. A match set M is then formed with all the rules in the
population matching that input. From this set, a classifier is chosen
by proportionate selection based on its strength, and its action is ex-
ecuted. With memory added as described in [2], rules prescribe an
external action as well as a modification of the memory bits.

It can be argued that the core of ZCS lies in the next, reinforcement
stage, as it is responsible for incrementally learning the quality of the
rules in the population, which will in turn determine the system’s
behaviour.

The action set A includes those rules in M that advocated the same
action as the chosen classifier. The rules in this action set share in the
reward that results from the selected action (with the rationale that
choosing any of those rules would have had the same effect). Rules
in M that advocate a different action are penalised.

Traditionally, A consists of those rules in M that match on a bit-
wise comparison with the action-part of the chosen classifier. Now,
consider ZCSM, where operators on the memory state are added
to the action part of the rules. Suppose, then, a situation where the
memory state was 01, and remains the same after execution of some
chosen classifier c, which advocated2 [0#]. Traditional action set
formation would then have A include only those classifiers from M
advocating this same memory operation (“set the first memory reg-
ister to 0”) as well as the same external action as the chosen clas-
sifier. However, all of the internal actions {##,#1,01} would result
in exactly the same internal state. Not only would the system not re-
ward any classifier in M having one of those internal actions (and
the same external action) as the chosen classifier, it would actually
penalise them. This seems to conflict with ZCS’s goal of equally re-
warding those classifiers which would cause the same level of reward
supplied by the environment.

2 Disregarding the external output for simplicity.
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Figure 1. Performance comparison in woods101 with 1 memory bit.

This realisation prompted us to introduce a new variant of Cliff
& Ross’ classifier system, ZCSMiasf , which compares classifiers
based on the memory state which would result from their activation,
rather than based on the memory operation. In this more intuitive
scheme, any rule in M that prescribes the same external action as c
and an internal action that leads to the same memory state (i.e., one
of {##,#1,0#,01}) is included in A.

4 EXPERIMENTAL ANALYSIS

Experimental Design and Setup – To compare the performance of
iasf against regular action set formation, we conducted a series of
experiments in the well-known woods101 and 102 environments
[2, 5]. These are mazes where paths towards food locations must be
learned; both mazes contain indistinguishable locations where the
sensory information (i.e., the layout of the perceivable cells) is iden-
tical but the appropriate action differs. To tackle such situations, the
agent’s controller requires memory to be able to choose the correct
action; only reacting to sensory information cannot suffice.

An experiment consists of 10,000 trials where, starting from a ran-
dom location in the maze, the agent must reach the food. If the agent
moves into the cell with food, it receives a reward from the environ-
ment and the next trial commences: the food is replaced and the agent
is randomly relocated. The agent can see the directly adjacent cells
and uses that information to decide on an action—where to move
next. Following Bull & Hurst’s suggestion, the system is then further
tested for an additional 2,000 trials where “the Genetic Algorithm
is switched off, reinforcement occurs as usual, and an action selec-
tion scheme is used which deterministically picks the action with the
largest total fitness in M” [1]. Performance is measured as the mov-
ing average over the previous 50 trials of the number of steps it took
to reach the food on each trial. See [7, 2] for more detailed descrip-
tions of the experimental setup.

We performed experiments with a memory size of 1 in woods101
and 8 in woods102with Wilson’s default parameter set for ZCS [7].
Given the more demanding characteristics of woods102, we used a
larger population size (N = 2000) there.
Results – Figures 1 and 2 show the results of experiments averaged
over 30 runs; the lighter horizontal line shows the optimal average
performance for each environment (2.9 steps for woods101 and
3.23 for woods102 [5]). The horizontal axes show the number of
trials into the experiment.
Analysis – Although the change in asf technique is an intuitive one
and one that fulfils the LCS design goal of equal credit assignment
to the classifiers producing the level of reward coming from the envi-
ronment, no benefit in performance can be gleaned from the results
of our experiments. In both cases, ZCSMiasf performed at substan-
tially the same level as traditional ZCSM; only in woods102 can we
see some slight –not statistically significant– improvement. Because
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Figure 2. Performance comparison in woods102 with 8 memory bits.

this is the more challenging of the two environments [5], this may in-
dicate that performance in more complex environments and tasks can
benefit from iasf, but this remains an issue for further investigation.

5 CONCLUSIONS

We have extended the way action sets are formed in classifier systems
with memory registers, taking them closer to the design goal of equal
credit assignment to the classifiers whose actions cause the level of
reward supplied by the environment. We have validated our extension
experimentally in partially observable environments using the Zeroth
Level Classifier System.

The environments on which experiments were performed are well-
known in the existing literature on the subject. The experiments
showed no significant improvement in performance. We require fur-
ther investigation to see whether such improvement does occur in
more complex environments. Still, the current results can be consid-
ered valuable since the new method is more in line with the general
design goal of equal credit assignment than the traditional method.

In stochastic environments, where the ZCS algorithm has previ-
ously shown to outperform the more widely known XCS [6], rule
quality estimation can be expected to take on a more significant role,
which leads us to think that our extension will provide more sig-
nificant benefits in partially observable instances of those problems.
Again, further investigations are required to validate this assumption.
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