
Approximate structure preserving semantic matching
Fausto Giunchiglia1, Mikalai Yatskevich 1, Fiona McNeill 2,

Pavel Shvaiko1, Juan Pane1, Paolo Besana2

Abstract. Typical ontology matching applications, such as ontol-
ogy integration, focus on the computation of correspondences hold-
ing between the nodes of two graph-like structures, e.g., between
concepts in two ontologies. However, there are applications, such as
web service integration, where we may need to establish whether full
graph structures correspond to one another globally, preserving cer-
tain structural properties of the graphs being considered. The goal of
this paper is to provide a new matching operation, called structure
preserving matching. This operation takes two graph-like structures
and produces a set of correspondences between those nodes of the
graphs that correspond semantically to one another, (i) still preserv-
ing a set of structural properties of the graphs being matched, (ii)
only in the case if the graphs are globally similar to one another. We
present a novel approximate structure preserving matching approach
that implements this operation. It is based on a formal theory of ab-
straction and on a tree edit distance measure. We have evaluated our
solution with encouraging results.

1 INTRODUCTION
Many varied solutions of matching have been proposed so far [1]3.
In this paper we focus on a particular type of matching, namely
structure preserving matching. Similarly to the conventional ontol-
ogy matching, structure preserving matching finds correspondences
between semantically related nodes of the graphs. Differently from
it, it preserves a set of structural properties (e.g., vertical ordering
of nodes) and establishes whether two graphs are globally similar.
These characteristics of matching are required in web service inte-
gration applications, see, e.g., [5].

Let us consider an example of approximate structure preserv-
ing matching between two web services: get wine(Region, Country,
Color, Price, Number of bottles) and get wine(Region(Country, Area),
Colour, Cost, Year, Quantity), see Figure 1. In this case the first web
service description requires the fourth argument of the get wine func-
tion (Color) to be matched to the second argument (Colour) of the
get wine function in the second description. Also, Region in T2 is
defined as a function with two arguments (Country and Area), while
in T1, Region is an argument of get wine. Thus, Region in T1 must
be passed to T2 as the value of the Area argument of the Region func-
tion. Moreover, Year in T2 has no corresponding term in T1. Notice
that detecting these correspondences would have not been possible
in the case of exact matching by its definition.

In order to guarantee a successful web service integration, we are
only interested in the correspondences holding among the nodes of
the trees underlying the given web services in the case when the web

1 University of Trento, Italy, email:{fausto,yatskevi,pavel,pane}@dit.unitn.it
2 University of Edinburgh, Scotland, email:{f.j.mcneill,p.besana}@ed.ac.uk
3 See, http://www.ontologymatching.org for a complete informa-

tion on the topic.

get Wine

Region
Country
Price
Color
Number of bottles

get Wine

Region

Country
Area

Colour
Cost
Year

Quantity

T1 T2

Figure 1: Two approximately matched web services represented as trees.
Functions are in rectangles with rounded corners; they are connected to their
arguments by dashed lines. Node correspondences are indicated by arrows.

services themselves are similar enough. At the same time the corre-
spondences have to preserve two structural properties of the descrip-
tions being matched: (i) functions have to be matched to functions
and (ii) variables to variables. Thus, for example, Region in T1 is
not linked to Region in T2. Finally, let us suppose that the correspon-
dences on the example of Figure 1 are aggregated into a single sim-
ilarity measure between the trees under consideration, e.g., 0.62. If
this global similarity measure is higher than empirically established
threshold (e.g., 0.5), the web services under scrutiny are considered
to be similar enough, and the set of correspondences showed in Fig-
ure 1 is further used for the actual web service integration.

2 THE APPROACH
The matching process is organized in two steps: (i) node matching
and (ii) tree matching. Node matching solves the semantic hetero-
geneity problem by considering only labels at nodes and contextual
information of the trees. We use here the S-Match system [4]. Tech-
nically, two nodes n1 ∈ T1 and n2 ∈ T2 match iff: c@n1 R c@n2

holds, where c@n1 and c@n2 are the concepts at nodes n1 and n2,
and R ∈ {=,v,w}. In semantic matching [2] as implemented in
the S-Match system [4] the key idea is that the relations, e.g., equiv-
alence and subsumption, between nodes are determined by (i) ex-
pressing the entities of the ontologies as logical formulas and by (ii)
reducing the matching problem to a logical validity problem. Specifi-
cally, the entities are translated into logical formulas which explicitly
express the concept descriptions as encoded in the ontology structure
and in external resources, such as WordNet. This allows for a trans-
lation of the matching problem into a logical validity problem, which
can then be efficiently resolved using sound and complete state of the
art satisfiability solvers. Notice that the result of this stage is the set
of one-to-many correspondences holding between the nodes of the
trees. For example, initially Region in T1 is matched to both Region
and Area in T2.

Tree matching exploits the results of the node matching and the
structure of the trees to find if these globally match each other as

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-743

743

http://www.ontologymatching.org
http://www.ontologymatching.org


Table 1: The correspondence between abstraction operations, tree edit operations and costs.

Abstraction operations Tree edit operations Preconditions of operations CostT1=T2 CostT1vT2 CostT1wT2

t1 wP d t2 a→ b a w b; a and b correspond to predicates 1 ∞ 1
t1 wD t2 a→ b a w b; a and b correspond to functions or constants 1 ∞ 1
t1 wP t2 a→ λ a corresponds to predicates, functions or constants 1 ∞ 1
t1 vP d t2 a→ b a v b; a and b correspond to predicates 1 1 ∞
t1 vD t2 a→ b a v b; a and b correspond to functions or constants 1 1 ∞
t1 vP t2 a→ λ a corresponds to predicates, functions or constants 1 1 ∞
t1 = t2 a = b a = b; a and b correspond to predicates, functions or constants 0 0 0

follows:

Matching via abstraction. Given the correspondences produced by
the node matching and based on the work in [3], the following ab-
straction operations are used in order to select only those correspon-
dences that preserve the desired properties, namely that functions are
matched to functions and variables to variables:
Predicate: Two or more predicates are merged, typically to the least

general generalization in the predicate type hierarchy, e.g., Bot-
tle(X) + Container(X) 7→ Container(X). We call Container(X)
a predicate abstraction of Bottle(X) or Container(X) wPd Bot-
tle(X). Conversely, we call Bottle(X) a predicate refinement of
Container(X) or Bottle(X) vPd Container(X).

Domain: Two or more terms are merged, typically by moving the
functions or constants to the least general generalization in the
domain type hierarchy, e.g., Acura + Nissan 7→ Nissan. Similarly
to the previous item we call Nissan a domain abstraction of Acura
or Nissan wD Acura.

Propositional: One or more arguments are dropped, e.g., Bot-
tle(A) 7→ Bottle. We call Bottle a propositional abstraction of Bot-
tle(A) or Bottle wP Bottle(A).
For example, predicate and domain abstraction/refinement opera-

tions do not convert a function into a variable. Therefore, the one-to-
many correspondences returned by the node matching should be fur-
ther filtered based on the allowed abstraction/refinement operations.
For instance, the correspondence that binds Region in T1 and Re-
gion in T2 should be discarded, while the correspondence that binds
Region in T1 and Area in T2 should be preserved.

Tree edit distance via abstraction operations. We look for a com-
position of the abstraction/refinement operations allowed for the
given relation R that are necessary to convert one tree into another.
We represent abstraction/refinement operations as tree edit distance
operations applied to the term trees.

The tree edit distance problem involves three operations: (i) ver-
tex deletion (υ → λ), (ii) vertex insertion (λ → υ), and (iii) vertex
replacement (υ → ω) [6]. Our proposal is to restrict the formulation
of the tree edit distance problem in order to reflect the semantics of
the first-order terms. In particular, we redefine the tree edit distance
operations in a way that will allow them to have one-to-one corre-
spondence to the abstraction/refinement operations, see Table 1.

Global similarity between trees. Since we compute the composition
of the abstraction/refinement operations that are necessary to convert
one term tree into the other, we are interested in the minimal cost of
this composition. Global similarity between two trees is computed as
shown in Eq. 1, where S stands for the set of the allowed tree edit
operations; ki stands for the number of i-th operations necessary to
convert one tree into the other and Costi defines the cost of the i-th
operation, see Table 1.

TreeSim(T1,T2) = 1−
min

∑
i∈S

ki ∗ Costi

max(sizeof(T1), sizeof(T2))
(1)

The highest value of TreeSim computed for CostT1=T2, CostT1vT2

and CostT1wT2 is selected as the one ultimately returned. In the case
of example of Figure 1, when we match T1 with T2, TreeSim would
be 0.62 for both CostT1=T2 and CostT1vT2.

3 EVALUATION
We have evaluated our approach on different versions of SUMO and
AKT ontologies4. These are both first-order ontologies, out of which
132 pairs of trees (first-order logic terms) were used. The matching
quality results are shown in Figure 2. Note that F-Measure values
exceed 70% for the given range of the cut-off thresholds. The average
execution time per matching task on a standard laptop was 93ms.

Figure 2: Evaluation results.

4 CONCLUSIONS
We have presented an approximate structure preserving semantic
matching approach that implements the structure preserving match-
ing operation. It is based on a theory of abstraction and a tree edit
distance. We have evaluated our solution with encouraging results.
Future work includes conducting extensive and comparative testing
in real-world scenarios.

Acknowledgements. We appreciate support from the OpenKnowl-
edge European STREP (FP6-027253).

REFERENCES
[1] J. Euzenat and P. Shvaiko, Ontology matching, Springer, 2007.
[2] F. Giunchiglia and P. Shvaiko, ‘Semantic matching’, The Knowledge En-

gineering Review, 18(3), (2003).
[3] F. Giunchiglia and T. Walsh, ‘A theory of abstraction’, Artificial Intelli-

gence, 57(2-3), (1992).
[4] F. Giunchiglia, M. Yatskevich, and P. Shvaiko, ‘Semantic matching: Al-

gorithms and implementation’, Journal on Data Semantics, IX, (2007).
[5] M. Klusch, B. Fries, and K. Sycara, ‘Automated semantic web service

discovery with OWLS-MX’, in Proceedings of AAMAS, (2006).
[6] K.-C. Tai, ‘The tree-to-tree correction problem.’, Journal of the ACM,

26(3), (1979).

4 See http://dream.inf.ed.ac.uk/projects/dor/ for full ver-
sions of these ontologies and analysis of their differences.

F. Giunchiglia et al. / Approximate Structure Preserving Semantic Matching744

http://dream.inf.ed.ac.uk/projects/dor/
http://dream.inf.ed.ac.uk/projects/dor/

	INTRODUCTION
	THE APPROACH
	EVALUATION
	CONCLUSIONS

