
Automated Web Services Composition Using Extended
Representation of Planning Domain

Mohamad El Falou1 and Maroua Bouzid1 and Abdel-Illah Mouaddib 1 and Thierry Vidal 2

1 INTRODUCTION
WS are distributed software components that can be exposed and in-
voked over the Internet using standard protocols. They communicate
with their clients and with other WS by sending XML based mes-
sages over the Internet.

Artificial Intelligence planning techniques can help solving the
composition of WS problem. In fact, services can be modelled as
actions and the business process as planning to connect the WS.

The main contribution of this paper is the extension of the model
of actions to handle the creation or elimination of objects as effects of
actions. This contribution allows us to answer new and more expres-
sive requests, called implicit requests, in which goals may contain
objects that have been generated by the plan.

2 Related Works
The work on web service composition in the university of Trento
presented in [5] translates WS into a state transition. After translat-
ing WS, the system constructs a parallel product

∑
‖ which com-

bines the n STS, this parallel product allows the n services to evolve
concurrently. They use the Model Based Planner MBP [1] based on
model checking techniques [6]. The drawback of this approach is that
we must recalculate

∑
‖ whenever we add or remove a service from

the domain.
In [3] an approach called GOLOG based on the situation calculus

is presented. GOLOG composes web services by applying logical
inference techniques on pre-defined plan templates.

Finally, in [7] the authors define a translation from DAML-S pro-
cess models to the SHOP2 domains, and from DAML-S composi-
tion tasks to the SHOP2 planning problem. SHOP2 is a well-suited
planner for working with the Process Model in an Hierarchical Task
Network (HTN). HTN planning builds plans through task decompo-
sition.

All the approaches cited above suppose that the domain objects
are static. In other words there is no way to eliminate nor to create
objects. Furthermore, all defined requirements for the composite Web
Services are defined as explicit queries.

3 Motivating Example
Let us consider a set of WS which are intended to deal with files,
images and tracks as follows:

1. WS1 translates file languages. It has two services: fr2en (en2ar)
translates files from French (English) to English (Arabic).

1 University of Caen, France, email: melfalou, bouzid, mouad-
dib@info.unicaen.fr

2 IRISA - INRIA Rennes, France, email: thierry.vidal@irisa.fr

2. WS2 transforms text file formats. It has two services: latex2doc
(doc2pdf) transforms files from latex (doc) to doc (pdf) format.

3. WS3 merges files. It has two services: mergepdf (mergedoc)
merges two pdf (doc) files into a third one.

As an example, let us suppose that we have two files: the first is a
doc format written in English, the second is in latex format written
in French and we want to obtain a file which contains the content of
the two files translated to Arabic. The existing approaches dedicated
to WS composition cannot express or deal with this kind of prob-
lem. To overcome this limitation, we propose an approach where the
specification language of the domain consists in an extension of the
specification language PDDL [4] and the WS composition mecha-
nism is based on two planning mechanisms which are Tree-search
and GraphPlan.

4 Formal Framework

Our formal framework is based on extended Planning-Graph tech-
niques [2] allowing the creation and elimination of objects when ex-
ecuting services (actions).

Contrary to classical approaches where a state is defined as a set
of predicates, a state in our domain is defined by a set of objects,
properties and relations between these objects, and we extend the
definition of actions to allow the generation and elimination of ob-
jects in the environment, the assignment of new predicates to objects
and the definition of new relations between them.

4.1 Preliminaries and Definitions

The domain D = (C, P) is defined by a set of WS C =
(WS1, WS2, ..., WSn) that we call a community of Web Services,
and a set of predicate types P= {p1, p2, ..., pn} to specify the possi-
ble properties of objects and relations between them.

A state q=(V,P) of the plan execution is defined by a set of objects
V and their types, and a set of predicates P specifying the properties
of these objects and the relationship between them.

In section 3, the initial state is specified as : q0=({(F1: file),(F2:
file)},{(doc F1),(en F1),(latex F2),(fr F2)} , where F1,F2 are objects
(files) and file is a type and doc, en, latex, and fr are properties.

A Web Service WSi is defined by WSi = (Ti, Ai, Si) which are
respectively : type, attributes and services of WS.a

A service in WSi is defined by Sk
i =

(Pink
i , Poutk

i , P inoutk
i , P reck

i , Effectsk
i) which are re-

spectively : input, output and input-output objects, preconditions and
effects of service execution.

The service mergepdf of WS3 is defined as follows:

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-735

735

• Pin3= { (F1: file),(F2: file) }.
• Pout3= {(F: file) }.
• Pinout3= { }.
• Prec3={(pdf F1),(pdf F2)}.
• Effect−3 ={(pdf F1),(pdf F2)}.
• Effect+3 ={(pdf F), (merge F F1 F2)}.

A plan is defined by a sequence of sets of services where every
set is called a partial plan. More formally Π =< π1, π2, ..., πn > is
a plan such that ∀i ∈ [1..n], πi = (si1, ..., sin) is a partial plan of
independent services, and each sik is instantiated with real objects in
the domain.

One plan solution for the problem introduced in section 3 is Π =<
π1, π2, π3, π4, π5 > where :
• π1=(fr2en [F1], en2ar [F2]).
• π2=(en2ar [F1], doc2pdf [F2]).
• π3=(latex2doc [F1])
• π4=(doc2pdf [F1]).
• π5=([#F0]=mergepdf[F1, F2]).

A request R = (D,q0,g) is defined for a domain D of WS by
the initial state q0 and the goal state g. The initial and final states are
defined by a set of objects and a set of associated predicates (V, P).

In the previous example, q0=[{(F1:file),(F2:file)},{(doc F1),(en
F1),(latex F2),(fr F2)}] and g=[{(#F0:file)},{(pdf #F0),(ar
#F0),(merge F1 F2 #F0)}].

The aim of using the symbol # before the name of the object is
to state that it is a generated object (in the output set of the executed
service), and any other object having the same type beginning with
can replace it in the domain.

5 Planning Algorithm
We have implemented two algorithms to build the solution of our
problem. The first one is based on the classical Tree-search algo-
rithm and the second one is based on the Graph plan method.

The basic idea behind the Tree-search algorithm is to apply from
the initial state all executable services. By doing this (expand a state)
we obtain a set of new states S, if the goal is in S, a solution is found.
If not, based on the strategy of Tree-search we select one of the un-
expanded states. If all states are expanded we get a failure. By using
this algorithm, we obtain a sequential plan of services. After that,
we transform this plan into a sequential set of partial plans (set of
independent services) Π =< π1, π2, ..., πn >.

5.1 Graph plan algorithm
The GraphPlan algorithm performs a procedure close to iterative
deepening, discovering a new part of the search space at each iter-
ation. It iteratively expands the planning graph by one level, then it
searches backward from the last level of this graph for a solution.
The first expansion, however, proceeds to a level Pi in which all the
goal propositions are included and no pairs of them are mutex, and
the set of services executed for reaching g are not mutex; and so on
until reaching P0 (then the plan is found), or until reaching failure
(Pi = Pi+1 and no plan is found).

6 Implementation and Results
By implementing the Tree-search and the Graph Plan algorithms, we
prove that our new approach of composition WS under implicit re-
quest is feasible. In our implementation we use a part of the PDDL
language, and extend it to fit our model.

Table 1. Results of Tree-search algorithm

strategy
depth width

Problem nbr of objects node nbr plan size node nbr plan size
P1 1 6 4 9 4
P2 1 4 0 4 0
P3 2 8 7 232 6
P4 2 9 8 2585 8
P5 3 13 12 > 4200 �
P6 3 14 13 583 7
P7 4 18 17 > 2900 �
� solution not found

We tested our algorithms on 7 examples that contain many ob-
jects and many types of variables (files, tracks and images). P2 is the
problem given in section 3.

In table 1 we give the number of initial objects of the different
problems, the number of expanded nodes and the plan size by us-
ing depth and width strategies. We have 16 available services in the
domain (illustrated in section 3). From these results we can observe
that the depth strategy is very effective and in few seconds we obtain
a plan by expanding a few number of nodes.

By using the Graphplan algorithm, we obtain solutions for simple
problems, but not for complex problems that contain a high number
of objects. By applying the extended techniques of Graph-plan, we
get a combinatorial explosion. The combinatorial explosion is due to
the execution of services that create new objects in each level.

7 Conclusion And Perspective
In this paper, we give an extended view of the composition of Web
Service problem by modelling the problem as a planning problem.
In our work we propose an extended model of service to answer to
composition problems that require the creation and elimination of
objects as effects of the execution of a service. We also overcome the
limitations of other approaches, by giving a dynamic and distributed
definition of our domain. This allows us to add, remove and/or re-
place services without recalculating some other part of the domain.
Finally, our model overcomes the limitation of pre-defined plans by
defining the implicit request only through an initial and a goal states.

REFERENCES
[1] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, ‘Mbp: a

model based planner’, the IJCAI’01 Workshop on Planning under Un-
certainty and Incomplete Information, Seattle, August 2001., (2001).

[2] Paolo Traverso Malik ghallab, Dana Nau, Automated Planning , theory
and practice, MORGAN KAUFMANN PUBLISHERS, Jun 2005.

[3] S. McIlraith and T. Son. Adapting golog for composition of semantic
web services, 2002.

[4] C.Knoblock D.McDermott A.Ram M.Veloso D.Weld D.Willkins
M.Ghallab, A.Howe, ‘Pddl — the planning domain definition language’,
(1998).

[5] M. Pistore, P. Bertoli, F. Barbon, D. Shaparau, and P. Traverso, ‘Planning
and monitoring web service composition’, ICAPS 2004.

[6] Marco Pistore and Paolo Traverso, ‘Planning as model checking for ex-
tended goals in non-deterministic domains’, 479–486, (2001).

[7] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automating daml-s
web services composition using shop2, 1998.

M. El Falou et al. / Automated Web Services Composition Using Extended Representation of Planning Domain736

