
Computability and Complexity Issues of Extended RDF
Anastasia Analyti1 and Grigoris Antoniou1,2 and Carlos Viegas Damásio3 and Gerd Wagner4

Abstract. ERDF stable model semantics is a recently proposed
semantics for ERDF ontologies and a faithful extension of RDFS
semantics on RDF graphs. Unfortunately, ERDF stable model se-
mantics is in general undecidable. In this paper, we elaborate on the
computability and complexity issues of the ERDF stable model se-
mantics.

1 Introduction

Rules constitute the next layer over the ontology languages of the
Semantic Web, allowing arbitrary interaction of variables in the head
and body of the rules. In [1], the Semantic Web language RDFS [4] is
extended to accommodate the two negations of Partial Logic, namely
weak negation ∼ (expressing negation-as-failure or non-truth) and
strong negation ¬ (expressing explicit negative information or fal-
sity), as well as derivation rules. The new language is called Extended
RDF (ERDF).

In [1], the stable model semantics of ERDF ontologies is devel-
oped, based on Partial Logic, extending the model-theoretic seman-
tics of RDFS. Intuitively, an ERDF ontology is the combination of
(i) an ERDF graph G containing (implicitly existentially quantified)
positive and negative information, and (ii) an ERDF program P con-
taining derivation rules, with possibly all connectives ∼, ¬, ⊃, ∧, ∨,
∀, ∃ in the body of a rule, and strong negation ¬ in the head of a rule.

ERDF enables the combination of closed-world (non-monotonic)
and open-world (monotonic) reasoning, in the same framework,
through the presence of weak negation (in the body of the rules) and
the new metaclasses erdf :TotalProperty and erdf :TotalClass , re-
spectively. In [1], it is shown that stable model entailment conser-
vatively extends RDFS entailment from RDF graphs to ERDF on-
tologies. Unfortunately, satisfiability and entailment under the ERDF
stable model semantics are in general undecidable.

In this paper, we elaborate on the computability and complexity is-
sues of the ERDF stable model semantics. Additionally, we propose
a slightly modified semantics on ERDF ontologies, called ERDF #n-
stable model semantics that is also a faithful extension of RDFS se-
mantics on RDF graphs and achieves decidability.

2 Stable Model Semantics of ERDF Ontologies

In this Section, we briefly review ERDF ontologies and their stable
model semantics. Details and examples can be found in [1].

A (Web) vocabulary V is a set of URI references and/or literals
(plain or typed). We denote the set of all URI references by URI.

1 Institute of Computer Science, FORTH-ICS, Crete, Greece, e-mail: ana-
lyti@ics.forth.gr

2 Department of Computer Science, University of Crete, Greece
3 CENTRIA, Departamento de Informatica, Faculdade de Ciencias e Tec-

nologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
4 Inst. of Informatics, Brandenburg Univ. of Technology at Cottbus, Germany

We consider a set of variable symbols Var such that URI, Var ,
and the set of literals are pairwise disjoint. In our examples, variable
symbols are prefixed by “?”.

Let V be a vocabulary. An ERDF triple over V is an expression of
the form p(s, o) or ¬p(s, o), where s, o ∈ V ∪Var are called subject
and object, respectively, and p ∈ V ∩ URI is called property. An
ERDF graph G is a set of ERDF triples over some vocabulary V . We
denote the variables appearing in G by Var(G), and the set of URI
references and literals appearing in G by VG.

Let V be a vocabulary. We denote by L(V) the smallest set that
contains the ERDF triples over V and is closed with respect to the
following conditions: if F, G ∈ L(V) then {∼F, F∧G, F∨G,

F ⊃ G, ∃xF, ∀xF} ⊆ L(V), where x ∈ Var . An ERDF for-
mula over V is an element of L(V). Intuitively, an ERDF graph G

represents an existentially quantified conjunction of ERDF triples.
Specifically, let G = {t1, ..., tm} be an ERDF graph, and let
Var(G) = {x1, ..., xk}. Then, G represents the ERDF formula
formula(G) = ∃?x1, ..., ∃?xk t1 ∧ ... ∧ tm.

Existentially quantified variables in ERDF graphs are handled by
skolemization. Let G be an ERDF graph. The skolemization func-
tion of G is an 1:1 mapping skG : Var(G) → URI, where for
each x ∈ Var(G), skG(x) is an artificial URI, denoted by G:x. The
skolemization of G, denoted by sk(G), is the ground ERDF graph
derived from G after replacing each x ∈ Var(G) by skG(x).

An ERDF rule r over a vocabulary V is an expression of the
form: Concl(r) ← Cond(r), where Cond(r) ∈ L(V) ∪ {true}
and Concl(r) is an ERDF triple or false . An ERDF program is a
set of ERDF rules. We denote the set of URI references and literals
appearing in P by VP . An ERDF ontology is a pair O = 〈G, P 〉,
where G is an ERDF graph and P is an ERDF program.

The vocabulary of RDF, VRDF , is a set of URI refer-
ences in the rdf : namespace [4]. The vocabulary of RDFS,
VRDFS , is a set of URI references in the rdfs: names-
pace [4]. The vocabulary of ERDF is defined as VERDF =
{erdf :TotalClass, erdf :TotalProperty}. Intuitively, instances of
the metaclass erdf :TotalClass are classes c that satisfy total-
ness, meaning that, at the interpretation level, each statement
rdf :type(x, c) is either true or explicitly false. Similarly, instances of
the metaclass erdf :TotalProperty are properties p that satisfy total-
ness, meaning that, at the interpretation level, each statement p(x, y)
is either true or explicitly false.

Let O = 〈G, P 〉 be an ERDF ontology. The vocabulary of O is
defined as VO = Vsk(G) ∪ VP ∪ VRDF ∪ VRDFS ∪ VERDF . In
[1], the set of (ERDF) stable models of O is defined, denoted by
Mst(O). Each stable model M of O (i) interprets the terms in VO

and (ii) assigns intended truth and falsity extensions to the classes
and properties in VO (satisfying all semantic conditions of an RDFS
interpretation [4] on VO , as well as new semantic conditions, particu-
lar to ERDF). M is generated through a sequence of steps. Intuitively,

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-733

733

starting of an intended interpretation for sk(G), a stratified sequence
of rule applications is produced, where all applied rules remain ap-
plicable throughout the generation of stable model M .

Let M ∈ Mst(O) and let F be an ERDF formula or ERDF graph.
In [1], the model relation M |= F is defined. We say that O entails
F under the (ERDF) stable model semantics, denoted by O |=st F ,
iff for all M ∈ Mst(O), M |= F .

As an example, consider a class ex:Wine whose instances are
wines and a property ex:likes(X, Y) indicating that person X likes
wine Y . Assume now that we want to select wines for a dinner such
that for each guest, there is on the table exactly one wine that she/he
likes. Let the class ex:Guest indicate the persons that will be invited
to the dinner and let the class ex:SelectedWine indicate the wines
chosen to be served. An ERDF program P that describes this wine
selection problem is the following5,6:

id(?x, ?x) ← true.
rdf :type(?y,SelectedWine) ←

rdf :type(?x, Guest), rdf :type(?y,Wine), likes(?x, ?y),
∀?z (rdf :type(?z,SelectedWine),∼id(?y, ?z) ⊃ ∼likes(?x, ?z)).

Consider now the ERDF graph G, containing the factual infor-
mation: G = {rdf :type(Carlos, Guest), rdf :type(Gerd, Guest),
rdf :type(Riesling, Wine), rdf :type(Retsina, Wine), likes(Gerd,

Riesling), likes(Gerd, Retsina), likes(Carlos, Retsina)}.
Then, the ERDF ontology O = 〈G, P 〉 has only one sta-

ble model M , for which it holds M |= rdf :type(Retsina,

SelectedWine) ∧ ∼rdf :type(Riesling ,SelectedWine). This
is because (i) both Gerd and Carlos like Retsina and (ii)
Carlos likes only Retsina . Obviously, O |=st rdf :type(Retsina,

SelectedWine) ∧ ∼rdf :type(Riesling ,SelectedWine).

Proposition 2.1 Let G, G′ be RDF graphs such that VG∩VERDF =
∅, VG′ ∩ VERDF = ∅, and VG′ ∩ skG(Var(G)) = ∅. It holds:
G |=RDFS G′ iff 〈G, ∅〉 |=st G′.

3 Computability and Complexity Issues

In [1], it is shown that satisfiability and entailment under the ERDF
stable model semantics are in general undecidable. The proof of un-
decidability exploits a reduction from the unbounded tiling problem,
whose existence of a solution is known to be undecidable [2]. Note
that since each constraint false ← F that appears in an ERDF on-
tology O can be replaced by the rule ¬t ← F , where t is an RDF,
RDFS, or ERDF axiomatic triple, the presence of constraints in O

does not affect decidability.
An ERDF formula F is called simple, if it has the form

t1∧...∧tk∧∼tk+1∧...∧∼tm, where each ti, i = 1, ..., m, is an
ERDF triple. An ERDF program P is called simple if for all r ∈ P ,
Cond(r) is a simple ERDF formula or true . An ERDF ontology
O = 〈G, P 〉 is called simple, if P is a simple ERDF program. A
simple ERDF ontology O (resp. ERDF program P) is called objec-
tive, if no weak negation appears in O (resp. P).

Reduction in [1] shows that ERDF stable model satisfiability
and entailment remain undecidable, even if (i) O = 〈G, P 〉 is
a simple ERDF ontology, and (ii) the terms erdf :TotalClass and
erdf :TotalProperty do not appear in O (i.e., (VG∪VP)∩VERDF =
∅). However, we will show that satisfiability and entailment under the
ERDF stable model semantics are decidable, if (i) O is an objective
ERDF ontology, and (ii) the entailed formula is an ERDF d-formula.

5 To improve readability, we ignore the example namespace ex:.
6 Commas “,” in the body of the rules indicate conjunction ∧.

Let F be an ERDF formula. We say that F is an ERDF d-
formula iff (i) F is the disjunction of existentially quantified con-
junctions of ERDF triples, and (ii) FVar(F) = ∅. For exam-
ple, let F = (∃?x rdf :type(?x ,Vertex) ∧ rdf :type(?x ,Red))
∨ (∃?x rdf :type(?x ,Vertex) ∧ ¬rdf :type(?x ,Blue)). Then, F

is an ERDF d-formula. It is easy to see that if G is an ERDF graph
then formula(G) is an ERDF d-formula.

Proposition 3.1 Let G, G′ be ERDF graphs, let P be an objective
ERDF program, let F d be an ERDF d-formula, and let F be an ERDF
formula.
1. The problem of establishing whether O = 〈G, P 〉 has a stable

model is NP-complete w.r.t. (|P | + 1) ∗ (|Vsk(G)| + |VP |).

2. The problems of establishing whether: (i) 〈G, P 〉 |=st G′,
(ii) 〈G, P 〉 |=st F d, and (iii) 〈G, P 〉 |=st F , where P = ∅, are
co-NP-complete w.r.t. (|P | + 1) ∗ (|Vsk(G)| + |VP |).

The hardness part of the above complexity results can be proved
by a reduction from the Graph 3-Colorability problem, which is a
classical NP-complete problem. Moreover, participation of the above
problems in NP or co-NP can be proved by showing that, from the
infinite set of rdf : i terms (i ∈ IN), only a finite subset needs to be
considered for solving the corresponding problem.

The following proposition shows that even if O = 〈G, P 〉 is an
objective ERDF ontology, entailment of a general ERDF formula F

under the ERDF stable model semantics is still undecidable. This
result can also be proved by a reduction from the unbounded tiling
problem [2].

Proposition 3.2 Let G be an ERDF graph, let P be an objective
program, and let F be an ERDF formula. The problem of establishing
whether 〈G, P 〉 |=st F is in general undecidable.

Let O be an ERDF ontology (with weak negation possibly ap-
pearing in the program rules). The source of undecidability of the
ERDF stable model semantics of O is the fact that VRDF is infinite.
Thus, the vocabulary of O is also infinite (note that {rdf : i | i ≥
1} ⊆ VRDF ⊆ VO). Therefore, we slightly modify the definition of
the ERDF stable model semantics, based on a redefinition of the vo-
cabulary of an ERDF ontology, which now becomes finite. We call
the modified semantics, the ERDF #n-stable model semantics (for
n ∈ IN). Let n ∈ IN and V

#n

O = VO −{rdf : i | i > n}. We define
the ERDF #n-stable model semantics of O similarly to the ERDF
stable model semantics of O, but now only the interpretation of the
terms in V

#n

O is considered.
The ERDF #n-stable model semantics also extends RDFS entail-

ment from RDF graphs to ERDF ontologies. Query answering under
the ERDF #n-stable model semantics is decidable. Moreover, if O

is a simple ERDF ontology then query answering under the ERDF
#n-stable model semantics reduces to query answering under the an-
swer set semantics [3] for an extended logic program Π#n

O . Finally,
we would like to mention that the complexity results of Proposition
3.1 also hold for ERDF #n-stable model semantics.

REFERENCES
[1] A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner. Extended RDF

as a Semantic Foundation of Rule Markup Languages. Journal of Artifi-
cial Intelligence Research (JAIR), 32:37–94, 2008.

[2] R. Berger. The Undecidability of the Dominoe Problem. Memoirs of the
American Mathematical Society, 66:1–72, 1966.

[3] M. Gelfond and V. Lifschitz. Logic programs with Classical Negation.
In ICLP’90, pages 579–597, 1990.

[4] P. Hayes. RDF Semantics. W3C Recommendation, 10 Febru-
ary 2004. Available at http://www.w3.org/TR/2004/
REC-rdf-mt-20040210/.

A. Analyti et al. / Computability and Complexity Issues of Extended RDF734

