
Rule-based OWL Ontology Reasoning Using Dynamic
ABOX Entailments

Georgios Meditskos and Nick Bassiliades1

Abstract. In the rule-based OWL reasoning paradigm, ontologies
are mapped into an internal rule engine representation format and
rules are applied, such as TBOX and ABOX OWL entailment
rules, in order to deduce new knowledge. In this paper we briefly
introduce the notion of dynamically generating ABOX entailment
rules in order to enhance the ABOX reasoning performance of a
rule engine. The proposed methodology is still based on entail-
ments rules for reasoning, using generic TBOX entailments for
handling OWL semantics about concepts and roles, and dynamic
ABox entailments for handling ontology instances.

1 INTRODUCTION

OWL [16] is the W3C recommendation for creating and sharing
ontologies on the Web. It provides the means for ontology defini-
tion and specifies formal semantics on how to derive new informa-
tion. Several approaches have been followed for the development
of reasoning engines able to handle OWL semantics, such as De-
scription Logic algorithms [2], theorem provers [15] or rule-
engines [8][12]. Each approach has advantages and disadvantages
and the selection of the appropriate one is based on the domain or
users’ requirements [5][13].

In this work, we are focused on the rule-based OWL reasoning
paradigm based on entailments and we describe a methodology that
improves the time a rule engine needs in order to apply the OWL
semantics over ontology individuals (ABOX). This is feasible by
exploiting the schema information of OWL ontologies in order to
generate domain-dependent ABOX rules.

2 BACKGROUND AND MOTIVATION

In the rule-based OWL reasoning paradigm, the asserted knowl-
edge, that is the knowledge stemming directly from the ontology
definition, is mapped into an internal rule engine representation
format, and inference rules are applied in order to deduce new
knowledge. The inference rules are based on OWL entailments [7],
rules which describe the information that should be inferred based
on existing knowledge. To exemplify, let S be the set of triples of
an ontology, where S = {<A subClassOf B>, <B subClassOf
C>}. By implementing the rdfs9 entailment rule for subclass transi-
tivity (Table 1), we get that S = {<A subClassOf B>, <B sub-

1 Department of Informatics, Aristotle University of Thessaloniki, Greece,
email: {gmeditsk, nbassili}@csd.auth.gr

ClassOf C>, <A subClassOf C>} (the entailment rules can be
found in [7]).

However, the high expressivity of OWL hampers the definition
of a complete set of OWL entailments and rule languages can only
handle a subset of OWL, known as Description Logic Programs
(DLP) [4]. Despite this limitation, the combination of rules and
ontologies is one of the hottest areas [1][6][10][14].

We are motivated by the fact that the majority of the ABOX en-
tailment rules are based on generic TBOX information, such as the
rdfp4 entailment for role transitivity, which requires the property p
to be transitive. Intuitively, the rdfs9 entailment is a specialized
form of the rdfp4 entailment for the subClassOf property. How-
ever, the latter is more complicated than the former, requiring a
double join in its body among a transitive property p and two in-
stance p values. Our approach is based on such ABOX entailment
specializations.

The TBOX entailments are either specialized, since they refer to
built-in OWL constructs which are known in advance, such as the
subclass transitivity (rdfs9), or they cannot be specialized before
the termination of the TBOX inferencing procedure (rdfp12a). In
contrast, ABOX entailments can be specialized, apart from some
exceptions, provided that the TBOX inferencing is performed first.
In that way, a dynamic inference rule base is generated, able to
apply more efficiently ABOX semantics than a generic rule base,
especially in large scale ABOX ontologies.

3 DYNAMIC ENTAILMENT GENERATION

The dynamic entailment methodology is based on the fact that
most of the ABox entailments can be grounded into one or more
simpler domain-dependent rules. More formally, an ABOX en-
tailment rule is of the form

Table 1. Examples of entailment rules.
if then

rdfs9 c1 subClassOf c2,
c2 subClassOf c3

c1 subClassOf c3

rdfp4 p type TransitiveProperty,
x p y, y p z

x p z

rdfp1 p type FunctionalProperty,
x p y, x p z

y sameAs z

rdfp12a c1 equivalentClass c2 c1 subClassOf c2
rdfp14a r hasValue y, r onProperty p,

x p y
x type r

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-731

731

T AE(T) AE AI(T) AI,

where T is the set of TBOX triple conjunctions, AE(T) is the set of
individual triple conjunctions that use TBOX information, AE is the
set of individual triple conjunctions unrelated to TBOX, AI(T) is
the conjunctive set of the inferred individual triples that use TBOX
information, and AI is the conjunctive set of the inferred individual
triples unrelated to TBOX. The dynamic rule generation methodol-
ogy performs the following rule transformation:

T AE(T) AE AI(T) AI
t T : AE(T) AE AI(T) AI,

which generates T-dependent rules. To exemplify, consider the
rdfp1 entailment with T = {<p type FunctionalProperty>},
AE(T) = { <x p y>, <x p z>}, AE = , AI(T) = and C = {<y
sameAs z>}, which is transformed into:

p | <p type FunctionalProperty > :
rule: if <x p y> <x p z> then <y sameAs z>.

Moreover, the rdfp14a entailment, with T = {<r hasValue
z>, <r onProperty p>}, AE(T) = { <x p z>}, AI(T) = , AI(T)
= {<x type r>} and C = , is transformed into:

r | <r hasValue z> <r onProperty p> :
rule: if <x p z> then <x type r>.

4 EXPERIMENTAL RESULTS

We used the CLIPS [3] production rule engine in order to apply
thirteen entailments over the LUBM [11] university ontology. Five
extensional datasets Di were generated, each one of approximately
12,000 triples. Table 2 depicts the time needed to apply the dy-
namic and the generic rules over different dataset sizes. The dy-
namic approach generates about 300 rules and, despite the great
number of rules, the ABOX reasoning procedure terminates con-
siderably faster than the generic approach, where only 13 rules are
applied.

Table 2. Dynamic and Generic ABOX reasoning times.
 Dynamic (sec) Generic (sec)

12,000 36.750 86.063
24,000 61.078 167.000
36,000 84.797 255.859
48,000 10.7406 393.109
60,000 129.719 512.312

5 RELATED WORK

To the best of our knowledge, the existing rule-based reasoners that
use entailments follow the generic methodology, that is both the
TBOX and the ABOX entailments are generic and ontology-
independent. SweetProlog [9], Jena [12] and OWLIM [8] are some
example systems that are based on general purpose rule engines,
e.g. Prolog, or on rule engines built from scratch, such as the
TRREE engine of OWLIM. Notice that the default Jena rule engine
for OWL reasoning is a hybrid implementation, using forward
chaining rules in order to generate backward chaining rules.

6 CONCLUSIONS

In this paper we presented a methodology of performing rule-based
OWL reasoning based on generic TBOX and on dynamic ABox
entailment rules. In that way, we are able to use the TBOX rules as
the basis for generating domain-dependent ABOX inferencing
rules. The main characteristic of these rules is that they join less
conditional elements in their body, achieving better activation
times in rule engines, than their corresponding generic entailments.

Currently we are working on combining a rule engine with a DL
reasoner in order to dynamically generate ABOX inferencing rules
based on the inferencing capabilities of the DL paradigm.

ACKNOWLEDGEMENTS

This work was partially supported by a PENED program (EPAN
M.8.3.1, No. 03 73), jointly funded by the European Union and
the Greek Government (General Secretariat of Research and Tech-
nology/GSRT).

REFERENCES

[1] G. Antoniou, C.V. Damasio, B. Grosof, I. Horrocks, M. Kifer, J.
Maluszynski, P.F. Patel-Schneider, Combining Rules and Ontolo-
gies. A Survey, Reasoning on the Web with Rules and Semantics,
REWERSE Deliverables, 2005.

[2] F. Baader, U. Sattler, An Overview of Tableau Algorithms for De-
scription Logics, Studia Logica, vol. 69, pp. 5-40, 2001

[3] CLIPS, http://www.ghg.net/clips
[4] B. Grosof, I. Horrocks, R. Volz, S. Decker, Description logic pro-

grams: Combining logic programs with description logics, WWW
2003, pp. 48–57. ACM, 2003.

[5] P. Hitzler, J. Angele, B. Motik, R. Studer, Bridging the Paradigm
Gap with Rules for OWL. In Proc. of the W3C Workshop on Rule
Languages for Interoperability, Washington, USA, 2005

[6] I. Horrocks, P.F. Patel-Schneider, A Proposal for an OWL Rules
Language, 13th Int. WWW Conf., ACM, New York (2004)

[7] H.J. Horst, Completeness, decidability and complexity of entailment
for RDF Schema and a semantic extension involving the OWL vo-
cabulary, Journal of Web Semantics, vol. 3, pp. 79-115, 2005

[8] A. Kiryakov, D. Ognyanov, D. Manov, OWLIM - a Pragmatic Se-
mantic Repository for OWL, Proc. Workshop Scalable Semantic
Web Knowledge Base Systems, USA, 2005

[9] L. Laera, V. Tamma, T.B. Capon, G. Semeraro, SweetProlog: A Sys-
tem to Integrate Ontologies and Rules, Rules and Rule Markup Lan-
guages for the Semantic Web, 2004.

[10] A.Y. Levy, M.-C. Rousset, Combining Horn rules and description
logics in CARIN, Artificial Intelligence, 104(1-2), 165–209 (1998).

[11] Y. Guo, Z. Pan, J. Heflin, LUBM: A Benchmark for OWL Knowl-
edge Base Systems, Journal of Web Semantics, 3(2), pp. 158-182,
2005

[12] B. McBride, Jena, Implementing the RDF Model and Syntax Speci-
fication, 2nd International Workshop on the Semantic Web, Hong
Kong, China, 2001

[13] B. Motik, I. Horrocks, R. Rosati, U. Sattler, Can OWL and Logic
Live Together Happily Ever After?, Proc. 5th ISWC, Athens, USA,
2006

[14] R. Rosati, On the decidability and complexity of integrating ontolo-
gies and rules, Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 3(1), pp. 61-73, July 2005.

[15] D. Tsarkov, A. Riazanov, S. Bechhofer, I. Horrocks, Using Vampire
to reason with OWL, International Semantic Web Conference, pp.
471-485, 2004.

[16] Web Ontology Language - OWL, http://www.w3.org/2004/OWL/

G. Meditskos and N. Bassiliades / Rule-Based OWL Ontology Reasoning Using Dynamic ABOX Entailments732

