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Abstract.  In the rule-based OWL reasoning paradigm, ontologies 
are mapped into an internal rule engine representation format and 
rules are applied, such as TBOX and ABOX OWL entailment 
rules, in order to deduce new knowledge. In this paper we briefly 
introduce the notion of dynamically generating ABOX entailment 
rules in order to enhance the ABOX reasoning performance of a 
rule engine. The proposed methodology is still based on entail-
ments rules for reasoning, using generic TBOX entailments for 
handling OWL semantics about concepts and roles, and dynamic 
ABox entailments for handling ontology instances.  

1 INTRODUCTION

OWL [16] is the W3C recommendation for creating and sharing 
ontologies on the Web. It provides the means for ontology defini-
tion and specifies formal semantics on how to derive new informa-
tion. Several approaches have been followed for the development 
of reasoning engines able to handle OWL semantics, such as De-
scription Logic algorithms [2], theorem provers [15] or rule-
engines [8][12]. Each approach has advantages and disadvantages 
and the selection of the appropriate one is based on the domain or 
users’ requirements [5][13]. 

In this work, we are focused on the rule-based OWL reasoning 
paradigm based on entailments and we describe a methodology that 
improves the time a rule engine needs in order to apply the OWL 
semantics over ontology individuals (ABOX). This is feasible by 
exploiting the schema information of OWL ontologies in order to 
generate domain-dependent ABOX rules. 

2 BACKGROUND AND MOTIVATION 

In the rule-based OWL reasoning paradigm, the asserted knowl-
edge, that is the knowledge stemming directly from the ontology 
definition, is mapped into an internal rule engine representation 
format, and inference rules are applied in order to deduce new 
knowledge. The inference rules are based on OWL entailments [7], 
rules which describe the information that should be inferred based 
on existing knowledge. To exemplify, let S be the set of triples of 
an ontology, where S = {<A subClassOf B>, <B subClassOf 
C>}. By implementing the rdfs9 entailment rule for subclass transi-
tivity (Table 1), we get that S = {<A subClassOf B>, <B sub-
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ClassOf C>, <A subClassOf C>} (the entailment rules can be 
found in [7]). 

However, the high expressivity of OWL hampers the definition 
of a complete set of OWL entailments and rule languages can only 
handle a subset of OWL, known as Description Logic Programs
(DLP) [4]. Despite this limitation, the combination of rules and 
ontologies is one of the hottest areas [1][6][10][14]. 

We are motivated by the fact that the majority of the ABOX en-
tailment rules are based on generic TBOX information, such as the 
rdfp4 entailment for role transitivity, which requires the property p
to be transitive. Intuitively, the rdfs9 entailment is a specialized
form of the rdfp4 entailment for the subClassOf property. How-
ever, the latter is more complicated than the former, requiring a 
double join in its body among a transitive property p and two in-
stance p values. Our approach is based on such ABOX entailment 
specializations.

The TBOX entailments are either specialized, since they refer to 
built-in OWL constructs which are known in advance, such as the 
subclass transitivity (rdfs9), or they cannot be specialized before 
the termination of the TBOX inferencing procedure (rdfp12a). In 
contrast, ABOX entailments can be specialized, apart from some 
exceptions, provided that the TBOX inferencing is performed first. 
In that way, a dynamic inference rule base is generated, able to 
apply more efficiently ABOX semantics than a generic rule base, 
especially in large scale ABOX ontologies.  

3 DYNAMIC ENTAILMENT GENERATION 

The dynamic entailment methodology is based on the fact that 
most of the ABox entailments can be grounded into one or more 
simpler domain-dependent rules. More formally, an ABOX en-
tailment rule is of the form  

Table 1.  Examples of entailment rules. 
if then

rdfs9 c1 subClassOf c2, 
c2 subClassOf c3 

c1 subClassOf c3

rdfp4 p type TransitiveProperty,  
x p y, y p z

x p z 

rdfp1 p type FunctionalProperty,  
x p y, x p z

y sameAs z 

rdfp12a c1 equivalentClass c2 c1 subClassOf c2
rdfp14a r hasValue y, r onProperty p,  

x p y 
x type r 
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T AE(T) AE AI(T) AI,

where T is the set of TBOX triple conjunctions, AE(T) is the set of 
individual triple conjunctions that use TBOX information, AE is the 
set of individual triple conjunctions unrelated to TBOX, AI(T) is 
the conjunctive set of the inferred individual triples that use TBOX 
information, and AI is the conjunctive set of the inferred individual 
triples unrelated to TBOX. The dynamic rule generation methodol-
ogy performs the following rule transformation: 

T AE(T) AE AI(T) AI
t T : AE(T) AE AI(T) AI,

which generates T-dependent rules. To exemplify, consider the 
rdfp1 entailment with T = {<p type FunctionalProperty>},
AE(T) = { <x p y>, <x p z>}, AE = , AI(T) =  and C = {<y
sameAs z>}, which is transformed into: 

p | <p type FunctionalProperty > :
rule: if <x p y>  <x p z> then <y sameAs z>. 

Moreover, the rdfp14a entailment, with T = {<r hasValue 
z>, <r onProperty p>}, AE(T) = { <x p z>}, AI(T) = , AI(T)
= {<x type r>} and C = , is transformed into: 

r | <r hasValue z>  <r onProperty p> :
rule: if <x p z> then <x type r>.

4 EXPERIMENTAL RESULTS 

We used the CLIPS [3] production rule engine in order to apply 
thirteen entailments over the LUBM [11] university ontology. Five 
extensional datasets Di were generated, each one of approximately 
12,000 triples. Table 2 depicts the time needed to apply the dy-
namic and the generic rules over different dataset sizes. The dy-
namic approach generates about 300 rules and, despite the great 
number of rules, the ABOX reasoning procedure terminates con-
siderably faster than the generic approach, where only 13 rules are 
applied.

Table 2. Dynamic and Generic ABOX reasoning times.
 Dynamic (sec) Generic (sec) 

12,000 36.750 86.063 
24,000 61.078 167.000 
36,000 84.797 255.859 
48,000 10.7406 393.109 
60,000 129.719 512.312 

5 RELATED WORK 

To the best of our knowledge, the existing rule-based reasoners that 
use entailments follow the generic methodology, that is both the 
TBOX and the ABOX entailments are generic and ontology-
independent. SweetProlog [9], Jena [12] and OWLIM [8] are some 
example systems that are based on general purpose rule engines, 
e.g. Prolog, or on rule engines built from scratch, such as the 
TRREE engine of OWLIM. Notice that the default Jena rule engine 
for OWL reasoning is a hybrid implementation, using forward 
chaining rules in order to generate backward chaining rules. 

6 CONCLUSIONS 

In this paper we presented a methodology of performing rule-based 
OWL reasoning based on generic TBOX and on dynamic ABox 
entailment rules. In that way, we are able to use the TBOX rules as 
the basis for generating domain-dependent ABOX inferencing 
rules. The main characteristic of these rules is that they join less 
conditional elements in their body, achieving better activation 
times in rule engines, than their corresponding generic entailments. 

Currently we are working on combining a rule engine with a DL 
reasoner in order to dynamically generate ABOX inferencing rules 
based on the inferencing capabilities of the DL paradigm.  
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