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Abstract. We describe a framework for the development of pro-
duction rule programs on top of OWL ontologies, following a hy-
brid Object-Oriented (OO) approach. The hybrid nature is realized 
by separating ontologies and rules, interfacing an external DL rea-
soner and a production rule engine. The OO nature is realized by 
mapping OWL ontologies into the OO model, in such a way, so to 
preserve the extensional ontology semantics when the OO ontology 
constructs are matched in the production rule conditions. 

1 INTRODUCTION

There are two main approaches towards the combination of rules 
and ontologies [1][8]:

Hybrid approach: Rule and ontology predicates are strictly 
separated and the ontology predicates can be used as con-
straints in rules. Thus, existing reasoners may be used. 
Homogeneous approach: Rule and ontology predicates are 
treated homogeneously, as a new single logic language. Thus, 
a new reasoner is needed, able to handle the new language. 

We present HOOPO, a hybrid approach that enables the defini-
tion of production rules over OWL ontologies, following an OO 
approach. More specifically, we enable the development of OO 
rule-based applications with ontology-based information, using an 
OO schema that stems from a vocabulary defined in ontologies. 
We follow the idea that rules may not be used to derive ontological 
knowledge and any knowledge about ontology information is pro-
vided by a DL component. This is achieved by allowing the OO 
ontology constructs to be matched only in OO production rule 
conditions, serving as restrictions for the development of derived 
OO KBs, that is user-defined classes, attributes and objects, disjoint 
from the OO ontology KB. Thus, we target at the monotonic com-
bination of rules and ontologies. 

HOOPO interfaces a production rule engine with an external DL 
reasoner, defining an OO mapping procedure of the ontological 
knowledge into the OO model of the rule engine. There are three 
motivations behind this OO mapping procedure. Firstly, we enable 
the development of rule-based ontology-based applications based 
on the well-known and established OO programming principles. 
Secondly, the generated OO ontology KB encapsulates the exten-
sional (individual) ontology semantics that are needed during rule 
execution, and thus, there is no need for a runtime interaction be-
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tween the rule engine and the reasoner, increasing rule execution 
performance. This is feasible, since we consider that the ontology 
information is not altered by the rule programs. Finally, the lack of 
any runtime interaction accounts for the utilization of the reasoner 
and the rule engine without modifications. In that way, the DL 
component reasons only once on the ontology and the information 
is used to generate the OO KB of the rule engine. 

2 OBJECT-ORIENTED MAPPING OF OWL 

Let C be the set of named classes, R the set of properties, I the set 
of individuals of a DL reasoner’s KB after the reasoning procedure 
over an ontology, and let Co be the set of classes, Ro the set of at-
tributes and Io the set of objects of the OO model. Furthermore, A

 B and m : A is the DL syntax for class subsumption and class 
membership, and EXT(A) is the class extension of A, that is the set 
of individuals that belong to the class A. Similarly, Obj(Ao) denotes 
the objects of the OO class Ao. Furthermore, let Ao Bo denote that 
the OO class Ao is subclass of the class Bo, and let mo Ao denote 
that the object mo has the class type Ao.

2.1 Class mapping 

OWL classes are mapped into OO classes. The class transforma-
tion procedure implements the OWL axiom, stating that owl:Thing
subsumes every class and all individuals belong to the class exten-
sion of owl:Thing.

The OO model is unable to represent directly the semantics of 
equivalent classes that impose mutual subclass relationships among 
them, in order to have the same class extension. For that reason, we 
introduce the notion of the delegator class.  

C1. For every set of equivalent classes D, we arbitrary choose a 
class A D as the delegator class, such that B D, dlg(B) = A. 
For each concept M with no equivalent classes, dlg(M) = M.

Each class without any superclass becomes direct subclass of 
the OO owl:Thingo class.

C2. Let a concept A for which N such that A  N. We define 
Mo owl:Thingo, where Mo = dlg(Ao).

Only delegator classes are involved in OO subclass relations. 
C3. Each M  N relation is mapped into the subclass relation 

Ao Bo, where Ao = dlg(Mo) and Bo = dlg(No).
Class intersection and union are mapped into multiple OO sub-

class relations. 
C4. Let the concept A be the intersection of a set D of concepts. 

We define Ao Mo, Mo Do.
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C5. Let a concept A be the union of a set D of concepts. We de-
fine Mo Ao, Mo Do.

In class equivalence, the delegator becomes subclass of all its 
equivalent classes. 

C6. Let the set D of equivalent classes and A = dlg(N), N D. 
We define Ao Mo, Mo Do - {Ao}.

2.2 Property mapping 

Properties are mapped into class attributes. Let a property P with a 
domain set D.

P1a. If D = , we define Po as an attribute of the owl:Thingo

class in order to be inherited by all classes.  
P1b. If D = {M}, then if K such that M K and E is the 

equivalent class set, then we define Po as an attribute of all No Eo

- {dlg(Mo)}. If K such that M K, the property P is mapped di-
rectly as an attribute Po in the Mo class.  

P1c. If D  2 then we create a class To, such that To No, No

Do, and Po is defined as an attribute of To.
We follow the same approach for ranges. In the case of OWL 

datatype properties, we map range restrictions to actual datatypes, 
for example xsd:int restrictions into Integer types.  

2.3 Individual mapping 

Individuals are mapped into objects. Let the set D of concepts and 
an individual m, where N D, m : D.

I1a. If D = {K}, then mo Ao, where Ao = dlg(Ko).
I1b. If D  2, we create (or reuse, if exists from P1c) the class 

To, such that To dlg(No), No Do and we define mo  To.
Individual property values are mapped in object attribute values. 
I2. Each m, y  : P axiom is mapped by inserting the value y in 

the attribute Po of the mo object. If y is an individual (P is an object 
property) then yo mo.P, else (P is a datatype property) y mo.P.

3 EXAMPLES  

Intersection: Consider the OWL ontology (DL syntax): Father
Male hasChild.Child, m : Male, n : Child, m, n  : hasChild.

The m instance will be classified in the Father concept by the rea-
soner, since it satisfies the existential restriction. Then, Father
Male (C4), Child owl:Thing (C2), hasChild Att(owl:Thing)
(P1a), m Father and n Child (I1a) and n m.hasChild (I2).
Thus, m Obj(Male) and m Obj(Father), since Father Male.
Notice, that only named concepts are mapped into classes. 

Union: Consider the OWL ontology: Human Man Woman,
m : Man, n : Woman. Then, Man Human and Woman Human
(C5), m Man and n Woman (I1a). Thus, Obj(Human) = 
Obj(Man) Obj(Woman) = {m, n}.

Equivalence: Consider the OWL ontology: Student Pupil, m : 
Student, n : Pupil. Assuming that dlg(Student) = dlg(Pupil) = Stu-
dent, then Student Pupil (C6), m Student and n Student
(I1a). Thus, Obj(Student) = Obj(Pupil) = {m, n}.

4 RELATED WORK  

The OO transformation procedure of HOOPO is inspired by [7]. In 
this work, we target at the hybrid paradigm where OWL semantics 
are handled by a DL reasoner, without involving entailments. 

The most closely related approaches to HOOPO are the [4][6]
[10] and [3], where the ontology axioms are not altered and the 
ontology predicates are used as constraints in rule bodies. HOOPO 
differs from the above approaches on the fact that we approach the 
integration from an OO perspective and the DL constraints are 
determined directly by the OO KB, using both ontology class and 
property constraints in rule bodies, without runtime interaction 
between the DL and rule components. There are also approaches 
that target at the use of ontology predicates in rule heads, altering 
ontology axioms. Some examples are [9][11][5].

5 CONCLUSIONS  

In this work we investigated the possibility of representing OWL 
extensional semantics following object-oriented principles in order 
to enable OO production rules to operate over OWL ontologies. 
We have implemented our methodology combining the Pellet DL 
reasoner [12] and the OO model of the CLIPS production rule en-
gine [2]. The results show that it is possible to preserve the exten-
sional ontology semantics of the transformed ontology. We plan to 
use HOOPO in the domain of semantic Web service discovery and 
composition.
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