
HOOPO: A Hybrid Object-Oriented Integration of
Production Rules and OWL Ontologies

Georgios Meditskos and Nick Bassiliades1

Abstract. We describe a framework for the development of pro-
duction rule programs on top of OWL ontologies, following a hy-
brid Object-Oriented (OO) approach. The hybrid nature is realized
by separating ontologies and rules, interfacing an external DL rea-
soner and a production rule engine. The OO nature is realized by
mapping OWL ontologies into the OO model, in such a way, so to
preserve the extensional ontology semantics when the OO ontology
constructs are matched in the production rule conditions.

1 INTRODUCTION

There are two main approaches towards the combination of rules
and ontologies [1][8]:

Hybrid approach: Rule and ontology predicates are strictly
separated and the ontology predicates can be used as con-
straints in rules. Thus, existing reasoners may be used.
Homogeneous approach: Rule and ontology predicates are
treated homogeneously, as a new single logic language. Thus,
a new reasoner is needed, able to handle the new language.

We present HOOPO, a hybrid approach that enables the defini-
tion of production rules over OWL ontologies, following an OO
approach. More specifically, we enable the development of OO
rule-based applications with ontology-based information, using an
OO schema that stems from a vocabulary defined in ontologies.
We follow the idea that rules may not be used to derive ontological
knowledge and any knowledge about ontology information is pro-
vided by a DL component. This is achieved by allowing the OO
ontology constructs to be matched only in OO production rule
conditions, serving as restrictions for the development of derived
OO KBs, that is user-defined classes, attributes and objects, disjoint
from the OO ontology KB. Thus, we target at the monotonic com-
bination of rules and ontologies.

HOOPO interfaces a production rule engine with an external DL
reasoner, defining an OO mapping procedure of the ontological
knowledge into the OO model of the rule engine. There are three
motivations behind this OO mapping procedure. Firstly, we enable
the development of rule-based ontology-based applications based
on the well-known and established OO programming principles.
Secondly, the generated OO ontology KB encapsulates the exten-
sional (individual) ontology semantics that are needed during rule
execution, and thus, there is no need for a runtime interaction be-

1 Department of Informatics, Aristotle University of Thessaloniki, Greece,
email: {gmeditsk, nbassili}@csd.auth.gr

tween the rule engine and the reasoner, increasing rule execution
performance. This is feasible, since we consider that the ontology
information is not altered by the rule programs. Finally, the lack of
any runtime interaction accounts for the utilization of the reasoner
and the rule engine without modifications. In that way, the DL
component reasons only once on the ontology and the information
is used to generate the OO KB of the rule engine.

2 OBJECT-ORIENTED MAPPING OF OWL

Let C be the set of named classes, R the set of properties, I the set
of individuals of a DL reasoner’s KB after the reasoning procedure
over an ontology, and let Co be the set of classes, Ro the set of at-
tributes and Io the set of objects of the OO model. Furthermore, A

 B and m : A is the DL syntax for class subsumption and class
membership, and EXT(A) is the class extension of A, that is the set
of individuals that belong to the class A. Similarly, Obj(Ao) denotes
the objects of the OO class Ao. Furthermore, let Ao Bo denote that
the OO class Ao is subclass of the class Bo, and let mo Ao denote
that the object mo has the class type Ao.

2.1 Class mapping

OWL classes are mapped into OO classes. The class transforma-
tion procedure implements the OWL axiom, stating that owl:Thing
subsumes every class and all individuals belong to the class exten-
sion of owl:Thing.

The OO model is unable to represent directly the semantics of
equivalent classes that impose mutual subclass relationships among
them, in order to have the same class extension. For that reason, we
introduce the notion of the delegator class.

C1. For every set of equivalent classes D, we arbitrary choose a
class A D as the delegator class, such that B D, dlg(B) = A.
For each concept M with no equivalent classes, dlg(M) = M.

Each class without any superclass becomes direct subclass of
the OO owl:Thingo class.

C2. Let a concept A for which N such that A N. We define
Mo owl:Thingo, where Mo = dlg(Ao).

Only delegator classes are involved in OO subclass relations.
C3. Each M N relation is mapped into the subclass relation

Ao Bo, where Ao = dlg(Mo) and Bo = dlg(No).
Class intersection and union are mapped into multiple OO sub-

class relations.
C4. Let the concept A be the intersection of a set D of concepts.

We define Ao Mo, Mo Do.

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-729

729

C5. Let a concept A be the union of a set D of concepts. We de-
fine Mo Ao, Mo Do.

In class equivalence, the delegator becomes subclass of all its
equivalent classes.

C6. Let the set D of equivalent classes and A = dlg(N), N D.
We define Ao Mo, Mo Do - {Ao}.

2.2 Property mapping

Properties are mapped into class attributes. Let a property P with a
domain set D.

P1a. If D = , we define Po as an attribute of the owl:Thingo

class in order to be inherited by all classes.
P1b. If D = {M}, then if K such that M K and E is the

equivalent class set, then we define Po as an attribute of all No Eo

- {dlg(Mo)}. If K such that M K, the property P is mapped di-
rectly as an attribute Po in the Mo class.

P1c. If D 2 then we create a class To, such that To No, No

Do, and Po is defined as an attribute of To.
We follow the same approach for ranges. In the case of OWL

datatype properties, we map range restrictions to actual datatypes,
for example xsd:int restrictions into Integer types.

2.3 Individual mapping

Individuals are mapped into objects. Let the set D of concepts and
an individual m, where N D, m : D.

I1a. If D = {K}, then mo Ao, where Ao = dlg(Ko).
I1b. If D 2, we create (or reuse, if exists from P1c) the class

To, such that To dlg(No), No Do and we define mo To.
Individual property values are mapped in object attribute values.
I2. Each m, y : P axiom is mapped by inserting the value y in

the attribute Po of the mo object. If y is an individual (P is an object
property) then yo mo.P, else (P is a datatype property) y mo.P.

3 EXAMPLES

Intersection: Consider the OWL ontology (DL syntax): Father
Male hasChild.Child, m : Male, n : Child, m, n : hasChild.

The m instance will be classified in the Father concept by the rea-
soner, since it satisfies the existential restriction. Then, Father
Male (C4), Child owl:Thing (C2), hasChild Att(owl:Thing)
(P1a), m Father and n Child (I1a) and n m.hasChild (I2).
Thus, m Obj(Male) and m Obj(Father), since Father Male.
Notice, that only named concepts are mapped into classes.

Union: Consider the OWL ontology: Human Man Woman,
m : Man, n : Woman. Then, Man Human and Woman Human
(C5), m Man and n Woman (I1a). Thus, Obj(Human) =
Obj(Man) Obj(Woman) = {m, n}.

Equivalence: Consider the OWL ontology: Student Pupil, m :
Student, n : Pupil. Assuming that dlg(Student) = dlg(Pupil) = Stu-
dent, then Student Pupil (C6), m Student and n Student
(I1a). Thus, Obj(Student) = Obj(Pupil) = {m, n}.

4 RELATED WORK

The OO transformation procedure of HOOPO is inspired by [7]. In
this work, we target at the hybrid paradigm where OWL semantics
are handled by a DL reasoner, without involving entailments.

The most closely related approaches to HOOPO are the [4][6]
[10] and [3], where the ontology axioms are not altered and the
ontology predicates are used as constraints in rule bodies. HOOPO
differs from the above approaches on the fact that we approach the
integration from an OO perspective and the DL constraints are
determined directly by the OO KB, using both ontology class and
property constraints in rule bodies, without runtime interaction
between the DL and rule components. There are also approaches
that target at the use of ontology predicates in rule heads, altering
ontology axioms. Some examples are [9][11][5].

5 CONCLUSIONS

In this work we investigated the possibility of representing OWL
extensional semantics following object-oriented principles in order
to enable OO production rules to operate over OWL ontologies.
We have implemented our methodology combining the Pellet DL
reasoner [12] and the OO model of the CLIPS production rule en-
gine [2]. The results show that it is possible to preserve the exten-
sional ontology semantics of the transformed ontology. We plan to
use HOOPO in the domain of semantic Web service discovery and
composition.

ACKNOWLEDGEMENTS

This work was partially supported by a PENED program (EPAN
M.8.3.1, No. 03 73), jointly funded by the European Union and
the Greek Government (General Secretariat of Research and Tech-
nology/GSRT).

REFERENCES

[1] G. Antoniou, C.V. Damasio, B. Grosof, I. Horrocks, M. Kifer, J.
Maluszynski, P.F. Patel-Schneider, Combining Rules and Ontolo-
gies. A Survey, Reasoning on the Web with Rules and Semantics,
REWERSE Deliverables, 2005.

[2] CLIPS, http://www.ghg.net/clips
[3] W. Drabent, J. Henriksson, J. Maluszynski, HD-rules: A Hybrid Sys-

tem Interfacing Prolog with DL-reasoners, 2nd International Work-
shop on Applications of Logic Programming to the Web, Semantic
Web and Semantic Web Services, 2007

[4] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, AL-log: Integrat-
ing datalog and description logics, J. of Intelligent Information Sys-
tems, vol 10(3), pp. 227-252, 1998.

[5] S. Heymans, L. Predoiu, C. Feier, J. Bruijn, D. Van Nieuwenborgh,
G-Hybrid Knowledge Bases, Applications of Logic Programming in
the Semantic Web and Semantic Web Services (ALPSWS), 2006

[6] A.Y. Levy, M. Rousset, Combining Horn rules and description lo-
gics in CARIN, Artificial Intelligence, vol 104 (1-2), 1998.

[7] G. Meditskos, N. Bassiliades, A Rule-based Object-Oriented OWL
Reasoner, IEEE Transactions on Knowledge and Data Engineering,
vol. 20, no. 3, pp. 397-410, Mar., 2008.

[8] J. Mei, Z. Lin, H. Boley, ALCu: An Integration of Description Logic
and General Rules, Web Reasoning and Rule Systems, 2007

[9] B. Motik, U. Sattler, R. Studer, ‘Query answering for OWL-DL with
rules’, J. of Web Semantics, 3 (1), pp. 41-60, 2005.

[10] R. Rosati, Towards expressive KR systems integrating Datalog and
description logics: Preliminary report. In Proc. of DL’99, 1999.

[11] R. Rosati, DL+log: Tight Integration of Description Logics and Dis-
junctive Datalog, In Proceedings of the 10th KR, 2006

[12] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, Y. Katz, Pellet: A Prac-
tical OWL-DL Reasoner, J. of Web Semantics, 5(2), 51-53, 2007.

G. Meditskos and N. Bassiliades / HOOPO: A Hybrid Object-Oriented Integration of Production Rules and OWL Ontologies730

	1 INTRODUCTION
	2 OBJECT-ORIENTED MAPPING OF OWL
	2.1 Class mapping
	2.2 Property mapping
	2.3 Individual mapping

	3 EXAMPLES
	4 RELATED WORK
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

