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Abstract. The goal of breast cancer screening programs is
to detect cancers at an early (preclinical) stage, by using pe-
riodic mammographic examinations in asymptomatic women.
In evaluating cases, mammographers insist on reading multi-
ple images (at least two) of each breast as a cancerous lesion
tends to be observed in different breast projections (views).
Most computer-aided detection (CAD) systems, on the other
hand, only analyze single views independently, and thus fail to
account for the interaction between the views. In this paper,
we propose a Bayesian framework for exploiting multi-view
dependencies between the suspected regions detected by a
single-view CAD system. The results from experiments with
real-life data show that our approach outperforms the single-
view CAD system in distinguishing between normal and ab-
normal cases. Such a system can support screening radiolo-
gists to improve the evaluation of breast cancer cases.

1 INTRODUCTION

Breast cancer is the most common form of cancer among
women world-wide and its early detection can improve the
chances of successful treatment and recovery ([1]). Therefore,
many countries have introduced screening programs for the
early diagnosis of breast cancer in asymptomatic women.

A screening mammographic examination usually consists
of four images, corresponding to each breast scanned in two
views: mediolateral-oblique (MLO) and craniocaudal (CC)
(Figure 1). The MLO projection is taken under 45◦ angle
and shows part of the pectoral muscle. The CC projection
is a top-down view of the breast. In reading mammograms,
radiologists judge for the presence of a lesion by comparing
both views and breasts. The general rule is that a lesion is to
be observed in both views.

Most computer-aided detection (CAD) systems, on the
other hand, are only able to analyze each view independently.
Hence, the correlations in the lesion characteristics are ig-
nored and the breast cancer detection can be obscured due
to the lack of consistency in lesion marking. This limits the
usability and the trust in the performance of such systems.

In this paper, we explore multi-view dependencies to im-
prove the breast cancer detection rate at a patient level. We
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Figure 1. MLO and CC projections of a right and left breast

develop a Bayesian network model that combines the infor-
mation from all the regions detected by a single-view CAD
system in MLO and CC to obtain a single measure for suspi-
ciousness of a case.

To get the reader acquainted with the terminology used in
the domain of breast cancer and throughout this paper, we
next introduce a number of definitions of terms. By lesion we
refer to a physical cancerous object detected in a patient. We
call a contoured area on a mammogram a region. A region
can be true positive (for example, a lesion marked manually
by a radiologist or detected automatically by a CAD system
as being suspicious) or false positive. A region detected by a
CAD system is described by a number of continuous (real-
valued) features (e.g., size, location, contrast). By link we
denote matching (established correspondence) between two
regions in MLO and CC views, respectively. The term case
refers to a patient who has undergone a mammographic exam.

The remainder of the paper is organized as follows. In the
next section we briefly review previous research in multi-view
breast cancer detection. In Section 3 we introduce basic def-
initions related to Bayesian networks and then we describe
a general Bayesian network framework for multi-view detec-
tion. The proposed approach is evaluated on an application of
breast cancer detection using actual screening data. The eval-
uation procedure and the results are presented in Section 4.
Section 5 concludes the paper.

2 PREVIOUS RESEARCH

A number of works have already been developed to deal with
multi-view breast cancer detection. Van Engeland et al. de-
velop a linking method in [2] based on Linear Discriminant
Analysis (LDA) classifier and a set of view-link features to
compute a correspondence score for every possible region com-
bination. The proposed approach demonstrated an ability to
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discriminate between true and false links. In [3], Van En-
geland and Karssemeijer extend this matching approach by
building a cascaded multiple-classifier system for reclassify-
ing the initially detected region based on the linked candi-
date region in the other view. Experiments show that the
lesion-based detection performance of the two-view detection
system is significantly better than that of the single-view de-
tection method. Paquerault et al. also consider established
correspondence between suspected regions in both views to
improve lesion detection based on LDA ([4]). By combining
the resulting correspondence score with its one-view detection
score the lesion detection improves and the number of false
positives reduces. Only in this study, however, the authors
report improvement in the case-based performance based on
multi-view information. Therefore more research is required
to build CAD systems that discriminate well between nor-
mal and suspicious cases–the ultimate goal of breast cancer
screening programs.

In contrast to the clinical situation, in the screening setting
the detected lesions are usually small and due to breast com-
pression they are sometimes difficult to observe in both views.
However, there is a strong correlation between the character-
istics of the breast projections, which can assist the decision
process of classifying a case as normal or suspicious.

3 BAYESIAN MULTI-VIEW
DETECTION

3.1 Basic Definitions

A Bayesian network is defined as a pair BN = (G, P ) where
G is an acyclic directed graph (ADG) G = (V,A) with a
set of nodes V corresponding 1 − 1 to a finite set of random
variables X and a set of arcs A ⊆ (V × V) corresponding
to direct causal relationships between the variables. Here P
denotes a joint probability distribution of X. We say that G is
an I–map of P if any independence represented in G, denoted
by U ⊥⊥ GV | W with U, V, W ⊆ V mutually disjoint sets of
nodes, is satisfied by P , i.e.,

U ⊥⊥ GV | W =⇒ XU ⊥⊥ P XV | XW ,

where U , V and W are sets of nodes of the ADG G and XU ,
XV and XW are the sets of random variables corresponding to
the sets of nodes U , V and W , respectively. A Bayesian net-
work BN allows a compact representation of independence in-
formation about the joint probability distribution P by spec-
ifying a conditional probability table (CPT) for each random
variable. This table describes the conditional distribution of
the node given each possible combination of values of its par-
ents. The joint probability can be computed by simply mul-
tiplying the CPTs. For more detailed recent description of
Bayesian networks, the reader is referred to [5].

One way to specify interactions among statistical variables
in a compact fashion is offered by the notion of causal inde-
pendence [6]. The general structure of a causal-independence
model is shown in Figure 2; it expresses the idea that causes
C1, . . . , Cn influence a given common effect E through inter-
mediate variables I1, . . . , In. A value of a variable is denoted
by a lower-case letter, e.g., ik stands for Ik = � (true) and
īk otherwise. The interaction function f represents in which
way the intermediate effects Ik, and indirectly also the causes

C1 C2 . . . Cn

I1 I2 . . . In

Ef

Figure 2. Causal-independence model.

Ck, interact. This function f is defined in such a way that
when a relationship between the Ik’s and E = � is satis-
fied, then it holds that f(I1, . . . , In) = e; otherwise, it holds
that f(I1, . . . , In) = ē. Furthermore, it is assumed that if
f(I1, . . . , In) = e then P (e | I1, . . . , In) = 1; otherwise, if
f(I1, . . . , In) = ē, then P (e | I1, . . . , In) = 0. Using informa-
tion from the topology of the network, the notion of causal
independence can be formalised for the occurrence of effect
E, i.e. E = �, in terms of probability theory as follows:

P (e | C1, . . . , Cn) =
X

f(I1,...,In)=e

nY
k=1

P (Ik | Ck)

Finally, it is assumed that P (ik | c̄k) = 0 (absent causes do
not contribute to the effect); otherwise, P (Ik | Ck) > 0.

An important subclass of causal-independence models is
obtained if the deterministic function f is defined in terms
of separate binary functions gk; it is then called a decom-
posable causal-independence model [6]. Usually, all functions
gk(Ik, Ik+1) are identical for each k. Typical examples of de-
composable causal-independence models are the noisy-OR [7]
models, where the function g represents a logical OR. This
function is used in the general theoretical model presented in
the next section.

3.2 Model Description

The objective of multi-view detection of a physical object is
to determine whether or not the object has certain charac-
teristics (e.g., being suspicious) based on the characteristics
of regions (subparts) in multiple object views (projections).
Figure 3 depicts a schematic representation of multi-view de-
tection.

View–A  View–B

A1

B2

B1

A2

L11

L12

L22

L21 

Figure 3. Schematic representation of multi-view analysis of a
physical object with automatically detected regions

We have a physical object (displayed as a gray cloud), which
is projected in two views, View-A and View-B. The ovals rep-
resent the projections of a suspicious physical subpart of the
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object; thus, the whole object is suspicious. An automatic
single-view system detects regions in both views and a number
of real-valued features are extracted to describe every region.
In the figure regions A1 and B1 are correct detection of the
suspicious physical subpart, i.e., these are true positive (TP)
regions whereas A2 and B2 are false positive (FP) regions.
Since we deal with projections of the same physical object
we introduce links (Lij) between the detected regions in both
views, Ai and Bj . Every link has a class (label) Lij = �ij

defined as follows

�ij =

(
false if Ai and Bj are FP,

true if Ai or Bj are TP.
(1)

A region, view and the whole object has also a binary class
with a value of false if all the corresponding links �ij = false;
otherwise it is true. This definition allows us to maintain in-
formation about the suspiciousness of the physical object even
if there is no detected TP region in one of the views. In any
case, multiple views corresponding to the same TP subpart
contain correlated characteristics whereas views of FPs tend
to be less correlated.

To account for view interaction, we propose a two-step
Bayesian network framework where all the regions from cor-
responding views are considered simultaneously to compute
a single measure for suspiciousness for the physical object as
whole. Figure 4 represents the framework.

Ai / Bj = (x1, x2, …, xn)

A1

L11 L12 L21 L22

CA1

A2 B1 B2

CB1 CB2 CA2

CA1 CA2

IA1 IA2 

View-A

CB1 CB2

IB1 IB2

View-B

a) RegNet b) ViewNet

Figure 4. Bayesian network framework for representing the
dependencies between multiple views of an object

At first we compute the probability that a region in one
view is classified as true given its links to the regions in
the other view. A straightforward way to model a link Lij

is to use the corresponding regions Ai and Bj as causes for
the link class, i.e., Ai −→ Lij ←− Bj . Since the link vari-
able is discrete and the regions are represented by a vector of
real-valued features (x1, x2, . . . , xn) extracted from an auto-
matic detection system, we apply logistic regression to com-
pute P (Lij = �ij |Ai, Bj):

P (Lij = �ij |Ai, Bj) =
exp

“
β

�ij

0 + β
�ij

1 x1 + · · · + β
�ij

k xk

”
1 + exp

“
β

�ij

0 + β
�ij

1 x1 + · · · + β
�ij

k xk

”
where β’s are the model parameters we optimize. Logistic
regression ensures that the outputs P (Lij = �ij |Ai, Bj) lie in
the range [0, 1] and they sum up to 1.

The next step is to compute the probabilities P (CAi =
1|Lij = �ij) and P (CBj = 1|Lij = �ij) where CAi and CBj

are the classes of regions Ai and Bj , respectively. Given our
class definition in (1), we can easily model these relations
through a causal independence model using the logical OR.
The Bayesian network RegNet models this scheme.

At the second step of our Bayesian network framework
we simply combine the computed region probabilities from
RegNet by using again a causal independence model with the
logical OR to obtain the probability of the respective view
being true. We call this Bayesian network ViewNet.

Finally, we combine the view probabilities obtained from
ViewNet into a single probabilistic measure for the object
as a whole by using different schemes. The first simplest
scheme is taking the average of both view probabilities. In an-
other more advanced scheme, we take into account the class
of the object (false or true) by using a logistic regression
model with the view probabilities as input variables. We refer
to the whole multi-view detection scheme thus described as
MultiView model.

4 APPLICATION TO BREAST CANCER

As mentioned earlier, multi-view analysis plays a crucial role
in the breast cancer detection on mammograms. Here, we
describe the application of the proposed Bayesian network
framework in this domain.

4.1 Data Description

As input for our multi-view detection scheme we use the re-
gions detected by a single-view CAD system that consists of
the following main steps: 1) Segmentation of the mammo-
gram into background area, breast, and for MLO, pectoral
muscle; 2) Initial detection of pixel-based locations of inter-
est; 3) Region extraction with dynamic programming using
the detected locations as seed points. For each region a num-
ber of real-valued features are computed based on breast and
local area information; 4) Region classification as “false” and
“abnormal” based on the region features. A measure for sus-
piciousness is computed based on supervised learning with
a neural network (NN) and converted into normality score
(NormSc): the average number of normal regions in a view
(image) with the same or higher suspiciousness measure.

The proposed model was evaluated using a data set contain-
ing 1063 screening exams from which 383 are cancerous. All
exams contained both MLO and CC views. The total number
of breasts were 2126. All cancerous breasts had one visible
lesion in at least one view, which was verified by pathology
reports to be malignant. Lesion contours were marked by, or
under supervision of, an experienced screening radiologist.

For each image (mammogram) we selected the first 5 re-
gions with the lowest NormSc computed from the CAD sys-
tem. In total there were 10478 MLO regions and 10343 CC
regions. Every region from MLO view was linked with every
region in CC view, thus obtaining 51088 links in total.

We constructed the data such that every row contains the
features of all regions belonging to the MLO and CC view for
one breast, i.e., first 5 MLO and then 5 CC regions. The re-
gions per image were sorted according to their NormSc. Every
region is described by 11 continuous features automatically
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extracted by the system, which tend to be relatively invariant
across the views. These features include the neural network’s
output from the single-view CAD and lesion characteristics
such as spiculation (star-like shape), focal mass, size, con-
trast, linear texture and location coordinates. Finally we add
the class variable with binary values false (“normal”) and
true (“suspicious”) for each link following the definition in
(1). Hence a region, view, breast and case has class values of
“normal” and “suspicious”. Given the data processing proce-
dure, we obtained a dataset with 2126 rows and 135 columns
(10 regions × 11 features + 25 link classes).

4.2 Evaluation

We applied our MultiView model to the data thus described.
Both RegNet and ViewNet networks have been built, trained
and tested using the Bayesian Network Toolbox in Matlab
([8]). The learning has been done using the EM algorithm as
the OR-nodes are hidden variables. The evaluation of each
network performance is done using two-fold cross validation:
the dataset is split into two subsets with approximately equal
number of observations and proportion of cancerous breasts.
Each half is used as a training set and as a test set.

The view probabilities for MLO and CC obtained from
ViewNet are combined by the averaging scheme Avg(MLO,CC)

for computing the probability of breast being suspicious. For
the logistic regression combining scheme we use as input vari-
ables not only the view probabilities for MLO and CC but also
the minimum NormScs for each view. The breast data is split
in two halves and each half is used once as a train and a test
set. This splitting is repeated 10 times. As a result for each
case we obtain 20 probabilities in total–2 × 10 probabilities
corresponding to each breast. Out of these 20 probabilities
we first choose the maximum probability and assign it to the
respective breast. Then consider only the 10 probabilities for
the other breast and take the minimum as a final measure for
suspiciousness. This scheme is referred to as 10-fold LR.

To compute the probability of a case being “suspicious”
we apply the most straightforward scheme of taking the max-
imum of the two breast probabilities. However for the 10-fold
LR model, which accounts for the breast classes, it is expected
that the absolute difference between the left and right breast
probabilities should be larger for the suspicious cases than
that of the normal cases and thus allowing for a better case
distinction. We use this difference as a third measure for sus-
piciousness at the case level (10-fold LR-diff).

We compare the performance of our model with the per-
formance of the single-view CAD system (SV-CAD). For the
latter the breast (case) probability is computed by taking
the minimum NormSc out of all the regions in both views
(breasts). The comparison analysis is done using Receiver Op-
erating Characteristic (ROC) curve ([9]) and the Area Under
the Curve (AUC) as a performance measure. The significance
of the AUC differences between our multi-view model and
the benchmark SV-CAD system is tested by using the software
package LABROC4 ([10]).

4.3 Results

Based on the results from ViewNet, Figure 5 presents the
classification outcome with the respective AUC measures per

MLO and CC view, respectively. To check the significance
of the difference between the AUC measures we test the hy-
pothesis that the AUC measures are equal against the one-
sided alternative hypothesis that the multi-view system yields
higher AUC for MLO and CC views. The p-values obtained
are: 0.000 for MLO view and 0.035 for CC view. The results
clearly indicate an overall improvement in the discrimination
between suspicious and normal views for both MLO and CC
projections. Such an improvement is expected as the classifica-
tion of each view in our multi-view system takes into account
region information not only from the view itself but also from
the regions in the other view.
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Figure 5. ROC analysis per MLO and CC view

While the view results are very promising, from a radi-
ologists’ point of view it is more important to look at the
breast and case level performance; in Table 1 the AUCs from
our MultiView and SV-CAD are presented. Overall we see that
MultiView outperforms SV-CAD in terms of an increased true
detection rate at both breast and case level. Although the sim-
ple averaging method Avg(MLO,CC) tends to show better dis-
tinction between normal and suspicious breasts (cases) than
SV-CAD, the differences in the AUC measures is statistically
insignificant at breast and case level. However, taking into
account the breast classes and performing new training as
done in 10-fold LR leads to a significant improvement in the
classification outcome. The best performance is achieved for
10-fold LR-diff, confirming our expectation that the proba-
bility difference between the breasts for suspicious cases must
be larger than that for the normal cases.

Table 1. AUCs obtained from the single- and multi-view system

Method Breast p-value Case p-value
SV-CAD 0.850 – 0.797 –
Avg(MLO,CC) 0.864 0.123 0.827 0.135
10-fold LR-max 0.875 0.001 0.832 0.014
10-fold LR-diff 0.875 0.001 0.838 0.006

To get more insight into the areas of improvement we plot-
ted ROC curves for each of our models against the single-view
CAD system. For all the plots we observed the same tendency
of an increased true positive rate at (very) low false positive
rates (< 0.5)–a result ultimately desired at the screening prac-
tice where the number of normal cases is considerably larger
than the suspicious ones; Figure 6 presents the ROC plot for
the best performing 10-fold LR-diff model.

M. Velikova et al. / A Decision Support System for Breast Cancer Detection in Screening Programs 661



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
p

o
si

ti
ve

 r
at

e

ROC curve per case

MultiView
AUC: 0.838
SV−CAD
AUC: 0.797

Figure 6. ROC analysis per case

To have a closer look at the quality of classification for
the models that produce a real probability measure for sus-
piciousness (Avg(MLO,CC) and 10-fold LR-max), we compute
the average log-likelihood (ALL) of the probabilities for dif-
ferent units–link, region, MLO/CC view, breast and case–by:

ALL(C) =
1

N

NX
i=1

− ln P (Ci|Ei), (2)

where N is the number of the unit, Ci and Ei is the class value
and the feature vector of the i-th observation, respectively.
Thus, the value of ALL(C) indicates how close the poste-
rior probability distribution is to reality: when P (Ci|Ei) =
1 then ln P (Ci|Ei) = 0 (no extra information); otherwise
− ln P (Ci|Ei) > 0.

The log-likelihood results are given in Table 2. The lowest
ALL(C) is achieved for the links meaning that the estimated
probabilities best fit the link probability distribution. A pos-
sible explanation is that in our Bayesian network framework
the links are directly dependent on the original region features
and thus they are better fitted. On the other hand, the rest
of the units are based on combining estimated probabilities
from previous levels where noise could play a role. Overall,
however, our log-likelihood results show that MultiView fits
closely the probability distributions for different units.

Table 2. Average log-likelihood of the class based on MultiView

Method
Average log-likelihood of the class

Case Breast MLO/CC Link Region
Avg(MLO,CC) 0.50 0.32

0.34/0.31 0.19 0.38
10-fold LR-max 0.47 0.30

5 CONCLUSIONS

Using the proposed Bayesian network framework and expert
knowledge on multi-view analysis of mammograms we showed
that the detection rate of breast cancer is larger at low false
positive rates than that of a single-view CAD system. This im-
provement is achieved at view, breast and case level and it is
due to a number of factors. First, we built upon a single-view
CAD system that already demonstrates relatively good detec-
tion performance. By applying a probabilistic causal model we
linked the original features extracted by CAD for all the re-
gions in MLO and CC views and we combined all the links

for one breast to obtain a single measure for suspiciousness of
a view, breast and case. Another factor for the improved clas-
sification is that our approach incorporated domain knowl-
edge. Following radiologists’ practice, we applied a straight-
forward scheme to account for multi-view dependencies such
that (i) correlations between the regions in MLO and CC
views are considered per breast as whole and (ii) the classifi-
cation of breast/case as “suspicious” is employed through the
logical OR. Thus the proposed methodology can be applied to
any domain (e.g., fault detection in manufacturing processes)
where similar definitions and objectives hold.

Although we demonstrated that the proposed framework
has the potential to assist screening radiologists to improve
the evaluation of breast cancer cases, we consider a number
of directions for extension. First, the features used in the
current model are independently computed per region. We
expect that the inclusion of multi-view region features such
as the distance to the nipple or correlation features would
further improve the system’s performance by considering ex-
plicitly multi-view dependences. Another possible extension
is based on the model structure. Following our Bayesian net-
work framework with using logistic regression and logical OR
at a link and view level, we can also apply similar combining
schemes at a breast and case level. Thus we can allow for bet-
ter handling of missing or noisy information in the estimation
of the breast/case probabilities for suspiciousness.
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