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Abstract. From a conceptual point of view, belief revision and
learning are quite similar. Both methods change the belief state of
an intelligent agent by processing incoming information. However,
for learning, the focus in on the exploitation of data to extract and as-
similate useful knowledge, whereas belief revision is more concerned
with the adaption of prior beliefs to new information for the purpose
of reasoning. In this paper, we propose a hybrid learning method
called SPHINX that combines low-level, non-cognitive reinforcement
learning with high-level epistemic belief revision, similar to human
learning. The former represents knowledge in a sub-symbolic, nu-
merical way, while the latter is based on symbolic, non-monotonic
logics and allows reasoning. Beyond the theoretical appeal of linking
methods of very different disciplines of artificial intelligence, we will
illustrate the usefulness of our approach by employing SPHINX in the
area of computer vision for object recognition tasks. The SPHINX

agent interacts with its environment by rotating objects depending
on past experiences and newly acquired generic knowledge to choose
those views which are most advantageous for recognition.

1 INTRODUCTION

One of the most challenging tasks of computer vision systems is
the recognition of known and unknown objects. An elegant way to
achieve this is to show the system some samples of each object class
and thereby train the system, so that it can recognize objects that it
has not seen before, but which look similar to some objects of the
training phase (due to some defined features).

Several methods to do so have been successfully used and anayl-
ized. One of them is to set up a rule-based system and have it reason,
another one is to use numerical learning methods such as reinforce-
ment learning. Both of them have advantages, but also disadvantages.
Reinforcement learning yields good results in different kinds of en-
vironments, but its training is time consuming, since it is a trial-and-
error method and the agent has to learn from scratch. The possibili-
ties to introduce background knowledge (e. g., by the choice of the
initial values of the QTable) are more limited as for example with
knowledge representation techniques. Another disadvantage consists
in a limited possibility to generalize experiences and so to be able to
act appropriately in unfamiliar situations. Though some generaliza-
tion can be obtained by the application of function approximization
techniques, the possibilities to generalize from learned rules to unfa-
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miliar situations are more diverse again with for example knowledge
representation techniques.

Knowledge representation and belief revision techniques have the
advantage that the belief of the agent is represented quite clearly and
allows reasoning about actions. The belief can be extended by new
information, but needs to be revised when the new information con-
tradicts the current belief. One drawback is that it is difficult to decide
which parts of the belief should be given up, so that the new belief
state is consistent, i.e., without inherent contradictions.

In this paper, we present our hybrid learning system SPHINX,
named after the Egyptian statue of a hybrid between a human and a
lion. It combines the advantages of both Q-Learning and belief re-
vision and diminishes the disadvantages, thus synergy effects can
emerge. SPHINX agents, on the one hand, are intelligent agents
equipped with epistemic belief states which allows them to build a
model of the world and to apply reasoning techniques to focus on
most plausible actions. On the other hand, they use QTables to deter-
mine which action should be carried out next, and are able to process
reward signals from the environment. Moreover, SPHINX agents can
learn situational as well as generic knowledge which is incorporated
into their epistemic states via belief revision. In this way, they are
able to adjust faster and more thoroughly to the environment, and
to improve their learning capabilites considerably. This will be illus-
trated in detail by experiments in the field of computer vision.

This paper is organized as follows: Chapter 2 summarizes related
work. In chapter 3 we recall basic facts on Q-Learning, ordinal con-
ditional functions and revision. Chapter 4 contains the main contri-
bution of this paper, the presentation of the SPHINX system. Chapter
5 summarizes results from experiments in computer vision carried
out in different environments. Finally, we conclude in chapter 6.

2 RELATED WORK

Psychological findings propose a two-level learning model for hu-
man learning [1], [6], [3], [10]. On the so called bottom level, hu-
mans learn implicitly and acquire procedural knowledge. They are
not aware of the relations they have learned and can hardly put it into
words. On the other level, the top level, humans learn explicitly and
acquire declarative knowledge. They are aware of the relations they
have learned and can express it, e. g., in form of if-then rules. A spe-
cial form of declarative knowledge is episodic knowledge. This kind
of knowledge is not of general nature, but refers to specific events,
situations or objects. Episodic knowledge makes it possible to re-
member specific situations where general rules do not hold.

These two levels do not work separately. Depending on what is
learned, humans learn top-down or bottom-up [11]. It has been found
[8] that in completely unfamiliar situations mainly implicit learning
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takes place and procedural knowledge is acquired. The declarative
knowledge is formed afterwards. This indicates that the bottom-up
direction plays an important role. It is also advantageous to contin-
ually verbalize to a certain extent what one has just learned and so
speed up the acquisition of declarative knowledge and thereby the
whole learning process.

Sun, Merrill and Peterson developed the learning model CLAR-
ION [9]. It is a two-level, bottom-up learning model which uses Q-
Learning for the bottom level and a set of rules for the top level.
The rules have the form ’Premise ⇒ Action’, where the premise can
be met by the current state signal of the environment. For the main-
tainance of the set of rules (i. e., adding, changing and deleting rules)
the authors have conceived a certain technique. They have proven
their model, which works similar to human learning, to be successful
in a mine field navigation task and similar to human learning.

Cang Ye, N. H. C. Yung and Danwei Wang propose a neural fuzzy
system [2]. Like CLARION, this is a two-level learning model, com-
bining reinforcement learning and fuzzy logic. The system has suc-
cessfully been applied to a mobile robot navigation task.

3 BASICS AND BACKGROUND

In this section, we will recall basic facts on the two methodologies
that are used and combined in this paper.

First, we briefly describe Q-Learning, a popular approach used for
solving Markov Decision Processes (MDPs) (see e.g. [12]). The sce-
nario is the usual one for agents, where one or more agents interact
with an environment. Normally, the environment starts in a state and
ends, when one terminal state is reached. This timespan is called an
episode. For each action, the agent is rewarded. The more reward it
collects during an episode, the better. Episodes consist of steps in
which the agent first perceives the current state s of the environment
via a (numerical) state signal, e. g., an ID. It looks up in its memory,
called QTable, which action a seems to be the best in this situation
and performs it. The environment reacts on this action by changing
its state to s′. After this change, the agent gets a reward r for its
choice and updates its QTable.

Q(λ)-learning is an enhanced Q-Learning method that not only
takes the expected rewards into account but also considers the state-
action-pairs that have led to a state s. Let Q(s, a) represent the
sum of rewards the agent expects to receive until the end of the
episode, if it performs action a in situation s, and let A(s) be the
set of actions the agent can perform in state s. The update for-
mula for a state-action-pair (s̃, ã) for Q(λ)-learning is Q(s̃, ã) :=
Q(s̃, ã)+α ·e(s̃, ã) ·δ, where e(s̃, ã) is an eligibility factor, express-
ing how much influence on (s, a) is conceded to (s̃, ã) (the longer
ago, the smaller the value), and δ := r+ max

a′∈A(s′)
Q(s′, a′)−Q(s, a).

Before updating the (s̃, ã)-values, the eligibility factor of the current
state-action-pair (s, a) is increased by 1. After the update, the param-
eter λ is used to decrease the e(s̃, ã)-values to e(s̃, ã) := λ · e(s̃, ã).
For λ = 0, we get the basic Q-Learning approach.

The decision which action to take in a situation s is usually done
by choosing the one with the greatest Q(s, a)-value. To make the dis-
covery of new solutions possible, the agent chooses a random action
with a small probability ε.

Now, the concept of ordinal conditional functions (OCFs) and
appropriate revision techniques will be explained. OCFs will serve
as representations of epistemic states of agents in this paper. Or-
dinal conditional functions [7] are also called ranking functions,
as they assign a degree of plausibility in the form of a degree of
disbelief, or surprise, respectively, to each possible world. We will

work within a propositional framework, making use of multi-valued
propositional variables di with domains {vi,1, . . . , vi,mi}. Possible
worlds are simply interpretations here, assigning exactly one value
to each di, and thus correspond to complete elementary conjunctions
of multivalued literals (di = vi,j), mentioning each di. Let Ω be
the set of all possible worlds. Formally, an ordinal conditional func-
tion (OCF) is a mapping κ : Ω → N ∪ {∞} with κ−1(0) �= ∅.
The lower κ(ω), the more plausible is ω, hence the most plausible
worlds have κ-value 0. A degree of plausibility can be assigned to
formulas A by setting κ(A) := min{κ(ω) | ω |= A}, so that
κ(A ∨ B) = min{κ(A), κ(B)}. This means that a formula is con-
sidered as plausible as its most plausible models. Therefore, due to
κ−1(0) �= ∅, at least one of κ(A), κ(A) must be 0. A proposition
A is believed if κ(A) > 0 (which implies particularly κ(A) = 0).
Moreover, degrees of plausibility can also be assigned to conditionals
by setting κ(B|A) = κ(AB) − κ(A). A conditional (B|A) is ac-
cepted in the epistemic state represented by κ, or κ satisfies (B|A),
written as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff AB is more
plausible than AB.

OCFs represent the epistemic attitudes of agents in quite a compre-
hensible way and offer simple arithmetics to propagate information.
Therefore, they can be revised by new information in a straightfor-
ward manner, making use of the idea of so-called c-revisions [4] that
are capable of revising ranking functions even by sets of new con-
ditional beliefs. Here, we will only consider revisions by one condi-
tional belief, so we will present the technique for this particular case.

Given a prior epistemic state in the form of an OCF κ and a new
conditional belief (B|A), the revision κ∗ = κ ∗ (B|A) is defined by

κ∗(ω) =

j
κ0 + κ(ω) + λ, if ω |= AB,
κ0 + κ(ω) , otherwise,

(1)

where κ0 is a normalizing additive constant and λ is the least natural
number to ensure that κ∗(AB) < κ∗(AB). Although c-revisions
are defined in [4] for logical languages defined from binary atoms,
the approach can be easily generalized to considering multi-valued
propositional variables. Note that also c-revision by facts is covered,
as facts are identified with degenerate conditionals with tautological
premises, i.e. A ≡ (A|�).

OCFs and c-revisions provide a framework to carry out high qual-
ity belief revision meeting all standards which are known to date,
even going beyond that [4].

4 THE SPHINX LEARNING METHOD

Similar to the cognitive model, our learning method consists of two
levels. For the bottom level we use Q(λ)-Learning, and for the top
level, ordinal conditional functions (OCFs) are employed to repre-
sent the epistemic state of an agent and perform belief revision. This
brings together two powerful methodologies from rather opposite
ends of the scale of cognitive complexity, meeting the challenge of
combining learning and belief revision in a particularly extreme case.

To combine belief revision and reinforcement learning, each
(subsymbolic) state s is described by a logical formula from a
language defined over propositional variables di with domains
{vi,1, . . . , vi,mi}. The symbolic representation of a specific state
is a conjunction of literals mentioning all di and reflects the log-
ical perception of s by the agent. Furthermore, we define a vari-
able action having as domain the set Actions of possible actions.
Hence, the possible worlds on which ranking functions are defined
here correspond to elementary conjunctions of the form (d1 =
v1,k1) ∧ . . . ∧ (dn = vn,kn) ∧ (action = a).
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Figure 1. The SPHINX system

The SPHINX system interlinks Q-learning, the epistemic state and
belief revision in two ways: First, it uses current beliefs to restrict
the search space of actions for Q-Learning. Second, direct feedback
to an action in the form of a reward is processed to acquire specific
or generic symbolic knowledge from the most recent experience by
which the current epistemic state is revised. It is displayed in figure
1 and works as follows:

Algorithm ’Sphinx-Learning’:
While the current state s is not a terminal state

1. The Sphinx agent perceives the signal of the state s coming from
the environment and its logical description d(s).

2. The agent queries its current epistemic state κ which actions
Aκ(s) = {a1, . . . , ak} are most plausible in s.

3. The agent looks up the Q-values of these actions and determines
the set Abest(s) ⊆ Aκ(s) of those actions in Aκ(s) that have the
greatest Q-value.

4. The agent chooses a random action a ∈ Abest(s) and performs it.
5. The environment changes to the successor state.
6. The agent receives the reward r from the environment.
7. The agent updates the QTable as described in section 3.
8. The new Q-values for actions in s are being read and the new best

actions for s are determined.
9. The agent tries to find new rules that relate d(s) to best actions

(according to the updated QTable) and revises κ with this
information in form of conditionals.

End While

We will now explain the algorithm step by step. When
a state s is perceived (step 1), then κ is browsed for the
most plausible worlds satisfying d(s). Aκ(s) (step 2) is the
set of actions occurring in the most plausible d(s)-worlds:

Aκ(s) = {a ∈ Actions | κ(d(s) ∧ action = a) = κ(d(s))}
Then, the actions in Aκ(s) are filtered according to their Q-values
(step 3), and one of these actions is carried out (step 4). It is par-
ticularly in these two steps that the enhancement of reinforcement
learning with epistemic background pays out, since an ordinary Q-
Agent determines the set of best actions from the set of all possible
actions. Steps 5 to 7 are pure Q-Learning.

In step 8, the best actions for s due to the new Q-values are de-
termined. This is done to exploit the experience by the received re-
ward for future situations and make it usable on the epistemic level
in step 9. The operations performed in step 9 are quite complex and
described in the following. The aim of the mentioned revision of κ
is to make those actions most plausible in d(s) that have the greatest
Q-value in s. As inputs for this revision, the agent tries to find pat-
terns in the state descriptions for which certain actions are generally

better than others. This is done by a frequency based heuristics. For
each pattern (i.e., a conjunction of literals of some of the variables) p
and each action a, the agent remembers how often a was a best resp.
a poor action by using counters. If the agent finds in step 8, that an
action a is a best action in s and has not been among the best actions
before, then the counters for a of all patterns covered by d(s) are
increased by 1. If a was a best action in s before but is no longer,
the counters are decreased by 1. Negative experiences where a was
a poor action are handled in an analogous manner. With these coun-
ters, probabilities can be calculated, expressing, if a is usually a best
resp. a poor action, when a situation s for which d(s) satisfies p is
perceived.

If such a relation between a pattern and a set of actions is found,
a revision of κ with a conditional encoding such newly acquired
strategic knowledge is performed; basically, the following four
different types of revision occur:

1. Revision with information about a poor action in a specific state
(episodic knowledge).

2. Revision with information about a poor action in several, similar
states (generalization).

3. Revision with information about best actions in a specific state
(episodic knowledge).

4. Revision with information about best actions in several, similar
states (generalization).

A ’poor’ action in a specific state resp. in several, similar states
was defined as an action that yields a reward less than -1. The
conditionals used to revise κ have the following forms:

1. (action = a|d(s)), where d(s) is the symbolic representation of a
certain state s in which a is poor.

2. (action = a|p), where p is a pattern satisfied by d(s), representing
a set of states, which are similar because they share a common
pattern.

3. (
W
i

action = ai|d(s)), where all ai are best actions (due to their

Q-values) in s.
4. (

W
i

action = ai|p), where each ai is a best action in at least one

of the states covered by the pattern p. ai needs not to be a best
action in all states covered by p.

The last form of revision should exclude not best actions from being
plausible when p is perceived, so the agent has to find the best action
for a specific state covered by p only among the actions ai.

Since revisions and especially revisions with generalized rules
have a strong influence on the choice of actions, they have to be han-
dled carefully, i. e., the agent should be quite sure about the correct-
ness of a rule before adding it to its belief. Therefore, the agent uses
several counters counting, how often an action has been poor, not
poor, a best or not a best one under certain circumstances. With these
counters some probabilities can be calculated which can be used to
evaluate the certainty about the correctness of a specific rule. How-
ever, since all rules are merely plausible but not correct in a logical
sense, further revisions may alleviate or even cancel the effects of
erroneously acquired rules.

Our learning model also supports background knowledge. If the
user knows some rules that might be helpful for the agent and its
task, he can formulate them as conditionals and let the agent revise κ
with them before starting to learn.

5 INTERACTIVE OBJECT RECOGNITION

We tested our learning method in a navigation environment and in
two different simulations of object recognition environments. In this
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paper, we present the results of the latter in two different scenarios.

5.1 Recognition of Geometric Objects

In this test environment, the agent has to learn to recognize the
following objects: sphere, ellipsoid, cylinder, cone, tetrahedron,
pyramid, prism, cube, cuboid. By interacting with the environment
the agent can look at the object from the front, from the side or
from the top or it can choose to try to name the current object.
The possible front, side, and top views are represented by five
elementary shapes, namely: circle, ellipse, triangle, square, and
rectangle. For example, the cone has the front view ’triangle’, the
side view ’triangle’, and the top view ’circle’. The prism is given by
the front view ’triangle’, the side view ’rectangle’, and the top view
’rectangle’. This leads to the following domains for this environment:

• FrontView = {Unknown, Circle, Ellipse, Triangle, Square,
Rectangle}

• SideView = {Unknown, Circle, Ellipse, Triangle, Square,
Rectangle}

• TopView = {Unknown, Circle, Ellipse, Triangle, Square,
Rectangle}

• Action = {LookAtFront, LookAtSide, LookAtTop,
RecognizeUnknown, RecognizeSphere, RecognizeEllipsoid,
RecognizeCylinder, RecognizeCone, RecognizeTetrahedron,
RecognizePyramid, RecognizePrism, RecognizeCube,
RecognizeCuboid}

At the beginning of each episode, the environment chooses one of the
nine geometric objects and generates the state signal ’FrontView =
Unknown ∧ SideView = Unknown ∧ TopView = Unknown’. If
the agent’s action is LookAtFront, LookAtSide, resp. LookAtTop, the
FrontView, SideView, resp. TopView is revealed in the new state sig-
nal following the agent’s action. If the agent’s action is an action of
type ’Recognize’ action, the episode ends.

The reward function returns -1, if one of the ’Look’ actions has
been performed. Otherwise, the agent is rewarded with 10, if it has
recognized the objects correctly, and with -10, if not. After ten steps
the running episode is forced to end. Figure 2 shows the recognition
rates after each training phase. In each training phase, each object is
shown ten times to the current agent. The values result from 1000
independend agents.

If the agents are provided with the background knowledge If no
view has been perceived yet, then look at the front, the side, or the top
of the object via the conditional (action = LookAtFront∨action =
LookAtSide ∨ action = LookAtTop|FrontView = Unknown ∧
SideView = Unknown∧TopView = Unknown), the recognition rates
improve, as can also be seen from figure 2.

In the following, we list some of the rules that the agents learned
by exploring the effects of updating the QTables on the cognitive
(i.e. logical) level:

• If FrontView = Circle, then action = RecognizeSphere
• If FrontView = Unknown ∧ SideView = Triangle, then action =

LookAtFront
• If FrontView = Triangle ∧ SideView = Unknown, then

action = RecognizePrism

5.2 Recognition of Simulated Real Objects

To analyse Sphinx under more realistic conditions, we set up another
environment. We defined shape attributes that are suitable for rep-
resenting objects within a simple object recognition task and then

Figure 2. Recognition Rates for Geometric Objects

chose random objects and describe them with these previously de-
fined attributes. These attributes are the input to Sphinx.

Again, there are three possible perspectives: the front view, the
side view, and a view from a position between these two views. The
decision for these persepectives, especially for the intermediate view,
was made based on the results found by [5] who revealed that the in-
termediate view plays a special role in human object recognition. The
front and the side view are described by three attributes each: approx-
imate (idealized) shape, size (i.e. proportion) of the shape, and de-
viance from the idealized shape. The approximate shape can take on
the values unknown, circle, square, triangle up, and triangle down.
The size can be unknown, flat, regular, or tall. The deviance can be
little, medium, or big. Besides these attributes the object is described
by the complexity of its texture. This attribute can take on the values
simple, medium, and complex. We set the attributes for each object
manually. In a real application they can be determined easily by a
simple image processing module which merely has to quantize the
shape and texture of an object.

If the agent looks at the object from the front or the side, it
perceives the matching idealized shape, its size, its deviance, and
the complexity of the texture. From the intermediate view the agent
can only perceive the idealized shapes of the front and the side view
and the complexity of the texture, but not the size and deviances.
Formally the domains are:

• FrontViewShape = {Unknown, Circle, Square, TriangleUp,
TriangleDown}

• FrontViewSize = {Unknown, Flat, Regular, Tall}
• FrontViewDeviation = {Unknown, Little, Medium, Much}
• SideViewShape = {Unknown, Circle, Square, TriangleUp,

TriangleDown}
• SideViewSize = {Unknown, Flat, Regular, Tall}
• SideViewDeviation = {Unknown, Little, Medium, Much}
• Texture = {Simple, Medium, Complex}
• Action = {RotateLeft, RotateRight, RecognizeUnkown} ∪ R

where R is the set of ’Recognize’ actions. At the beginning of each
episode, the agent looks at the current object from a random perspec-
tive and the variables are set according to this perspective. Now, the
agent can rotate the object clockwise or counter-clockwise or name
it. If the agent’s action is a ’Recognize’ action, the episode ends. Af-
ter ten steps the running episode is forced to end. The reward func-
tion is the same as in the previous test environment. We have chosen
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15 different objects from nine different object classes such as bottle,
tree, and house for which we provide the three attributes mentioned
(shape, size, and deviation) (see figure 3).

Figure 3. Approximated geometrical forms of objects

Similar to the previous scenario, the experimental results obtained
by testing 100 independend agents are depicted in Figure 4. Again,
it can be seen clearly that SPHINX-Learning does better than Q(λ)-
learning with respect to the speed of learning.

Figure 4. Recognition Rates for Simulated Real Objects

In a second step we added background knowledge that enabled the
agent to recognize all objects correctly, if it has perceived all of the
three views. Furthermore, we added rules to the background knowl-
edge that told the agent to look at the object from all perspectives
first. With these rules the agent has a complete, but not optimal, solu-
tion for the task. We wanted to find out how fast the agent learns that
it does not need all views to classify the current object. To protect the
background knowledge from being overwritten by the agent’s own
rules too early, some parameters were changed, so that the agent had
to be more sure about the correctness of a rule before adding it to
its belief. This setup resulted in a constantly high recognition rate of
over 99 %. The number of perceived views decreased over time from
3.28 to 1.99. The value of 3.28 perceived view vs. 3 possible views
results from the fact, that the intermediate view has to be perceived
twice if the environment starts in this view. Then, the agent perceives
this view at the beginning, then rotates the object to the front and
then back to the intermediate view so it can rotate the object to the
side view in the next step (or vice versa).

Here are some of the rules the agent learned and assimilated
during its training:

• If FrontViewShape = TriangleUp ∧ FrontViewSize = Tall, then
action = RecognizeBottle

• If FrontViewShape = Circle ∧ SideViewShape = Unknown ∧
Texture = Simple, then action = RotateLeft

• If Texture = Complex, then action = RecognizeBottle

What remains to be done at this point to apply our system to real im-
ages of objects, is the extraction of shape attributes from the images.
This can be done by existing segmentation methods.

6 CONCLUSION

Both low-level, non-cognitive learning and high-level learning with
using epistemic background and acquiring generic knowledge are
present in human learning processes. In this paper, we presented
the hybrid SPHINX approach that enables intelligent agents to ad-
just to its environment in a similar way by combining epistemic-
based belief revision with experience-based reinforcement learning.
We linked both methodologies for two purposes: First, the current
epistemic state allows the agent to focus on most plausible actions
that are evaluated by QTables to find the most promising actions in
some current state. Second, the direct feedback by the environment
is used not only to update QTables, but also to generate specific or
generic knowledge with which the epistemic state is revised.

In order to illustrate the usefulness of our approach, we described
application scenarios from computer vision and performed experi-
ments in which SPHINX agents are employed for object recognition
tasks. The evaluation of these experiments shows clearly that the pro-
posed interplay of belief revision and reinforcement learning benefits
from the advantages of both methodologies. Therefore, the SPHINX

approach allows complex yet flexible interactions between learning
and reasoning that help agents perform considerably better.
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