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Abstract. We propose a framework that learns functional object-
categories from spatio-temporal data sets such as those abstracted
from video. The data is represented as one activity graph that encodes
qualitative spatio-temporal patterns of interaction between objects.
Event classes are induced by statistical generalization, the instances
of which encode similar patterns of spatio-temporal relationships be-
tween objects. Equivalence classes of objects are discovered on the
basis of their similar role in multiple event instantiations. Objects are
represented in a multidimensional space that captures their role in all
the events. Unsupervised learning in this space results in functional
object-categories. Experiments in the domain of food preparation
suggest that our techniques represent a significant step in unsuper-
vised learning of functional object categories from spatio-temporal
patterns of object interaction.

1 Introduction

Children learn about the world around them by observing and par-
ticipating in activities that engage them in the course of every day
life. One aspect of learning activity models involves acquiring no-
tions of what objects mean to them based on the function they ful-
fill in activities. Functional categories and taxonomies of objects are
naturally acquired by humans during the process of observing object
behaviour and using them accordingly. An important step toward un-
supervised learning of activity models is to learn an analogous model
of functional object categories purely by observing their behaviour.

In this work, we represent the behaviour of objects involved in
an activity, in terms of an activity graph, which captures qualita-
tive spatio-temporal patterns of interaction between these objects. We
search for frequent similar subgraph instances and generalize these
by variablizing. These are our event classes, the instances of each
event class encoding a similar pattern of spatio-temporal relation-
ships between their respective object instances.

Then we learn object categories by clustering in an object space,
where the similarity measure between objects is measured, based on
whether they play a similar role across the event instances for each
of the event classes; e.g., a set of objects, even though different in
appearance, may tend to play a similar role in events such as washing,
cutting and cooking as opposed to others that do not play such a role
in these events. By observing multiple instances of such event classes
that have the same event role for this set of objects, it is natural to
form a category that correspond to what we refer to as vegetables.

Through our experiments we demonstrate that using our frame-
work it is possible to learn semantically meaningful functional object
categories and a taxonomy purely by observing object behaviour.
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In section 3 we show how functional object categories can be
learned from event classes. The rest of the paper describes a novel
procedure for inducing event classes from video input.

2 Related Work

Much previous work has focused on supervised learning of object
classes either based on the appearance of the object itself [9] or by
recognizing contextual cues such as activities associated with objects
[8] to locate and recognize objects. By contrast, unsupervised learn-
ing of objects can be divided into two stages, the first being object
discovery e.g. discovery of blobs that are candidates for objects from
video. The second stage is object class learning which involves au-
tomatically categorizing these blobs into object classes. Early work
on object discovery [6] formed candidate objects by grouping pixels
with similar temporal signatures that are constructed by recording
colour (RGB) values for stable intervals when objects arrive, stay
and depart from a region. In [7], candidate objects are obtained by
first over segmenting images in a video and after extracting image
features for these segments, rigidly moving features are grouped into
potential objects.

Both object discovery and class learning is performed simultane-
ously from a collection of static images [5] in two steps. First mul-
tiple segmentations for each image are produced, by varying the pa-
rameters of the normalized cut technique with the assumption that
each object instance is correctly segmented at least by one segmen-
tation. Then object classes which are groups of correctly segmented
objects that are coherent in a large set of candidate segments, are
learned. Another approach [1] obtains a hierarchy of object classes
for static scenes by grouping image features which spatially co-occur
across images for the same scene, under the same leaf of the hierar-
chy. In this manner, the technique learns to identify candidate objects
such as keyboards, while also learning higher level object classes
such as a desk area (consisting of a computer, desk etc).

In this work we perform object discovery by first over segment-
ing the video in terms of colour patches and then grouping spa-
tially cohesive and continuous coloured blobs to discover a candi-
date set of objects. We perform object class learning by clustering
on a object space, where the similarity between objects is based on
similar spatio-temporal behaviour (specifically object interactions) in
scenes.

Recent work on event learning [3, 4] aims at learning activ-
ity/event classes given a sequence of primitive events, where the
primitive events are defined and recognized a priori. In [2] a re-
lational representation language is introduced for defining temporal
events, and algorithms for learning these definitions from video out-
put are described. In this work, we introduce a generic definition for
events, in terms of graphs, that captures changing spatio-temporal
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Figure 1. Lattice for general to specific object learning

relationships between discovered objects. We show how this repre-
sentation enables event mining and object learning.

3 Object Learning

Assume the existence of a set of event classes F (X̄), where X̄ is a
sequence of object variables in some canonical ordering, between
which some set of spatio-temporal relationships hold and which
when instantiated, yields a set of event instances. The event classes
Fi(X̄) = Fi(X1, .., Xk, ..., Xm) in general have multiple event in-
stances in the corpus so that all these instances encode the same set
(or more generally a similar set) of spatio-temporal relationships be-
tween their objects. This induces a natural mapping between objects
corresponding to each object variable Xk for the event instances of
an event class. Given a corpus of such instances, we show, using an
example, how to induce functional object categories for the set of
objects present in these instances. The event classes could be hand-
crafted manually through knowledge engineering techniques, or, as
we describe in later sections, could be induced from a video by an
event learning procedure.

Let F (X1, X2, X3) be an example event class that represents
events such as “X2 being lifted away from of X3 by X1”. The
example in fig 2(c), is one such event instance (F (h1, b1, p1))
of the event class F with object instances h1, b1, p1 having IDs
3, 4 and 6 respectively. Let us suppose that two other instances
F (h1, b2, p1), F (h1, b3, p2) of the same class F had been observed
in the scene.

A lattice as shown in fig. 1 is grown from event instances at the
bottom level (3), by generalizing exactly one argument position to
a variable at each successive level. We then search for equivalence
classes of objects from general to specific by traversing down this
lattice, using the following procedure. For every node of each level
l in the lattice, the procedure involves searching for sets of nodes at
level l + 1, where each set is formed by substituting more than one
object instance for the same variable Xk , for that node at level l.

Applying this procedure at level 0 of the lattice,
we get two such sets at level 1 (shaded with two
colours) : {F (X1, b1, X3), F (X1, b2, X3), F (X1, b3, X3)}
obtained by substituting for X2 with b1, b2, b3 and

{F (X1, X2, p1), F (X1, X2, p2)} obtained by substituting for X3

with p1, p2 respectively . As the substituted constants {b1, b2, b3}
and {p1, p2}, play the same roles (as the variables X2 and X3

respectively) for the event class F , we say that F has induced
event roles for instances of the variables X2 and X3 resulting in
equivalence classes {b1, b2, b3} and {p1, p2} respectively.

We now show that, by applying the same procedure at one level
below (level 1) of the lattice, we obtain a more specific event
role for the specific event of objects placed on a certain plate
(p1). The procedure applied at level 1 results in a set of nodes
{F (X1, b1, p1), F (X1, b2, p1)} at level 2 (as shaded in fig. 1), ob-
tained by substituting for X2 in F (X1, X2, p1) with b1, b2 respec-
tively. We say that the more specific event class F (X1, X2, p1) has
induced a more specific event role for the variable X2 resulting in an
equivalence class of objects {b1, b2}, i.e. objects being put on plate
p1. By progressively traversing down the lattice using this procedure,
it becomes possible to create event roles and corresponding equiva-
lence classes C1...Cn, from general to specific.

Applying this idea, we produce a matrix of object by equivalence
classes, O in which Oi,j equals 1 if the object i occurs in the equiv-
alence class Cj and 0 otherwise. As each equivalence class corre-
sponds to an event role, the row vectors of this matrix summarize
each object in terms of the role it plays in all the event-roles and thus
induce a multidimensional object space. In this space, objects that
have a similar role with respect to similar sets of events are expected
have a high similarity measure. We therefore perform k-means clus-
tering using a cluster partition index to determine k. Hierarchical
clustering on these categories then yields an object taxonomy.

In the next section, we show how event classes can be learned
from video input and in section 6 the results of applying our object
learning procedure are discussed.

4 Activity Graphs from Video

Object discovery is performed by first over segmenting the video in
terms of colour patches and then grouping these into spatially contin-
uous and cohesive blobs that are a mix of noisy patches along with
potential objects. These blobs are given IDs and their position and
extent are recorded from the video.

The spatio-temporal patterns in the entire video are represented
using an activity graph. The spatial relationships between the bound-
ing boxes of each pair of objects for every frame are mapped to
a set of spatial primitives � = {D, S,T}. Two objects are either
spatially Disconnected(D) or connected through the Surrounds(S) or
Touches(T) relationships 2. illustrated in fig. 2(b).

For each pair of objects, these spatial relationships hold during a
time interval. In general, If {o1, o2...on} is the set of all the objects
observed in the video, for each pair oi, oj , a particular spatial rela-
tionship r ∈ � holds for each frame f , i.e. holds(r(oi, oj), f). We
are interested in maximal one-piece time intervals during which r

holds between oi and oj , which we refer to as episodes.
We represent such episodes by a quadruple E = 〈oi, oj , τ, r〉,

where |{r : Holds(r(oi, oj), f) ∈ τ}| = 1 and τ is a con-
secutive sequence of frames such that ∀τ ′ (τ ⊂ τ ′ →
|{r : Holds(r(oi, oj), f) ∈ τ ′}| > 1 . We thus obtain the set of all
episodes Δ = {E1, E2...Em} for all pairs of objects. Episodes la-
belled E1 − E20 in fig 2(a) correspond to this set, for the activity
considered in this example.

2 This approach clearly could be applicable to any set of spatial relations �′.
Our simplified approach to video analysis is 2D, thus using this set of spa-
tial relations means, e.g. an object o1 placed on an object o2 is represented
as S(o1, o2) – these 3 relations have sufficed for our experiments.
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(a) An activity

(b) Spatial and Tem-
poral Primitives

(c) A subactivity of the activity in (a) (d) Level-0 activity graph for
episodes E5 − E12 in (c)

(e) Level-1 Activity Graph for
episodes E1 − E20 in (a)

Figure 2.

Having obtained all the episodes, we obtain a complete graph
– which we call an activity graph – whose vertices represent the
episodes and whose edges relate the time intervals corresponding to
their respective episodes using Allen’s temporal primitives 	. We
call the complete graph encoding all temporal relationships between
intervals E1−E20 a level-0 activity graph for the activity in fig. 2(a).

More formally, we have the activity graph (V, E, η, ρ, Δ,	),
where the function η : V −→ Δ maps the vertices V = {vi} to
episodes in Δ and ρ : E −→ 	 maps the directed edges between all
pairs of vertices E : eij = 〈vi, vj〉 to temporal relationships in 	.
We require that η is a bijective mapping from vertices to the set of
episodes in the activity graph.

The complete activity graph is too large to display here and a typ-
ical activity graph is too complex to be able to search to find event

classes3. Fig. 2(d) shows a subgraph of the level-0 activity graph for
episodes E5 −E12 - depicted in fig. 2(c). Therefore, prior to search-
ing for event classes we use an attention mechanism to structure and
simplify the level-0 activity graph to produce a level-1 activity graph.
This is achieved by using a foreground attention mechanism (de-
scribed below) to cluster episodes and forming a new graph structure
over these clusters. Each cluster represents an atomic event and we
call the clusters of episodes and their Allen relationships, a unary
event graph (unary EG). The graph whose nodes are unary event
graphs and whose edges are Allen’s temporal relationships between
these nodes is the level-1 activity graph.

3 If we consider n = 10 objects and k as the average number of episodes
in video which is usually 102 even for scenes that last for a minute, the
activity graph results in a search space of O(k2n4) .i.e O(108).
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Foreground Attention Mechanism: We hypothesize that many ac-
tivities can be conceived in terms of different foreground events each
of which involve interactions only between a subset of objects – fore-
ground objects, at different time periods. This idea can be intuitively
explained using fig. 2(a), where the entire activity shown can be con-
ceived in terms of three foreground events - (1) the left hand scooping
some butter with a knife (2) the right hand removing the bread from
the plate (3) the left hand spreading butter on the bread with a knife,
while the right hand holds the bread.

As long as {left hand,knife, butter} and {right hand, plate ,
bread }, are disconnected, we have two sets of foreground objects
{1, 2, 5}, {3, 4, 6}, between frames 26 and 49. When the knife and
the bread start to interact, the foreground set changes to the set of
IDs {1, 2, 3, 4}, in which the butter and plate with IDs 5 and 6 are
not included (frames 54-75). Three periods and their corresponding
set of episodes {E1 −E4}, {E5 −E12}, {E13 −E20} (as shown in
the parallel lines below the frames), for the three foreground events
are thus obtained. The next two paragraphs describe how, in general
foreground events are detected and may be ommited on a first read-
ing.

We look for spatial changes between a pair of objects. For each
such pair of primary foreground objects o1, o2 at some frame f , we
find the set Ω of all moving objects which are connected (i.e. T or
S) to o1 or o2, or which are connected to o1 or o2 indirectly via
another moving object which is connected to o1 or o2 (directly or
indirectly). The set Ω is propagated forwards to some frame f2 and
backwards to some frame f1 from f until such time that one of the
objects in Ω − {o1, o2} (the secondary foreground objects) changes
its spatial relation to some other object in Ω to D, (unless o1 and o2

are connected at that time). The entire time from f1 to f2 is termed a
period during which a foreground event involving o1 and o2 occurs,
involving all the foreground objects Ω.

The intuition behind this definition is that a spatial change focuses
attention on a pair of objects (at least one of which must be mov-
ing, since a change has occurred), and all the objects which are inti-
mately connected to the two objects, and groups all the interactions
involving the primary objects together until such time as one of the
secondary objects becomes fully disconnected from the group of ob-
jects (which then terminates this particular set of foreground objects).
Note that it is possible, depending on the choice of primary objects
o1 and o2 for there to be multiple temporally overlapping foreground
events involving shared objects (though this has not occurred in the
videos we have analysed so far).

For each foreground event, we create a unary event graph (unary
EG) restricted to the foreground objects of the foreground event and
just during the temporal extent of the foreground event. Each unary
EG endures for a period P and can be represented by the unary EG
(V, E, η, ρ, ΔP ,	) between the episodes for the time period P . The
three unary EGs for the activity in fig. 2(a) are shown as the nodes
in the level-1 activity graph in fig. 2(e). Unary EGs (which are single
nodes of the level-1 activity graph) typically capture simple events
such as removing a slice of bread from a plate.

In the next section we show how to generalize unary events to
unary event classes, and then how to form n-ary event classes, which
are compound event classes composed of unary event classes. In-
stances of n-ary event classes are n-ary events which are composed
of n unary EGs of the level-1 activity graph and which represent
complex events such as the entire activity depicted in fig. 2(a,c).

5 Event Learning

The activity graph consists of many individual events; these can be
similar in that they have similar spatio-temporal relationships be-
tween their constituent objects. In order to formalize the idea of an
event class that captures these regularities, independent of the actual
objects involved, we first introduce a generalized version of an unary
event graph. We then show how n-ary event classes can be formed,
consisting of individual unary event classes.

To generalize events to event classes, we first consider a unary EG
φ = (V, E, η, ρ, ΔP ,	) for a time period P . Instead of object in-
stances oi ∈ Ω and intervals τ ∈ Λ, consider sets of object and inter-
val variables X = 〈XO , XT 〉 so that Oi ∈ XO and T ∈ XT

4. We
can now generalize the set of episodes E ∈ ΔP to EX ∈ ΔX where
ΔX is a set such that EX ∈ ΔX if and only if EX = 〈O1, O2, T, r〉
where O1 ∈ XO , O2 ∈ XO , T ∈ XT , r ∈ �. We use the gener-
alised set of episodes to formalise event classes by first defining a
unary event class graph (unary ECG) which captures a common pat-
tern of spatio-temporal relationships amongst a set of similar unary
EG (instances), in a generic form.

Definition Let φ = (V, E, η, ρ, ΔP ,	) be a unary EG of the trans-
formed activity graph, then γ = (V ′, E′, η′, ρ′, ΔX ,	) is a unary
event class graph (unary ECG) of φ, or we say that γ θ-generalizes
φ if ∃θ = θO · θT where θO : XO → Ω and θT : XT → Λ, such
that γ is isomorphic to φ under the substitution θ, i.e.

1. {η′(v′)θ : v′ ∈ V ′} = {η(v) : v ∈ V }.
2. {ρ′(e′ij) : e′ij = (v′

i, v
′

j) ∈ E′} = {ρ(eij) : eij = (v′

iθ, v′

jθ) ∈
E}.

We require that a unary ECG generalises at least λ unary EGs, i.e.
instances must occur frequently.

We now extend the the idea of a unary event class graph to an
n-ary event class graph (n-ary ECG) composed of unary ECGs. A
n-ary ECG is just a graph made up of unary ECGs γ1...γn, n > 2 as
its vertices and whose edges relate the time periods Pi and Pj cor-
responding to γi and γj by Allen’s temporal primitives 	. A n-ary
ECG Γ whose vertices are the set {γ1, ..., γn} θ-generalizes an n-ary
EG Φ with vertices {φ1, ..., φm}, if each γi θ-generalizes a corre-
sponding φi and the temporal relationship between any 〈φi, φj〉 ∈ Φ
is the same as for the corresponding 〈γi, γj〉 ∈ γ. A n-ary ECG rep-
resents a n-ary event class if it generalises at least λ n-ary EGs. We
model λ as an exponential decreasing function of n in order to allow
for larger n-ary ECGs to θ-generalise fewer n-ary EGs.

Using these definitions, we finally formalize event classes as max-
imal event class graphs. We define a maximal event class graph
(MECG) as a event class graph which generalises some set of EGs,
such that no other ECG which contains it generalizes this set. I.e.
every MECG generalises a set of EGs which are not generalised by
some larger ECG. The procedure for computing MECGs involves
two stages. In the first stage, unary ECGs with a statistically signifi-
cant number of EG instantiations are found. In the second stage, these
unary ECGs are iteratively used to build larger and larger ECGs (with
statistically significant number of instantiations), until a final set of
MECGs are obtained. In this manner we discover event classes as
MECGs from the level-1 activity graph.

Having found all the MECGs, we give them names
F1(X̄)...Fk(X̄), where X̄ is a sequence of variables in the

4 Note that we use capitalized/bold letters for variables and small letters for
instances.
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Figure 3. A hierarchy of objects categories.

MECGs, in some canonical ordering of nodes in each MECG.
In section 3, where we were purely concerned with inducing an
object taxonomy from the event definitions we ignored the internal
structure of an MECG and used just these Fi(X̄), which can be
defined as predicates from each of the MECGs.

6 Experiments

We demonstrate our framework using a video taken with a toy (plas-
tic) kitchen set up. We have chosen a constrained environment for
the moment, in order to minimize the complexities arising in a real
kitchen as a result of cluttered backgrounds, flickering lights, shiny
surfaces, multiple shadows etc. We have further simplified the prob-
lem by focusing only on the hand (not the entire person) along with
the other objects in the kitchen scene and taking care in the actions of
the cook to not create complications arising, for instance, from full
occlusion of objects involved. However, despite such simplifications,
a large number of noisy patches are produced from the object discov-
ery module, making the learning problem challenging. The video is
taken with a static overhead camera that focuses on the scene. The
scene consists of hands simulating the preparation of sandwiches,
hot drinks, cutting vegetables and cooking vegetable dishes, lasting
around 10 minutes. The video consists of exactly one instance for
each of these preparations.

After applying event and object learning, we obtain the object hi-
erarchy in fig. 3. While our procedure outputs a hierarchy of object
IDs, we replace these labels with the corresponding objects from the
video, in order to visualize the results. It can be observed that the pro-
posed framework has been able to differentiate between broader cat-
egories such as food items and containers and interestingly separate
noisy patches from all other objects. Finer levels of granularity are
captured in the grouping which separates a slice of white bread from
another group consisting of vegetables. A distinction between plates
pans and spoons is also clear from the hierarchy. It can therefore be
concluded that the learned categories and taxonomy is intuitive and
corresponds to a functional classification of objects.

7 Summary and Future Work

A framework for learning object and event categories from video
has been introduced. This framework offers a general way of repre-
senting activities in terms of spatio-temporal graphs. Techniques for

mining events from this graph and then learning object functional
categories from these events have been proposed in this work. Our
experiments show that our framework offers a promising approach
toward learning functional categories.

In the future, we plan to extend this framework in several direc-
tions. At present, event generalisation requires exact graph isomor-
phism. We plan to extend event classes to generalize a larger set of
event instances by experimenting with similarity metrics between our
event graphs. This will allow our approach to exploit a greater variety
of video input to learn event and object taxonomies , and to cope bet-
ter with noise (which might also intervene during an event instance).
In contrast to almost all work in object recognition which is based on
learning categories based on perceptual features, we have tackled the
little researched problem of learning categories from function. How-
ever, there is clearly scope to use the learned functional categories to
supervise visual appearance based object learning.
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