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Abstract.

The presented work settles attention in the architecture of ambient
intelligence, in particular, for the application of mobile vision tasks
in multimodal interfaces. A major issue for the performance of these
services is uncertainty in the visual information which roots in the
requirement to index into a huge amount of reference images. We
propose a system implementation – the Attentive Machine Interface
(AMI) – that enables contextual processing of multi-sensor informa-
tion in a probabilistic framework, for example to exploit contextual
information from geo-services with the purpose to cut down the vi-
sual search space into a subset of relevant object hypotheses.

We present a proof-of-concept with results from bottom-up infor-
mation processing from experimental tracks and image capture in an
urban scenario, extracting object hypotheses in the local context from
both (i) mobile image based appearance and (ii) GPS based position-
ing, and verify performance in recognition accuracy (> 10%) us-
ing Bayesian decision fusion. Finally, we demonstrate that top-down
information processing – geo-information priming the recognition
method in feature space – can yield even better results (> 13%) and
more economic computing, verifying the advantage of multi-sensor
attentive processing in multimodal interfaces.

1 INTRODUCTION

Attention as a methodology of selecting detail of relevance is ubiq-
uitous in biological systems and has increasingly received considera-
tion for the design of artificial cognitive systems. Mobile multimodal
interfaces as devices that receive a multitude and diversity of data
with the purpose to assisting the user with relevant detail and level
of abstraction are an obvious choice of investigation about how con-
cepts for the appropriate selection of information might contribute to
solve a task.

In this paper we approach attention from the viewpoint of a no-
madic urban user that is equipped with a camera phone and that is
interested in receiving appropriate information about objects of in-
terest within a local environment. We describe the embedding of the
problem in a general system implementation of an Attentive Machine
Interface (AMI) that enables contextual processing of multi-sensor
information in a probabilistic framework. The system is prepared to
support in general bottom-up information processing in terms of se-
lecting and processing information within specific modalities and ac-
cording to a pre-defined – be it learned or heuristically determined
– methodology. A particularly novel functionality presented in this
work is to enable top-down information processing by cross-modal
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priming of early processing in the manner of a multi-sensor frame-
work for attentive – and finally superior – performance.

Mobile object recognition and visual positioning have recently
been proposed in terms of mobile vision services for the support of
urban nomadic users. A major issue for the performance of these ser-
vices is uncertainty in visual information; covering large urban areas
with naive approaches would require to refer to a huge amount of ref-
erence images and consequently to highly ambiguous features. We
propose to exploit contextual information from geo-services with the
purpose to cut down the visual search space into a subset of all avail-
able object hypotheses in the large urban area. Geo-information in
association with visual features enables to restrict the search within a
local context. We extract object hypotheses in the local context from
(i) mobile image based appearance and (ii) GPS based positioning
and investigate the performance of Bayesian information fusion with
respect to a reference database (TSG-20).

The results from experimental tracks and image captures in an
urban scenario prove a significant increase in recognition accuracy
(Sec. 4) and use of computational resources when using in contrast
to omitting geo-contextual information. Finally, we demonstrate that
cross-modal top-down information processing – geo-information
priming the recognition method in visual feature space – can yield
even better results and more economic computing, verifying the ad-
vantage of using attentive processing in multimodal interfaces.

2 THE ATTENTIVE MACHINE INTERFACE

2.1 Related Work

In ubiquitous computing, several frameworks have been proposed in
the frame of attentive interfaces and context awareness. [14, 1] pro-
posed Attentive User Interfaces (AUI) that capture the attention of
the user, e.g. from eye gaze estimation, and consequently adapt in-
teraction systems for better communication with the user. [3] pro-
posed that context is a description of a real world situation on an
abstract level that is derived from available cues. [2] described the
role of perceptual components in a context aware system for interac-
tion. Finally, [11] proposed a context processing system with black-
board functionality where components can subscribe to receive mes-
sages matching specific patterns, and various cues are integrated into
a multimodal description of a situation. While the concept of AMI
is directly inspired by [11], it presents processing in a probabilistic
framework and enables top-down, i.e., attentive cross-modal infor-
mation processing.

Previous work on mobile vision services primarily advanced the
state-of-the-art in computer vision methodology for the application
in urban scenarios. [13] provided a first innovative attempt on build-
ing identification proposing local affine features for object match-
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ing. [15] introduced image retrieval methodology for the indexing
of visually relevant information from the web for mobile location
recognition. Subsequent attempts [8, 10, 4] advanced the methodol-
ogy further towards highly robust building recognition, however, so
far it has not been considered to investigate the contribution of geo-
information to the performance of the vision service.

2.2 Concept and Architecture

The context framework used in the AMI defines a cue as an abstrac-
tion of logical and physical sensors which may represent a context
itself, generating a recursive definition of context. Sensor data, cues
and context descriptions are defined in a framework of uncertainty.
Attention is the act of selecting and enabling detail – in response to
situation specific data - within a choice of given information sources,
with the purpose to operate exclusively on it. Attention enabled by
the AMI is therefore focusing operations on a specific detail of a sit-
uation that is described by the context.

The architecture of the AMI reflects the enabling of both bottom-
up and top-down information processing and would support snapshot
(e.g., image) based as well as continuous operation on a stream of
input data (e.g., video). Fig. 1 outlines the embedding of the AMI
within a client-server system architecture for mobile vision services
with support from multi-sensor information. A user interface gen-
erates task information (mobile vision service) that is fed into the
AMI. The user request for context information is handled by a Mas-
ter Control (MC) component that schedules the processing (multi-
ple users can start several tasks) and associates with each task cor-
responding system monitoring (SM) procedures. A concrete task is
then performed by the Task Processor (TP) who, firstly, requests a
hierarchical description of services, i.e. context-generating modules
(context subgraph) and, secondly, executes the services in the or-
der of the subgraph description. Since such a subgraph can provide
several ways of processing, the appropriate part can get selected by
means of, e.g., time constraint, confidence of the expected result and
quality of context-generating services. If a service gets offline, TP
can switch to another similar service or to another processing chain,
where already processed data is reused. The Context Graph Man-
ager (CGM) maintains and manages context-generating modules in a
graph structure (Context Graph). These context-generating modules
are services that receive an input cue (an image, a GPS signal, etc.)
from the Data Control (DC) module and generate a specific context
abstraction from an integration of the input cues. CGM assembles the
subgraph according to several constraints, such as, task information,
availability of context-generating modules and data and ensures that
the subgraph is processable. The AMI functionality ensures the pos-
sibility to arbitrarily combine services and implements process flow
regulation mechanism, e.g. when a service gets offline to switch to
another service. It is also possible to invoke an additional processing
chain if the confidence of the result it too low. Multiple users can con-
currently request context information and the services are targeted
towards fast and accurate (robust) responses.

2.3 Context Processing

For high-level context generation various services are required to
combine information, services may temporarily exist, and outputs
may be combined in arbitrary manner. The Context Graph – a di-
rected acyclic graph with nodes representing individual context pro-
cessing units, edges describing the information flow – is a flexible
and extensible data structure that correspondingly connects between

Figure 1. Concept of a client-server system architecture with attentive
machine interface.

individual functionalities. Each context node provides a context-
generating service that derives context information from its input
data; context nodes are linked together depending on input and out-
put data of the wrapped services; context nodes represent context
information at a different level, where high-level context information
is demanded by the user. For the generation of high-level context
information only parts of the Context Graph need to be processed,
in fact those that contribute to the corresponding (top-level) context
node. Depending on available input data and services, a subgraph
from the Context Graph is derived which consequently ensures a
smooth processing by the Task Processor. The subgraph gets pro-
cessed starting with those leaf context nodes which take data only
from the Data Control. The calculated results are given to the next
Context Nodes following the outgoing edges until the top-level con-
text node is reached. The resulting high-level context information is
given to the user via a visualization compent and is stored in the Data
Control or Diary Manager.

2.4 Bottom-Up and Top-Down Processing

The AMI supports two different modes of information processing,
i.e., bottom-up and top-down processing. The choice of modes can
be decided by the Task Processor according to demands on compu-
tational resources, quality of service (e.g., recognition accuracy) and
availability of data.

Figure 2 provides a schematic sketch of two different modes in
performing the service of geo-indexed object recognition (Sec. 3).
In bottom-up processing mode (a), services for the computation of
(i) visual objects (object recognition) and (ii) geo-features (position-
ing) are determining hypotheses with respect to the occurrence of
objects (i) in the image and (ii) within a local environment. In top-
down processing mode (b), there is a cross-modal dependency in (i)
object recognition on the input of object hypotheses provided by (ii)
the geo-service. While individually processed distributions on object
hypotheses can simply be integrated in (a) using Bayesian decision
fusion, (b) actually models an impact of geo-information on visual
feature extraction and integration as outlined in more detail in Sec. 3.
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(a) (b)

Figure 2. Two different processing modes visualised by their associated
context subgraphs for “Geo-Indexed Building Recognition” (Sec. 3). (a)

Bottom-up information processing of visual object recognition and
geo-features. (b) Top-down information processing by using geo-features to

prime visual object recognition (Sec. 2.4).

3 GEO-INDEXED OBJECT RECOGNITION

Urban image based recognition provides the technology for both ob-
ject awareness and positioning. Outdoor geo-referencing still mainly
relies on satellite based signals where problems arise when the user
enters urban canyons and the availability of satellite signals dramat-
ically decreases due to various shadowing effects [5]. Cell identifi-
cation is not treated here due to its large positioning error. Alterna-
tive concepts for localization are economically not affordable, such
as, INS and markers that need to be massively distributed across the
urban area. For image based urban object recognition, we briefly de-
scribe how we make use of the methodology presented in [12, 4]. The
user captures an image about an object of interest in its field of view,
and a software client initiates wireless data submission to the server.
Assuming that a GPS receiver is available, the mobile device reads
the actual position estimate and sends this together with the image
to the server. In the second stage, the web-service reads the message
and analyzes the geo-referenced image. Based on a current quality of
service and the given decision for object detection and identification,
the server prepares the associated annotation information from the
content database and sends it back to the client for visualization.

Attentive Object Recognition Research on visual object detec-
tion has recently focused on the development of local interest opera-
tors [9, 6] and the integration of local information into object recog-
nition. The SIFT (Scale Invariant Feature Transformation) descrip-
tor [6] is widely used for its capabilities for robust matching despite
viewpoint, illumination and scale changes in the object image cap-
tures which is mandatory for mobile vision services. The Informative
Features Approach (i-SIFT [4]) applied to mobile imagery in our ex-
periments uses local density estimations to determine the posterior
entropy, making local information content explicit with respect to
object discrimination. The information content from a posterior dis-
tribution is determined with respect to given task specific hypothe-
ses. In contrast to costly global optimization, one expects that it is
sufficiently accurate to estimate a local information content from the
posterior distribution within a sample test point’s local neighborhood
in descriptor space. One is primarily interested to get the informa-
tion content of any sample local descriptor di in descriptor space D,
di ∈ R|D|, with respect to the task of object recognition, where oi

denotes an object hypothesis from a given object set SO . For this,

Figure 3. Concept for recognition from informative local descriptors. (I)
SIFT descriptors are extracted within the test image. (II) Decision making
analyzes the descriptor voting for MAP decision. (III) In i-SIFT attentive

processing, a decision tree estimates the SIFT specific entropy; informative
descriptors are then attended for decision making (II).

one needs to estimate the entropy H(O|di) of the posterior distribu-
tion P (ok|di), k = 1 . . . Ω, Ω is the number of instantiations of the
object class variable O. The Shannon conditional entropy denotes
H(O|di) ≡ −P

k P (ok|di) log P (ok|di). One approximates the
posteriors at di using only samples gj inside a Parzen window of a
local neighborhood ε, ||di − dj || ≤ ε, j = 1 . . . J .

Fig. 3 depicts discriminative descriptors in an entropy-coded rep-
resentation of local SIFT features di. From discriminative local de-
scriptors one proceeds to entropy thresholded object representations,
providing increasingly sparse representations with increasing recog-
nition accuracy, in terms of storing only selected descriptor informa-
tion that is relevant for classification purposes, i.e., those di with
Ĥ(O|di) ≤ HΘ. For the rejection of images whenever they do not
contain any objects of interest one considers to estimate the entropy
in the posterior distribution - obtained from a normalized histogram
of the object votes - and reject images with posterior entropies above
a predefined threshold. The proposed recognition process is charac-
terized by an entropy driven selection of image regions for classifi-
cation, and a voting operation.

Geo-Contextual Computing of Object Recognition Geo-
services provide access to information about a local context that is
stored in a digital city map. Map information in terms of map features
is indexed via a current estimate on the user position that can be de-
rived from satellite based signals (GPS), dead-reckoning devices and
so on. The map features can provide geo-contextual information in
terms of, e.g., location of points of interest. In previous work [7], the
general relevance of geo-services for the application of mobile ob-
ject recognition was already emphasised, however, the contribution
of the geo-services to the performance of geo-indexed object recog-
nition was not quantitatively assessed, and top-down processing was

Figure 4. Extraction of object hypotheses from geo-services. (Left to
right) Within a local spatial neighborhood (geo-focus), distances to the

points of interest are determined, weighted by an exponential function and
normalised to result in a distribution on object hypotheses.
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not considered.
Fig. 4 depicts a novel methodology to introduce geo-service based

object hypotheses. (i) A geo-focus is first defined with respect to a
radius of expected position accuracy with respect to the city map. (ii)
Distances between user position and points of interest (e.g., tourist
sight buildings) that are within the geo-focus are estimated. (iii) The
distances are then weighted according to a normal density function
by p(x) = 1/((2π)d/2|Σ|1/2) exp{−1/2(x − μ)T Σ−1(x − μ)}.
By investigating different values for σ, assuming (Σij) = δijσ

2
j , one

can tune the impact of distances on the weighting of object hypothe-
ses. (iv) Finally, weighted distances are normalised and determine
confidence values of individual object hypotheses.

Bottom-Up Geo-Indexed Object Recognition Distributions over
object hypotheses from vision and geo-services are then integrated
via Bayesian decision fusion. Although an analytic investigation of
both visual and position signal based information should prove statis-
tical dependency between the corresponding random variables, one
assumes that it is here sufficient to pursue a naive Bayes approach
for the integration of the hypotheses (in order to get a rapid estimate
about the contribution of geo-services to mobile vision services) by
P (ok|yi,v,xi,g) = p(ok|yi,v)p(ok|xi,g), where indices v and g
mark information from image (y) and positioning (x), respectively.

Top-Down Geo-Indexed Object Recognition Here, we firstly
process the geo-service in order to receive a distribution over object
hypotheses that is input to attentive object recognition. The recog-
nition method is then primed to reject all those local (i-SIFT; see
above) descriptors from consideration that are labelled with hypothe-
ses of negligible confidence in the output of the geo-service. Hence
the feature space underlying the nearest-neighbor voting procedure
is containing only pre-selected prototypes which are then preferred
but outside a pre-determined distance threshold in feature space. The
resulting distribution over object hypothesis can again be fused with
the distribution from geo-services in order to receive a distance based
weighting on object hypotheses.

4 EXPERIMENTS

The overall goal of the experiments was to determine and to quantify
the contribution of geo-services to object recognition in urban envi-
ronments and to compare bottom-up and top-down approaches in the
AMI. The performance in the detection and recognition of objects of
interest on the query images with respect to a given reference image
database and a given methodology (TSG-20 [4]) was compared to
the identical processing but using geo-information and information
fusion for the integration of object hypotheses.

User Scenario and Constraints In the application scenario, we
imagine a tourist being equipped with a mobile device with built-
in GPS. He can send image based queries to a server using UMTS
or WLAN based connectivity. The server performs geo-indexed ob-
ject recognition and is expected to respond with tourist relevant an-
notation if a point of interest was identified. In the experiments we
used an ultra-mobile PC (Sony Vaio UMPC VGN-UX1XN) with 1.3
MPixels image captures. Reference imagery [4] with 640× 480 res-
olution about building objects of the TSG-20 database2 were cap-
tured from a camera-equipped mobile phone (Nokia 6230), contain-
ing changes in 3D viewpoint, partial occlusions, scale changes by
varying distances for exposure, and various illumination changes.
For each object we selected 2 images taken by a viewpoint change
of ≈ ±30◦ and of similar distance to the object for training to deter-
mine the i-SIFT based object representation. Two additional views
2 http://dib.joanneum.at/cape/TSG-20/

(a)

(b)

(c)

(d)

Figure 5. Comparison between bottom-up (blue/dark bars) and top-down
approach (green/light bars) from (a) sample input images. Integration of
object hypotheses from (b) vision and (c) geo-services into a (d) fused

distribution demonstrates clear increases in the confidences of the correct
object hypothesis and therefore a significant improvement in the

performance of the mobile vision service (Fig. 6).

were taken for test purposes, giving 40 test images in total. For the
evaluation of background detection we used a dataset of 120 query
images, containing only images of buildings and street sides with-
out TSG-20 objects. Another dataset was acquired with the UMPC,
which consists of seven images per TSG-20 object from different
view points; images were captured on different days under different
weather conditions.

Attentive Object Recognition In the first evaluation stage, each
individual image query was evaluated for vision based object detec-
tion and recognition, then regarding extraction of geo-service based
object hypotheses, and finally with respect to Bayesian decision fu-
sion on the individual probability distributions (Sec. 3). Detection is
an important pre-processing step to recognition, e.g., to avoid geo-
services to support confidences for objects that are not in the query
image. Experiments on imagery including background data resulted
in a PT rate of 89.2% and a FP rate of 20.1%, probably due to the
bad sensor quality. However, once a query image is attributed to the
object category, the geo-indexed object recognition will boost the
performance in finding more correct hypotheses than using vision
alone.

Fig. 5 depicts sample query images associated with corresponding
distributions on object hypotheses from vision, geo-services, and us-
ing information fusion. The results demonstrate significant increases
in the confidences of correct object hypotheses. The evaluation of the
complete database of image queries about TSG-20 objects (Fig. 6)
proves a decisive advantage for taking geo-service based informa-
tion into account in contrast to purely vision based object recogni-
tion, in particular, using the top-down approach. While vision based
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(a)

(b)

Figure 6. (a) Performance comparison between geo-service based
hypotheses (Geo), purely vision based recognition (OR), bottom-up

processing with information fusion (OR+GEO), top-down processing of
attentive recognition without (R+OR) and with post-processing using

Bayesian decision fusion (R+OR+GEO). (b) Geo-indexed object recognition
involves only a fraction of hypotheses and reduces computing time.

recognition is on a low level (≈ 84%), an exponentially weighted
spatial enlargement of the scope on object hypotheses with geo-
services increased the recognition accuracy up to ≈ 96%. With in-
creasing σ an increasing number of object hypotheses are taken into
account for information fusion and the performance finally drops to
vision based recognition performance (uniform distribution in the
geo-service based object hypotheses).

5 CONCLUSION

In this work we propose the AMI that enables bottom-up and top-
down cross-modal information processing. We take advantage of
geo-contextual information for the improvement of mobile vision
services in urban scenarios, such as visual object recognition of
tourist sights. We argued that geo-information provides a focus on

the local object context that enables a meaningful selection of ex-
pected object hypotheses and therefore improve overall performance
of urban object recognition. We proposed to pursue a methodology
on Bayesian decision fusion that integrates distributions on object
hypotheses from both cues, i.e., visual information and position es-
timate. We performed experiments on a representative image data
set and proved significant improvement in performance when using
geo-services.

In future work we further exploit the concept of the AMI by in-
tegrating different context information, such as visual context or se-
mantic segmentation, in a probabilistic framework.
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