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Abstract. In many domains successful execution of plans requires
careful monitoring and repair. Diagnosis of plan execution supports
this process by identifying causes of plan failure.

Most plans have to satisfy temporal constraints. An important and
common occurring problem during plan execution are violations of
temporal plan constraints. This paper addresses diagnosis of such
temporal constraint violations by modeling the temporal aspects of a
plan as a Simple Temporal Network (STN). We investigate the com-
putational properties of standard diagnostic concepts but we also ar-
gue that traditional notions of preferred diagnoses such as minimum
diagnosis are not adequate. A new notion of a maximum confirmation
diagnosis is introduced.

1 Introduction

A Simple Temporal Network (STN) [8] provides a way to describe
(i) a plan, (ii) temporal aspects of plan steps, and (iii) temporal rela-
tions between plan steps. It also enables the description of schedule
constraints, and of observations about the temporal execution of the
plan, using the same formalism. The observations may violate the
temporal constraints of the plan or its schedule, giving rise to a Sim-
ple Temporal Diagnosis (STD) problem. Diagnosis should identify
the plan and scheduling constraints that have been violated during
plan-execution.

A Simple Temporal Diagnosis problem is related to a Simple Tem-
poral Problem (STP) [8]. An STP addressed the identification of an
allowable schedule for an STN. The STD problem extends this by
identifying where the actual execution schedule starts to deviate from
the allowable schedule. Note that STD may also be used prior to plan
execution if an STP does not have an allowable schedule.

2 Running example

To illustrate the ideas presented in the following sections, we will
use a problem from the domain of Air Traffic Control as a running
example.

Flight KL 123 has a delayed departure; a delayed takeoff at 16:30
instead of the scheduled takeoff at 15:55-16:00. The taxiing time of
15-20 minutes incurred no delays. In fact flight KL 123 had a delayed
off-block time.

At the gate flight KL 123 incurred a delay because of the catering.
Catering was scheduled to start the delivery of food between 15:15
and 15:30, which must arrive at the airplane 10 to 30 minutes before
the off-block. The actual delivery time was 16:00.

Flight KL 123 was also delayed because the flight had to wait
on transfer passengers from flight NW 456. At least 30 minutes are
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required for the transfer of passengers between flights. Flight NW
456 arrived 16:05 at the gate while it was scheduled to arrive at the
gate between 14:55 and 15:00. The cause of its delay was a delayed
departure of 15 minutes at JFK and an additional delay during the
flight caused by unexpected head-winds.

Figure 1 show the schedule of the plan and the actual execution of
the plan. The figure shows the time lines for the flights KL123 and
NW 456, and the time line for the catering. The blocks drawn on the
time line represent the plan steps. Note that the length of the blocks
roughly indicate the duration of the plan steps. The uncertainty about
the start or finish of a plan steps is indicated by the time intervals be-
low each time line. Also note the white blocks that are placed above
instead of on the time line. These blocks indicate (i) the ‘waiting
time’ between the on-block time of flight NW 456 and the off-block
time of flight KL 123 in which passengers are transferred between
the two flights, and (ii) the ‘waiting time’ between the finish of the
catering service and the off-block time of flight KL 123.
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Figure 1. The schedule and the execution of two flights and the catering.

The goal of diagnosis is to determine to what extent the plan con-
straints describing plan step durations, time restriction on successive
plan steps, and the scheduled, are satisfied using partial observations
of the plan execution.

3 Preliminaries

Simple Temporal Networks A STN (E , C) describes a plan and
its schedule by a set of events E and a set of constraints C over the
events. Events denote such things as the start start(s) of a plan step
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s and the finish finish(s) of s. The constraints are used to specify
the durations of plan steps, the precedence relations between plan
steps, and the plan’s schedule. It is also possible to specify require-
ments such as the requirement that a plan step that must start within
δ minutes after the finish of its preceding plan step.

To describe a constraint, we associate a variable te with each event
e ∈ E . These variables take values in some dense time domain
T ime. We assume T ime to be a total order with element 0 and max-
imum element ∞. A constraint c ∈ C specifies the allowed temporal
difference between two events: lb ≤ te − te′ ≤ ub where e and e′

are events in E , lb, ub ∈ T ime and 0 ≤ lb ≤ ub.
Constraints define a strict precedence relation ≺ on the E . We say

that e′ directly precedes e iff lb ≤ te−te′ ≤ ub ∈ C and ub > 0. The
transitive closure of the direct precedences defines the precedence
relations; i.e., e′ precedes e iff e′ ≺+ e.

Relating an STN to a traditional plan description P = (S,≺), the
duration of a plan step s is described by 0 < lb ≤ tfinish(s) −
tstart(s) ≤ ub. A precedence constraint s ≺ s′ is described by lb ≤
tstart(s′) − tfinish(s) ≤ ub. Note that in the standard interpretation
of a precedence constraint, lb = 0 and ub = ∞.

A schedule is a placement of events on the timeline. To describe
a schedule we need a special event ‘0’ marking start of the timeline;
i.e., t0 = 0. This enables us to schedule the period in which an event
e ∈ E should take place: lb ≤ te − t0 ≤ ub; i.e.: lb ≤ te ≤ ub.

Figure 2 and 3 shows the plan of our running example and the
corresponding STN, respectively. Since there are no gaps between
plan steps such as ‘flight’, ‘landing’, ’taxiing’, and so on; i.e., prece-
dence constraints of the form 0 ≤ tstart(s′) − tfinish(s) ≤ 0 hold
between successive plan steps, and since these constraint cannot be
violated, in Figure 3 we have chosen to represent the finish and start
of successive plan steps of a flight by a single event.

KL 123 ground handling taxiing takeoff

flight landing ground handling taxiing takeofftaxiing

catering

takeoff

taxiing

NW 456

Catering service

Figure 2. The plan.
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Figure 3. The Simple Temporal Network.

Semantics The constraints of an STN place restrictions on the way a
plan may be executed; the execution schedule. An execution schedule
for the set of events E of an STN (E , C) is a function σ : E → Time.
We say that an execution schedule σ satisfies the constraints C, de-
noted by σ |= C, iff lb ≤ σ(e) − σ(e′) ≤ ub holds for every con-
straint lb ≤ te − te′ ≤ ub ∈ C. An execution schedule satisfying
every constraints in C is called an allowable schedule. The identifica-
tion of a allowable schedule for an STN is called a Simple Temporal

Problem (STP) [8]. It is well-known that an STN has an allowable
execution schedule iff its underlying labeled graph contains no neg-
ative cycles. 3

We say that a constraint c : a ≤ te − te′ ≤ b is entailed by a set
of constraints C, denoted by C |= c, iff every allowable schedule for
C satisfies c.

Given a constraint c : a ≤ te − te′ ≤ b we say that c′ : a′ ≤ te −
te′ ≤ b′ is a tightening of c, denoted by c′ |= c iff a ≤ a′ ≤ b′ ≤ b.

There is a sound and complete derivation procedure (|−) for de-
termining the most tightened constraint c : a ≤ te − te′ ≤ b entailed
by a set of constraints C: C |− c iff C |= c.
Observations During the execution of a plan observations can
be made. These observations may pertain to the time difference ob-
served between two events e and e′ as specified in the plan or may
pertain to the time at which a certain event e ∈ E takes place.

We assume that the first type of observation is described by some
constraint a ≤ te − te′ ≤ b indicating that we have observed that
event e occurred at least a time steps, but within b time steps after e′.

The second type of observation is given by a constraint a ≤
te − t0 ≤ b indicating that e occurred after a time units but before
b time units have been passed (after the occurrence of the time refer-
ence event ‘0’). The set of observations containing these constraints
is denoted by Obs.

In the running example, we have the following observations. The
delayed takeoff of flight KL 123 at 16:30, the catering starting at
16:00, and the delayed arrival at the gate of flight NW 456 at 16:05.
These observations are described by the constraints 16:30 ≤ te −
t0 ≤ 16:30, 16:00 ≤ te′ − t0 ≤ 16:00, and 16:05 ≤ te′ − t0 ≤
16:05. respectively.
Compatibility An important notion is the compatibility between
the STN specification (E , C) and the set of observations Obs.

We say that the set of observations is compatible with the plan
specification if we can find an execution schedule σ that satisfies the
original set of constraints C as well as the set Obs; i.e., the STN
(E , C ∪ Obs) has an allowable schedule.
Qualifications If an STN (E , C) is not compatible with a set Obs of
observations, some constraints in C must have been violated directly
or indirectly by some of the observations. To restore the compatibility
between plan and observations we need to indicate which constraints
have been violated. Clearly, if a plan constraint c is violated, some
part of it is executed in an abnormal way. To indicate such an abnor-
mal execution we introduce a qualification Q of constraints. Given
an STN (E , C), a qualification Q is a function Q : C → H assigning
a health mode to every constraint in C. We distinguish the following
health modes:

1. We use the mode Q(c) = nor to denote the normal execution of
a constraint c ∈ C; i.e., c has not been violated,

2. we use Q(c) = ab to denote the abnormal execution of a con-
straint c without exactly specifying how it is violated, and

3. we use a real number δ ∈ R to denote the degree in which a
constraint is violated: Q(c) = δ.

Note that the last health mode describes how much shorter or longer
the temporal difference between two events is with respect to what is
specified by the constraint.

3 A negative cycle refers to the fact that, first of all, a constraint c : lb ≤ te −
te′ ≤ ub is equivalent to the following two inequalities: te′−te ≤ −lb and
te−te′ ≤ ub. Next, such inequalities can be composed: if te′−te′′ ≤ ub′
then te − te′′ = te − te′ + te′ − te′′ ≤ ub + ub′. If we can derive an
inequality te − te < 0, a clear inconsistency (a negative cycle) has been
detected [8].
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Qualifications will be used to restore the compatibility between
observations and plan executions as follows:

1. For any constraint c : lb ≤ te − te′ ≤ ub, if Q(c) = ab, we
assume that the constraint is not respected anymore. So c will be
replaced by its weakest implicate −∞ ≤ te − te′ ≤ ∞, which in
fact comes down to removing c from C.

2. If Q(c) = δ ∈ R then c : lb ≤ te − te′ ≤ ub will be replaced by
the constraint lb + δ ≤ te − te′ ≤ ub + δ. Since the duration of
plan steps and waiting times between successive plan steps cannot
be negative, we require that Q(c) ≥ −1 · lb.

We will use the update fuction upd(C, Q) to denote modification of
the constraints C using qualification Q.

upd(C, Q) = {c ∈ C | Q(c) = nor} ∪
{lb + δ ≤ te − te′ ≤ ub + δ |

c : lb ≤ te − te′ ≤ ub ∈ C, Q(c) = δ}

Note that the qualification of the health mode ‘ab’ to a constraint
increases the uncertainty expressed by the constraint; i.e., the differ-
ence between the upper and lower bound of the constraint. The qual-
ification of the health mode δ ∈ R does not change the expressed
uncertainty since (ub + δ) − (lb + δ) = ub − lb.

4 Diagnosis

Classical Model-Based Diagnosis (MBD) addresses the identifica-
tion of failing components is some system. In MBD, two types of
diagnosis are distinguished, abductive and consistency based diag-
nosis. The abductive diagnosis can be viewed as a special case of
consistency based diagnosis where we have complete knowledge of
both the way components may fail and how failing components be-
have.4

Since in abstraction, diagnosis of constraint violations in an STN
is closest related to MBD, we will use the terminology used in clas-
sical MBD. Note however, that unlike MBD, we do not have compo-
nents to be diagnosed. Instead we diagnose temporal constraints.

We distinguish two types of diagnosis: diagnosis without fault
models where only the health modes nor and ab are used, and di-
agnosis with fault models.

4.1 Diagnosis without fault models

We consider consistency based diagnosis without fault models. That
is, we try to make the STN compatible with the observations by iden-
tifying the constraints that could have been violated without consid-
ering how the constraints are violated. We therefore restrict ourselves
to qualifications Q that map constraints to nor or ab. As we remarked
before, constraints qualified as being abnormal will be removed from
the set of constraints C defined by the STN (E , C).

Definition 1 Let (E , C) be an STN and let Obs be the constraints
describing the observations made. Moreover, let Q : C → H be a
qualification such that for every c ∈ C, Q(c) ∈ {nor, ab}.

The qualification Q is a consistency based diagnosis without fault
models iff the STN (E , {c ∈ C | Q(c) = nor} ∪ Obs) has an
allowable schedule.

4 Diagnosis of Discrete Event Systems (DESs) is another form of model-
based diagnosis that addresses the identification of failure events that
change the states of components in dynamic systems.

In general, there may not be a unique diagnosis given the obser-
vations made. In fact the number of diagnoses can be quite large.
For instance, in the absence of fault models, if Q is a diagnosis, then
every Q′ such that

{c ∈ C | Q(c) 	= nor} ⊆ {c ∈ C | Q′(c) 	= nor}
is also diagnosis.
Dependencies between constraint violations Among the set of di-
agnoses, some diagnoses are considered to be better than others. To
select the most likely diagnosis, in MBD, preference orders are de-
fined on the set of diagnoses. These preference orders are all based
on the underlying assumption that fault probabilities are independent
of each other. This assumptions does not hold for the constraints of
an STN. In particular the schedule constraints are not independent of
other schedule constraints, plan duration constraints and precedence
constraints. For instance, a delay in boarding of passengers may im-
ply a violation of the scheduled takeoff time.

To illustrate the problem of dependencies more clearly, consider
the plan depicted in Figure 4. Suppose that we make the observations
11:00 ≤ t5 − t0 ≤ 11:05 and 10:55 ≤ t6 − t0 ≤ 11:00. Clearly,
the schedule constraints c0-5 : 10:40 ≤ t5 − t0 ≤ 10:50 and c0-6 :
10:45 ≤ t6 − t0 ≤ 10:50 are violated and a minimum diagnosis
qualifies these constraints as abnormal (ab) while qualifying all other
constraints as normal (nor).

A diagnosis in which the schedule constraints c0-5, c0-6 and the
plan constraint c1-2 : 14 ≤ t2 − t1 ≤ 23 are qualified as abnormal
(ab) is not a minimum diagnosis. Since a violation of the plan con-
straint c1-2; e.g., its execution is taking at least 15 minutes longer,
implies the violations of the schedule constraints c0-5 and c0-6, we
should only count c1-2 when determining a minimum diagnosis. The
violations of c0-5 and c0-6 are not independent of the violation of
c1-2.

[10,15]
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2
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Figure 4. Dependencies between constraints.

The above example shows us that notions, such as minimum di-
agnoses, cannot be defined considering all the violated constraints.
Instead, we should consider an “independent core” of a diagnosis Q.

To identify the independent core, we first define a causal de-
pendency between a constraint c and a set of constraints D. The
idea is that the upper and lower bound of c cannot be chosen in-
dependently of the constraints in D. Moreover, for the constraint
c : lb ≤ te − te′ ≤ ub to causally depend on D, no event of a
constraint c′ in D may occur after the event e.

Definition 2 A constraint c : lb ≤ te − te′ ≤ ub ∈ C depends on a
set of constraints D not containing c iff

• D is a minimal subset of C such that for some choices for lb and
ub, D ∪ {c} has no allowable schedule,

• for no event e′′ specified in a constraint in D, e precedes e′′.

The independent core of a diagnosis Q can now be determined by
identifying the constraints in Q that (i) are qualified the health mode
ab and (ii) do not depend on other constraints that are qualified the
health mode ab in Q.
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Definition 3 Let Q be a diagnosis and let C ⊆ C be a set of con-
straints.

C is an independent core of Q iff C contains of all constraints
c ∈ C such that Q(c) = ab, and for all sets of constraints D ⊆ C on
which c depends, there is no c′ ∈ D such that Q(c′) = ab.

Minimum diagnoses In MBD, one usually prefers minimum diag-
noses. The rational behind this preference is that the probability of
n faults is usually much smaller than the probability of m faults for
n > m provided that fault probabilities are independent. In an STN
the independence requirement does not hold. Therefore, minimum
diagnoses must be defined with respect to the independent core of a
diagnosis Q.

In the running example, we observe a delayed takeoff of flight
KL 123, a delayed on-block of flight NW 456 and a delay in the
finish of the catering service. One possible diagnosis Q qualifies as
abnormal (ab) the scheduled takeoff time of flight KL 123, the fly-
ing time of flight NW 456 and its scheduled on-block time, and the
scheduled starting time of the catering service. All other constraints
are qualified as normal (nor). The independent causal core of Q are
the constraints specifying the flying time of flight NW 456 and the
scheduled starting time of the catering service. Since the number of
constraints in the independent causal core is minimal, Q is a mini-
mum diagnosis.

Theorem 1 Finding a diagnosis with a minimum independent core
for an STD problem is an NP-hard problem.

We prove NP-hardness by reducing the well-known NP-complete
Feedback Arc Set problem [9] to the problem of finding a diagno-
sis with a minimum independent core.

Consider an instance I = (G(V, A), K) of the Feedback Arc Set
problem. We construct an instance f(I) = (P (E , C), Obs) of the
temporal diagnosis problem by specifying the plan P (E , C) as fol-
lows:

• For every node v ∈ V we create two events e1
v and e2

v in E ;
• For every arc (v, w) ∈ A we add a temporal constraint 1 ≤ te2

w
−

te1
v
≤ ∞ to the temporal network. Note that the source of an arc

(v, w) in the graph G(V, A) is always a e1
v-event in the temporal

network while the target is always a e2
w-event; see Figure 5.
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x
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[1, ][1, ]

[1, ]

Figure 5. Reduction of a Feedback Arc Set problem to STD.

It is easy to see that this plan has an allowable execution schedule:
for every event ti

v ∈ E , let σ(ti
v) = i. This assignment satisfies all

constraints. Moreover, since there is at most one path of constraints
between each pair of events in the STN, the independent core consists
of all constraints that are qualified as being abnormal in diagnosis.

The set of observations Obs of observations restores the structure
of the graph G by containing for every node v ∈ V the constraint
0 ≤ te1

v
− te2

v
≤ ∞. It is not hard to see that the observations are

incompatible with the STN (i.e., the STN contains a negative cycle)
iff the graph G contains a cycle. Moreover, a diagnosis in which K
constraints are qualified as abnormal ab corresponds one to one with
a directed feedback arc set of size K of the graph G(V, A).

4.2 Diagnosis with fault models

An important difference with diagnosis in other domains is that in
diagnosis of STNs fault models are always available. In an STN, a
fault model of a temporal constraint describes the degree to which
the constraint is violated. In the qualification Q we denote this by
shift in the bound of the temporal constraints. So, if Q(c) = δ ∈ R,
then c : lb ≤ te − te′ ≤ ub will be replaced by the constraint
lb + δ ≤ te − te′ ≤ ub + δ. Hence, diagnosis with fault models is
defined as:

Definition 4 Let (E , C) be an STN and let Obs be the constraints
describing the observations made. Moreover, let Q : C → H be a
qualification.

The qualification Q is a consistency based diagnosis with fault
models iff the STN (E , upd(C, Q)∪Obs) has an allowable schedule.

Preferred diagnoses Definition 4 does not give us a unique di-
agnosis given the observations. Some diagnoses may be better than
others. Generalizing the preference for minimum diagnoses in the ab-
sence of fault models, we could prefer minimum-fault diagnoses that
minimize

∑
c∈C |Q(c)| where Q(c) = nor and Q(c) = ab are inter-

preted as Q(c) = 0 and Q(c) = ω, respectively. Clearly, minimum
diagnoses are a special case of minimum-fault diagnoses.

A minimum-fault diagnosis minimizes the number of execution
schedules σ that satisfy an updated STN (E , upd(C, Q)) and the
observations Obs. To give an illustration, consider a plan with two
events e and e′ and one constraint: c : lb ≤ te − te′ ≤ ub. If we
observe a ≤ te − te′ ≤ b with a > ub, then Q(c) = a − lb is a
minimum-fault diagnosis. Since there is only one execution schedule
satisfying the updated plan and the observation, the probability that
the diagnosis is correct is minimal. Therefore, a different notion of
preference is desirable.

We should prefer diagnoses that have a high probability of be-
ing correct; i.e., maximize the number of execution schedules. The
number of execution schedules is maximal if we can predict the ob-
servations made; i.e., abductive diagnosis.

To illustrate this point, consider the plan in figure 6 together with
the observations: 10:40 ≤ t5 − t0 ≤ 11:15 and 10:30 ≤ t6 − t0 ≤
∞. If all constraints are qualified normal (nor), then the constraints
entail 10:35 ≤ t5 − t0 ≤ 11:03 and 10:27 ≤ t6 − t0 ≤ ∞, which
do not explain our observations.

A diagnosis Q qualifying all plan constraint as normal (nor) ex-
cept c1−2 : 14 ≤ t2 − t1 ≤ 23, which is qualified as: Q(c) = 5,
does explain the observations. This diagnosis enables us to predict
10:40 ≤ t5 − t0 ≤ 11:08 and 10:32 ≤ t6 − t0 ≤ ∞. Since these
predictions are a tightening of the observations, the diagnosis Q is an
abductive diagnosis.

[10,15]
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[14,23] [6,12] [25,33]
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Figure 6. Abduction versus confirmation.

Maximum confirmation diagnosis In the above example the two
observations are not very accurate. A more accurate observation such
as 10:40 ≤ t5 − t0 ≤ 10:48, cannot be explained by the normal exe-
cution of the plan: Q(c) = nor for all constraints in C. Nevertheless,
the most tightened constraint 10:35 ≤ t5 − t0 ≤ 11:03 entailed by
the plan constraints, is confirmed by the observation. This also in-
dicates the absence of violations of the constraints that are used to
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make the prediction for the pair of events ‘0’ and e5. Therefore, we
propose a new notion of diagnosis, namely maximum-confirmation
diagnoses. The idea of maximum-confirmation diagnosis is to iden-
tify the qualification Q for which the number of execution schedules
is maximal. To measure the number of execution schedules, we in-
troduce a confirmation percentage.

Definition 5 Let Q be a qualification, let o : lb ≤ te − te′ ≤ ub
be an observation and let a ≤ te − te′ ≤ b be the most tightened
constraint implied by a qualified plan (E , upd(C, Q)).

The confirmation percentage of the observation o, denoted by
cpQ(o), is defined as:

cpQ(o) =

{
min(ub,b)−max(lb,a)

ub−lb
if min(ub, b) − max(lb, a) ≥ 0

0 otherwise

The sum of the confirmation percentages gives us a measure for
comparing diagnoses.

Definition 6 Let (E , C) be an STN, and let Obs be the constraints
describing the observations made.

A diagnosis Q of the STN and the observation Obs is a maximum-
confirmation diagnosis iff

∑
o∈Obs cpQ(o) is maximal.

Note that a maximum-confirmation diagnosis need not be unique.
From the set of maximum-confirmation diagnoses we can derive in-
tervals of violation degrees for the constraints. In our running exam-
ple, the maximum-confirmation diagnoses assign delays of 15 to 35
minutes to the catering process given the observed finish at 16:00.

An important question concerns the worst case time complexity of
determining a maximum confirmation diagnosis.

Theorem 2 A maximum confirmation diagnosis can be determined
in polynomial time.

To see why, note that each observation o : lb ≤ te − te′ ≤ ub ∈ Obs
has one or more causal chains of events between the two events of
the observation constraint e and e′. Starting from the earliest obser-
vation, we qualify the last plan constraint of each the causal chain of
events between the two events e and e′ as being violated. The quali-
fication is chosen such that it maximizes the confirmation percentage
of the observation o. Before continuing with the next constraint, we
have to propagate the effect of the qualifications made. All steps can
be carried out in polynomial time.

5 Related work

Several authors have addressed aspects of plan diagnosis.

• Diagnosis of an agent’s planning assumptions: Birnbaum et al. [1].
• Diagnosis of a single task execution: Lesser et al. [2, 10].
• Social diagnosis of behavior selection in teams: Kalech and

Kaminka [11, 13].
• Diagnosis of the abnormal effects of a plan execution: Roos et al.

[19, 16, 7, 18].
• Diagnosis of coordination errors of agents executing a plan:

Kalech and Kaminka [12] and Roos and Witteveen [17].
• Diagnosis of multi agent plan interactions: de Jonge et al. [3, 6].
• Diagnosis and repair of plan execution with agents share resources

and provide services: Micalizio and Torasso [15, 14].
• Diagnosis of temporal constraint violations: de Jonge et al. [4, 5].

None of these approaches address diagnosis of Simple Temporal Net-
works. The approach to de Jonge et al. [4, 5] comes closest to our
approach. However, they can only deal with abstract states such as
delayed or early for plan steps.

6 Conclusion

Identifying causes of violations of a plan’s temporal constraints is an
important issue in plan execution. To enable such diagnosis, the tem-
poral aspects of a plans are described by Simple Temporal Network
(STN). Based on observations of the plan’s execution, diagnosis has
to identify the temporal constraint that are violated.

The notion of classical Model-Based Diagnosis (MBD) has been
adapted to STNs. Two important issues had to be dealt with: (i) we
cannot assume that temporal constraints are violated independently,
and (ii) the notion of consistency-based and abductive diagnosis are
not adequate for STNs. A new notion of a maximum confirmation
diagnosis has been proposed.

In future work we will integrate whether the here presented model
for diagnosis of STN can be combined with models for diagnosing
other aspects of plan execution failures.
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