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Abstract. We introduce a simple variation of the additive heuristic
used in the HSP planner that combines the benefits of the original ad-
ditive heuristic, namely its mathematical formulation and its ability
to handle non-uniform action costs, with the benefits of the relaxed
planning graph heuristic used in FF, namely its compatibility with
the highly effective enforced hill climbing search along with its abil-
ity to identify helpful actions. We implement a planner similar to FF
except that it uses relaxed plans obtained from the additive heuristic
rather than those obtained from the relaxed planning graph. We then
evaluate the resulting planner in problems where action costs are not
uniform and plans with smaller overall cost (as opposed to length)
are preferred, where it is shown to compare well with cost-sensitive
planners such as SGPlan, Sapa, and LPG. We also consider a further
variation of the additive heuristic, where symbolic labels represent-
ing action sets are propagated rather than numbers, and show that
this scheme can be further developed to construct heuristics that can
take delete-information into account.

1 PLANNING MODEL AND HEURISTICS

We consider planning problems P = 〈F, I, O, G〉 expressed in
Strips, where F is the set of relevant atoms or fluents, I ⊆ F and
G ⊆ F are the initial and goal situations, and O is a set of (grounded)
actions a with precondition, add, and delete lists Pre(a), Add(a),
and Del(a) respectively, all of which are subsets of F . For each ac-
tion a ∈ O, we assume that there is a non-negative cost(a) so that
the cost of a plan π = a1, . . . , an is

cost(π) =
nX

i=1

cost(ai) (1)

This cost model is a generalization of the classical model where
the cost of a plan is given by its length. Two of the heuristics used
to guide the search for plans in the classical setting are the additive
heuristic ha used in HSP [2], and the relaxed plan heuristic hFF used
in FF [11]. Both are based on the delete relaxation P+ of the prob-
lem, and both attempt to approximate the optimal delete-relaxation
heuristic h+ which is well-informed but intractable. We review these
heuristics below. In order to simplify the definition of some of the
heuristics, we introduce a new dummy End action with zero cost,
whose preconditions G1, . . . , Gn are the goals of the problem, and
whose effect is a dummy atom G. The heuristics h(s) then estimate
the cost of achieving this ’dummy’ goal G from s.
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1.1 The Additive Heuristic

Since the computation of the optimal delete-free heuristic h+ is
intractable, HSP introduces a polynomial approximation in which
subgoals are assumed to be independent in the sense that they are
achieved with no ’side effects’ [2]. This assumption is normally false,
but results in a simple heuristic function

ha(s)
def
= h(G; s) (2)

that can be computed quite efficiently in every state s visited in the
search from the recursive equation:

h(p; s)
def
=

j
0 if p ∈ s
h(ap; s) otherwise

(3)

where h(p; s) stands for an estimate of the cost of achieving the atom
p from s, h(a; s) stands for an estimate of the cost of applying action
a in s, and ap is a best support of fluent p in s. These two expressions
are defined in turn as

h(a; s)
def
= cost(a) +

X
q∈Pre(a)

h(q; s) (4)

and
ap

def
= argmina∈O(p)h(a; s) (5)

where O(p) stands for the actions in the problem that add p. Ver-
sions of the additive heuristic appear also in [6, 16, 17], where the
cost of joint conditions in action preconditions or goals is set to the
sum of the costs of each condition in isolation. When the ’sum’ in
(4) is replaced by ’max’, the heuristic hmax is obtained [2]. The
heuristic hmax, unlike the additive heuristic ha, is admissible, but
less informed. The heuristics coincide and are equivalent to the op-
timal delete-relaxation heuristic h+ when all the actions involve a
single precondition and the goal involves a single atom.

1.2 The Relaxed Planning Graph Heuristic

The planner FF modifies HSP along two dimensions: the heuristic
and the search algorithm. Unlike ha, the heuristic hFF used in FF
makes no independence assumption for approximating h+, comput-
ing instead one plan for P+ which is not guaranteed to be optimal.
This is done by a Graphplan-like procedure [1], which due to the ab-
sence of deletes constructs a planning graph with no mutexes, from
which a plan πFF(s) is extracted backtrack-free [11]. The heuristic
hFF(s) is then set to |πFF(s)|. The basic search procedure in FF is
not best-first as in HSP but (enforced) hill-climbing (EHC), in which
the search moves from a state s to a neighboring state s′ with smaller
heuristic value by performing a breadth first search. This breadth
first search is carried out with a reduced branching factor, ignoring
actions a that are not found to be ’helpful’. The ’helpful actions’ in
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a state s are the actions applicable in s that add the precondition p
of an action in πFF(s) for p �∈ s. The use of EHC search, along with
the pruning of non-helpful actions are the key factors that make FF
scale up better than HSP in general [11], but due to its construction,
the heuristic hFF cannot be extended easily to take action costs into
account (yet see [7]).

1.3 Relaxed Plans without Planning Graphs

A simple variation of the additive heuristic can be defined that is cost
sensitive and results in relaxed plans compatible with helpful action
pruning and EHC search. For this, the best support ap of each atom
p in the state s, calculated as part of the computation of the heuristic
ha(s) in Equation 5, is stored.3 The definition of the set of actions
πa(s) that make up a relaxed plan then simply collects these best
supports backwards from the goal:

πa(s)
def
= π(G; s)

π(p; s)
def
=

j {} if p ∈ s
{ap} ∪ S

q∈pre(ap) π(q; s) otherwise

Intuitively, the relaxed plan πa(p; s) is empty if p ∈ s, and the union
of the best supporter ap for p with the relaxed plans for each of its
preconditions q ∈ pre(ap) otherwise. Note that πa(s), being a set
of actions, can contain an action at most once. The same construc-
tion, captured by Equation 6, underlies the construction of the relaxed
plan πFF(s) computed by FF from the relaxed planning graph. For
this, however, the best supports ap that encode the ’best’ actions for
achieving the atom p in the relaxation, must be obtained from the
hmax heuristic and not from ha; a modification that just involves
changing the sum operator in (4) by the max operator. The hmax

heuristic is known to encode the first level of the relaxed planning
graph that contains a given action or fact.

It is simple to prove that the collection of actions in πa(s) repre-
sents a plan from s in the delete relaxation P+. This relaxed plan,
unlike the relaxed plan πFF(s) is sensitive to action costs, and can be
used in FF in place of πFF(s). We call the resulting planner FF(ha).

2 THE FF(ha) PLANNER

In FF(ha), the relaxed plans πa(s) are produced by computing the
additive heuristic using a Bellman-Ford algorithm while keeping
track of the chosen lowest-cost supporter for each atom, and then
recursively collecting the best supporters starting from the goal. The
heuristic h(s) used for measuring progress in FF(ha) is defined as
the relaxed plan cost

P
a∈πa(s) cost(a) and not as its length |πa(s)|.

This heuristic, which is obtained from the computation of the addi-
tive heuristic ha, is almost equivalent to ha(s) but does not count the
cost of an action more than once.

The EHC search used in FF(ha) is a slightly modified version of
that used in FF. While a single step of EHC in FF ends as soon as
a state s′ is found by breadth-first search from s such that h(s′) <
h(s), in FF(ha), all states s′ resulting from applying a helpful action
a in s are evaluated and among those for which h(s′) < h(s) holds,
the action minimizing the expression cost(a) + h(s′) is selected.
Like in FF, the helpful actions in s are the actions applicable in s that
add the precondition p of an action in πa(s) such that p �∈ s.

3 We assume that ties in the selection of the best supports ap are broken
arbitrarily. The way ties are broken does not affect the value of the additive
heuristic ha(s) in a state s but may affect the value of the heuristic defined
below. The same is true for FF’s heuristic.

FF(ha) is implemented on top of the Metric-FF planner [10] be-
cause of its ability to handle numeric fluents, through which non-
uniform action costs are currently expressed in PDDL. FF(ha) does
not make use of numeric fluents for any other purpose besides repre-
senting action costs.

3 EXPERIMENTAL RESULTS

We evaluated the performance of FF(ha) in comparison with other
cost-sensitive planners; namely SGPlan [5], LPG-quality [8] and
Sapa [6]4 on 11 domains.5 For reference, the curves show also the
plan times and costs obtained by running FF, that ignores cost in-
formation, and FF-quality, an option in Metric-FF that optimizes a
given plan metric by using an FF-like heuristic in a Weighted A*
search [10].

Experiments were performed with eleven domains, five of these
taken from the numeric track of the Third International Planning
Competition (IPC3). Of these 5 domains, the Depots, Rovers, Satel-
lite, and Zenotravel domains were modified by removing all occur-
rences of numeric variables from action preconditions and goals,
once the action cost information was extracted from the PDDL.
Also, as a reference, all planners except LPG were evaluated on the
STRIPS (uniform cost) versions of these domains, and all planners
were evaluated on 6 new domains introduced here, which were con-
structed with the aim that the length of solutions not correlate with
their cost. Indeed, in two of these domains, the Minimum Spanning
Tree and Assignment domains, all valid solutions contain the same
number of actions. The other domains are: Shortest Path (shortest-
path problems), Colored Blockworld (blocks have colors and colors
must be stacked in certain ways in the goal, with costs associated
with the different blocks), Delivery (a variation of the IPC5 domain
TPP), and Simplified Rovers (a domain adapted from [17], in which
a robot must collect samples from rocks in a grid). Moreover, for S.
Rovers, both hard goal and soft goal versions were used, with the soft
goals being compiled away into action costs, following the procedure
described in [13].6 The experiments were run on a CPU running at
2.33 GHz with 8 GB of RAM. Execution time was limited to 1,800
seconds. The results, including plan costs and planning times for the
various planners, are reported in the figures. Some observations about
the results follow.

Quality of Plans: In almost all of the domains, FF(ha) produces
the best plans, with the exception of the hard-goal version of S.
Rovers (Fig. 3c), where it does particularly bad, and in the soft ver-
sion (Fig. 3b). In both cases, LPG does better, although the oppo-
site occurs in several domains like in Delivery (Fig. 1a), Satellite
(Fig. 2a), and the Assignment Problem (Fig 2c). Sapa produces plans
that are close to the best quality plans in all the domains for which
it can be executed, yet is usually able to solve only the smallest in-
stances in each domain. FF-quality suffers from a similar problem,
solving a significant proportion of the instances in a few domains
only.7 Overall, SGPlan does not appear to produce better plans than
FF, even if FF ignores costs completely, and both produce plans that
are often much worse than FF(ha). In the STRIPS versions of the

4 Sapa was compiled from Java to native machine code with the GNU com-
piler. We were later informed by the authors that this results in a slowdown
of approximately 50% compared to the version running on the Java virtual
machine.

5 LPG and Sapa could not be run on some of the domains due to bugs.
6 We cannot provide further details on these domains due to lack of space,

but the PDDL files are available from the authors.
7 For clarity, FF-quality’s results are shown only for domains in which it was

able to solve a significant number of instances.
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(a) Plan costs - Delivery domain
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(b) Plan costs - Shortest Path domain
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(c) Plan costs - Minimum Spanning Tree domain
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Figure 1.
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(a) Plan costs - Satellites domain

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2  4  6  8  10  12  14  16  18  20

FF
SGPlan

LPG-quality
FF-quality

SapaPS
FF(ha)

(b) Length of Plans above in Satellites
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(c) Plan costs - Assignment Problem domain
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Figure 2.
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five IPC3 domains (unit costs), all planners produce plans of roughly
equal quality.

Planning Times: FF(ha) is somewhat slower than FF on most
problems, though the difference is usually a constant factor
(Fig. 1d).8 There are two main reasons for this. The first is that com-
puting ha and extracting the associated relaxed plan πa is somewhat
more costly than the equivalent operation on the relaxed planning
graph, so FF(ha) takes longer to perform the same number of heuris-
tic evaluations as FF. In general, hFF evaluates states 2–10 times
faster than ha. The second is that while FF minimizes the number
of actions in the plan, FF(ha) minimizes the cost of the plan, which
in some cases leads to longer plans, requiring more search nodes and
more heuristic evaluations (Fig. 2b). SGPlan takes roughly the same
amount of time as FF on almost all domains considered, while LPG is
roughly an order of magnitude slower than the other planners except
Sapa, but appears to have better scaling behaviour. Sapa is slower
than LPG by roughly one order of magnitude.

4 FURTHER VARIATIONS OF THE ADDITIVE
HEURISTIC

We consider briefly two further variations of the additive heuristic:
the set-additive heuristic and the TSP heuristic, both analyzed in
more detail in [12, 13].

4.1 The Set Additive Heuristic

In the additive heuristic, the value h(ap; s) of the best supporter ap

of p in s is propagated to obtain the heuristic value h(p; s) of p.
In contrast, in the set-additive heuristic, the best supporter ap of p is
itself propagated, with supports combined by set-union rather than by
sum, resulting in a recursive function π(p; s) that represents the set
of actions in a relaxed plan for p in s, which can be defined similarly
to h(p; s) as:

π(p; s) =

j {} if p ∈ s
π(ap; s) otherwise

(6)

where

ap = argmina∈O(p)Cost(π(a; s)) (7)

π(a; s) = {a}
[

{∪q∈Pre(a) π(q; s)} (8)

Cost(π(a; s)) =
X

a′∈π(a;s)

cost(a′) (9)

The set-additive heuristic hs
a(s) for a state s is then defined as

hs
a(s) = Cost(π(G; s)) . (10)

It is easy to show that the collection of actions π(p; s) for all atoms p
represent plans for achieving the atom p in the delete-relaxation P+,
which in the set-additive heuristic are computed recursively, starting
with the trivial (empty) plan for the atoms p ∈ s. From a practi-
cal point of view, this recursive computation does not appear to be
cost-effective in general, as the relaxed plans πa(p; s) obtained from
the normal additive heuristic are normally as good and can be com-
puted faster. Yet the planner FF(hs

a) obtained from FF by replacing
the relaxed plans πFF(s) by π(G; s) above compares well with ex-
isting cost-sensitive planners (see [12]), and the formulation of the
set-additive heuristic opens the door to the formulation of a broader
family of heuristics.

8 We omit further data on planning time due to space considerations.

4.2 The TSP Heuristic

The set-additive heuristic can be generalized by replacing the plans
π(p; s) with more generic labels L(p; s) that can be numeric, sym-
bolic, or a suitable combination, provided that there is a function
Cost(L(p; s)) mapping labels L(p; s) to numbers. Here we consider
labels L(p; s) that result from treating one designated multivalued
variable X in the problem in a special way. A multivalued variable
X is a set of atoms x1, . . . , xn such that exactly one xi holds in ev-
ery reachable state. For example, in a task where there are n rocks r1,
. . . , rn to be picked up at locations l1, . . . , ln, the set of atoms at(l0),
at(l1), . . . , at(ln), where at(l0) is the initial agent location, repre-
sent one such variable, encoding the possible locations of the agent.
If the cost of going from location li to location lk is c(li, lk), then
the cost of picking up all the rocks is the cost of the best (min cost)
path that visits all the locations, added to the costs of the pickups.
This problem is a TSP and therefore intractable, but its cost can be
approximated by various fast suboptimal TSP algorithms.9 By com-
parison, the delete relaxation approximates the cost of the problem as
the cost of the best tree rooted at l0 that spans all of the locations. The
modification of the labels π(p; s) in the set-additive heuristic allows
us to move from the approximate model captured by the delete re-
laxation to approximate TSP algorithms over a more accurate model
(see [15] for other uses of OR models in planning heuristics).

For this, we assume that the actions that affect the selected multi-
valued variable X do not affect other variables in the problem, and
maintain in each label π(p; s) two disjoint sets: a set of actions that
do not affect X , and the set of X-atoms required as preconditions by
these actions. The heuristic hX(s) is then defined as

hX(s) = CostX(π(G, s)) (11)

where CostX(π) is the sum of the action costs for the actions in π
that do not affect X plus the estimated cost of the ’local plan’ [4] that
generates all the X-atoms in π, expressed as

CostX(π) = Cost(π ∩ X̄) + CostTSP (π ∩ X) (12)

where

π(p; s) =

8<
:

{} if p ∈ s
{p} if p ∈ X
π(ap; s) otherwise

ap = argmina∈O(p)CostX(π(a; s))

π(a; s) = {a}
[

{∪q∈Pre(a) π(q; s)}

and CostTSP (R) is the cost of the best path spanning the set of
atoms R, starting from the value of X in s, in a directed graph whose
nodes stand for the different values x of X , and whose edges (x, x′)
have costs that encode approximations of the cost of achieving x′

from x′ in s (see [13] for details).
We have implemented the planner FF(hX ) in which hX , rather

than ha, is used to derive the relaxed plan, with the X variables being
automatically chosen as the root variables of the causal graph [3, 9].
This planner produces plans of much lower cost than any other plan-
ner tested in the soft goals version of the Simplified Rovers domain
(Fig. 3b), and plans of much lower cost than any other planner except
LPG in the hard goals version (Fig. 3c), where LPG produces plans
of only slightly worse quality.

9 In our planner we have implemented the 2-opt algorithm discussed in [14].
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(b) Plan costs - soft goals version of S. Rovers domain
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Figure 3.

5 DISCUSSION

We have shown that relaxed plans and therefore helpful actions can
be computed without the use of a relaxed planning graph, meaning
that other heuristics can be used in conjunction with FF’s powerful
EHC search. Our method of relaxed plan extraction using the addi-
tive heuristic is cost-sensitive and does not impose a large overhead
over that of FF. Furthermore, a simple planner that combines the re-
laxed plan extracted in this way with the EHC search algorithm com-
pares favourably to the state of the art in planning with action costs.
Two other variations of the additive heuristic were also presented:
the set-additive heuristic in which the relaxed plans are computed
recursively, and the TSP heuristic, that takes delete-information into
account. In both cases, labels are propagated rather than numbers in
the equation characterizing the additive heuristic. Used together with
EHC search, the TSP heuristic produces plans of much lower cost
than any other planner tested in navigation problems where finding
good paths going through a set of locations is critical. Our imple-
mentation of the TSP heuristic, however, is preliminary, and is suited
only for problems where these locations correspond to the values of
a single root variable in the causal graph.
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