
Combining Domain-Independent Planning and HTN
Planning: The Duet Planner

Alfonso Gerevini† and Ugur Kuter‡ and Dana Nau‡ and Alessandro Saetti† and Nathaniel Waisbrot‡∗

Abstract. Despite the recent advances in planning for classical do-
mains, the question of how to use domain knowledge in planning
is yet to be completely and clearly answered. Some of the existing
planners use domain-independent search heuristics, and some oth-
ers depend on intensively-engineered domain-specific knowledge to
guide the planning process. In this paper, we describe an approach
to combine ideas from both of the above schools of thought. We
present Duet, our planning system that incorporates the ability of us-
ing hierarchical domain knowledge in the form of Hierarchical Task
Networks (HTNs) as in SHOP2 [14] and using domain-independent
local search techniques as in LPG [8]. In our experiments, Duet was
able to solve much larger problems than LPG could solve, with only
minimal domain knowledge encoded in HTNs (much less domain
knowledge than SHOP2 needed to solve those problems by itself).

1 Introduction

Most classical planners fall into one of two categories: planners that
use domain-independent knowledge, i.e., that work in any classi-
cal planning domain, and planners that can exploit domain-specific
knowledge. It has been shown, both theoretically and experimentally,
that each approach has its own advantages and disadvantages:

• A planner that can exploit domain-specific knowledge in order to
guide its planning can solve much larger planning problems and
can generally solve them much faster than the planners that don’t
use such knowledge. The biggest downside of such planning sys-
tems, however, is that they require an expert human to give them
extensive knowledge about how to solve planning problems in the
planning domain at hand. Usually this knowledge is expressed us-
ing either temporal logic (e.g., TLPlan [1] and TALplanner [13])
or task decomposition (e.g., SHOP2 [14], SIPE-2 [17], and O-
PLAN [6]), and might not be easy for the general user to specify.

• A planner that uses domain-independent heuristic information
(e.g., FF [11], AltAlt [15], SGPlan [5], HSP [3], FastDownward
[10], and LPG [8]) usually does not need expert-provided domain
knowledge, since the planner itself computes a heuristic for each
domain. This makes the domain formalization simpler and the
planner easier to use; but the planner may often perform much
worse than a planner that exploits specific domain knowledge.

In this paper, we describe Duet, a new planning system that
combines the advantages of using domain-independent heuristics

†Dipartimento di Elettronica per l’Automazione, Universitá degli Studi
di Brescia, Via Branze 38, I-25123 Brescia, Italy.

‡Department of Computer Science and Institute for Advanced Computer
Studies, University of Maryland, College Park, Maryland 20742, USA.

∗Corresponding author (email:waisbrot@cs.umd.edu)

and domain-specific knowledge, while avoiding their drawbacks.1

To accomplish this, Duet incorporates adaptations of two well-
known planners: LPG, which uses domain-independent heuristics in
a stochastic local search engine [8], and SHOP2, which uses domain-
specific Hierarchical Task Networks (HTNs) to organize its search
space [14]. We extended the SHOP2 and LPG formalisms to allow
the planners to communicate in Duet by generating subgoals of a
planning problem for each other. Duet organizes the planning pro-
cess by passing these subgoals to the individual planners until no
subgoals are left to achieve.

We present our experiments with Duet on a new planning domain,
called Museums. The Museums domain was inspired by the real-
world operations of acquiring and relocating art objects among a set
of museums around the world. The domain combines aspects of the
well-known Logistic and Tower of Hanoi (ToH) problems. The ob-
jective is to use trucks to move various art objects from museums to
other museums. When a truck comes to a museum to load or unload
objects, there are three places to put the objects: the truck, and two
pallets at the museum’s loading dock. An object’s placement depends
on its fragility: fragile art objects must be placed on less-fragile ones.
Thus, loading and unloading correspond to solving ToH problems.

The rationale for using the Museums domain in the evaluation of
Duet was that we observed that it is challenging for state-of-the-art
planners and it includes two kinds of subproblems: domain-specific
knowledge isn’t needed to plan the truck movements, but is needed
to plan the loading and unloading operations, since the ToH problem
is hard for many domain-independent planners including LPG.

In our experiments, we varied the amount of HTN-based domain-
specific knowledge available to Duet and compared its perfor-
mance with LPG’s and SHOP2’s performance as stand-alone plan-
ners. Even with just a small amount of domain-specific knowl-
edge (e.g., “choose the least-fragile object and move it to the tar-
get museum”), Duet usually generated solutions faster than LPG.
With more domain-specific problem-solving knowledge (e.g., how
to properly stack art objects on top of each other), Duet ran faster
and solved more problems than both LPG and SHOP2. Although
SHOP2’s performance could have been improved, this would have
required much more time for hand-crafting its knowledge base.

2 Preliminaries

Our definitions of classical states, planning operators, planning do-
mains and problems are based on those in [9]. Below we’ll summa-
rize the definitions at the semantic level; for syntactic details see [9].

1In that sense, it is closely related to the recently-proposed “Model-Lite
Planning” approach [12, 16], which aims to develop techniques that do not
require intensive domain knowledge but still are practical.

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-573

573

In addition to classical planning operators and actions (i.e., ground
instances of planning operators), we define an abstract planning op-
erator as a triple (t, Pre, Eff), where Pre and Eff are the precondi-
tions and the effects of the abstract operator (described as logical for-
mulas over literals), and t is an expression (name, arg1, . . . , argn),
where name is the abstract operators’ name and arg1, . . . , argn are
the arguments (variables and/or constant symbols). An abstract ac-
tion is a ground instance of an abstract planning operator. A plan is a
sequence of actions that are either classical or abstract.

A planning domain is a triple Σ = (S, A, γ) where S and A are
the sets of states and actions (classical and abstract), and γ : S ×
A → S is the state-transition function, with γ(s, a) defined iff a
is applicable to s. Γ(s, π) = γ(γ(...γ(s, a1), a2), . . . , an) is the
state generated by applying the plan π = 〈a1, . . . , an〉 in the state
s. If some action ai is inapplicable in Γ(s, 〈a1, . . . , ai−1〉) then π is
inapplicable in s and Γ(s, π) is not defined.

A planning problem is a pair P = (s0, g) in the planning domain
Σ = (S, A, γ), where s0 ∈ S is the initial state and g is the goals
represented as a conjunction of logical atoms (i.e., g represents a set
of goal states G ⊆ S). A solution for a classical planning problem P
is a plan π = 〈a1, . . . , ak〉 such that each ai in π is a classical action
and the state s′ = Γ(s0, π) satisfies the goals g.

LPG’s plan representation is based on linear action graphs [8],
which are variants of the well-known planning graphs [2]. A lin-
ear action graph [8] is a directed acyclic leveled graph alternating
between a proposition level, i.e., a set of domain propositions, and
an action level, i.e., one ground domain action and a set of special
dummy actions, called “no-ops”, each of which propagates a propo-
sition of the previous level to the next one. If an action is in the graph,
then its preconditions and positive effects appear in the correspond-
ing proposition levels of the graph. Moreover, a pair of propositions
or actions can be marked as mutually exclusive at every graph level
where the pair appears (for a detailed description, see [8]).

While in the original definition, action levels contain only clas-
sical actions [8], here we use an extended representation where an
action level contains either a classical action or an abstract action.
An (extended) action graph can have two types of flaws: unsatisfied
action preconditions and abstract actions. LPG uses a stochastic lo-
cal search process that iteratively modifies the current graph until
there is no flaw or a certain search limit is exceeded [8]. LPG deals
with an unsatisfied precondition by inserting into or removing from
the graph a new or existing action, respectively. We modified LPG
in order to recognize abstract actions as flaws resolvable by running
an HTN planner, as described below. An action graph with no flaws
represents a solution for the input planning problem.

An HTN planner formulates a plan by decomposing tasks (i.e.,
symbolic representations of problem-solving activities to be per-
formed) into smaller and smaller subtasks until tasks are reached that
can be performed directly. An HTN is a pair (T, C), where T is a set
of tasks and C is a set of partial ordering constraints on the tasks.
The empty HTN is the pair (T, C) such that T = ∅ and C = ∅.

An HTN planner uses an HTN domain description that contains
three kinds of knowledge artifacts: axioms, operators, and methods.
The axioms are similar to logical Horn-clause statements; the planner
uses them to infer conditions about the current state. The operators
are like the planning operators used in any classical planner. The
names of these operators are designated as primitive tasks .

Each method in an HTN domain description is a prescription
for how to accomplish a nonprimitive task by decomposing it into
subtasks (which may be either primitive or nonprimitive tasks). A
method consists of (1) the task that the method can be used to ac-

complish, (2) the set of preconditions which must be satisfied for the
method to be applicable, and (3) the subtasks to accomplish, along
with some constraints over those tasks that must be satisfied.

For example, consider the task of moving a collection of items
from one location to another. One method might be to move them by
truck. For such a method, the preconditions might be that the truck
is in working order and is present at the first location. The subtasks
might be to open the door, put the items onto the truck, drive the truck
to the other location, and unload the items.

We assume that each abstract action in a planning domain cor-
responds to a nonprimitive task, which must be decomposed into
smaller tasks using HTN methods (if available).2 In addition to prim-
itive and nonprimitive tasks, we also define a class of special-purpose
tasks called achieve-goals tasks. An achieve-goals task specifies a set
of goals, as in a classical planning problem, that need to be achieved
in the world before the task decomposition-process can progress dur-
ing HTN planning. An HTN planner would not have any methods
to decompose an achieve-goals task t Instead, an achieve-goals task
triggers the invocation of a classical planner to generate a plan π
such that the state Γ(s, π) satisfies the specified goals of t, which we
denote as GoalsOf(s, t), given the input set of actions. The achieve-
goals task is an important component of our planning system Duet
that incorporates LPG and SHOP2 in a unified planning process, as
described in the next section.

3 Duet = LPG + SHOP2

This section describes our planning procedure, called Duet, that in-
corporates local-search planning as in LPG [8] and HTN planning as
in SHOP2 [14]. The LPG and SHOP2 planning procedures that we
use in Duet are slightly modified versions of the originals reported in
[8] and [14], respectively. Below, we first describe the Duet planning
procedure, and subsequently we briefly describe our modifications to
LPG and SHOP2 to adapt them to work within Duet.

Figure 1 shows a high-level description of the Duet planning pro-
cedure. Duet’s input includes the initial state s0 and the goal condi-
tion g of a classical planning problem, as well as a possibly empty
initial task network specified for achieving the goals g and a possibly
empty set M of HTN methods. Duet first initializes the current state
s to s0 and the current partial plan to the empty plan. At Line 1, n is
a counter for the number of search steps performed by the planner;
that is, n is the total number of graph modifications performed by
LPG to fix the flaws plus the number of task decompositions done
by SHOP2. Duet also uses a tabu list, τ , that keeps the abstract ac-
tions that cannot be decomposed into smaller tasks given the HTN
methods in M , and therefore, must be avoided during local search in
LPG. The tabu list τ is initialized to the empty list at Line 1.

Duet successively generates and resolves subgoals for the in-
put planning problem until it generates a solution plan. A subgoal
of the planning problem is either a goal to achieve using domain-
independent search heuristics via LPG, or an abstract action (i.e., a
task) that needs to be decomposed into smaller tasks via SHOP2.
Duet performs this iterative procedure for a maximum predefined
number of search steps. If a solution cannot be found during these
iterations, the procedure returns failure.

2Note that a macro-action [4, 7] is a special case of an abstract action:
a macro-action decomposes directly into a sequence of primitive actions,
whereas an abstract action may be decomposed into a combination of both
primitive actions and other nonprimitive tasks that need to be decomposed
further. This allows us, for example, to write HTNs that perform the standard
recursive decomposition of a Towers of Hanoi task in the Museum domain.

A. Gerevini et al. / Combining Domain-Independent Planning and HTN Planning: The Duet Planner574

Procedure Duet(s0, g, w0, M)
Input: The problem initial state s0, the set of problem goals g,

the initial task network w0 and a set of HTN-methods,
Output: A solution plan or failure.
1. n ← 0; s ← s0; w ← w0; π ← τ ← gshop2 ← glpg ← ∅;
2. while n does not exceed a predefined number of steps
3. if π is a solution (all subgoals satisfied) then return π;
4. else if there exists an abstract action gSHOP2 then
5. 〈π′, s′, gLPG, w′, n〉 ← SHOP2(s, gSHOP2, πnil, n, M);
6. if π′ = failure
7. then τ ← τ ∪ 〈gSHOP2, n〉; w ← (w − gSHOP2);
8. else π ← π + π′; w ← w′ + (w − gSHOP2); s ← s′;
9. gSHOP2 ← ∅;

10. else if there exists an achieve-goals task gLPG then
11. 〈π′, gSHOP2, n〉 ← LPG(s, gLPG, πnil, n, τ);
12. π ← π+ prefix of π′ up to the first abstract action;
13. w ← the rest of π′ + (w − gLPG);
14. s ← Γ(s0, π);
15. gLPG ← ∅;
16. else if w
= ∅ then
17. 〈π, s, gLPG, w, nil〉 ← SHOP2(s, w, π, n, M);
18. if π = failure then return failure;
19. else
20. 〈π′, gSHOP2, n〉 ← LPG(s0, g, π, n, τ);
21. π ← prefix of π′ up to the first abstract action;
22. w ← the rest of π′;
23. s ← Γ(s0, π);
24. return failure.

Figure 1. Pseudocode of the Duet planning algorithm. “+” is the operator
concatenating two plans, πnil is the empty plan, s is the world state, w is the

task network, τ is the tabu-list, gLPG represents the goals specified in an
achieve-goals task, and gSHOP22 is an abstract action.

If Duet returns failure, we re-start it from the beginning with the
same input for a predefined number of times, in order to search for
possible solutions again. The rationale behind these restarts is that
since LPG, and therefore Duet, is a randomized search algorithm,
there is a possibility that different restarts of the planner will pro-
duce different search paths in the search space and the planner will
generate a solution plan.

At each iteration of the while loop (Lines 2–23), Duet first checks
whether the current partial plan π is a solution for the input planning
problem. If so, Duet returns this plan and terminates successfully.
Otherwise, if there is an abstract action (or an HTN of abstract ac-
tions) to be accomplished, Duet invokes SHOP2 on this HTN, which
is called gSHOP2 in Line 5. Using the input HTN methods M , SHOP2
attempts to generate a solution plan for the HTN gSHOP2.

Figure 2 shows the modified version of SHOP2 [14] that Duet
uses. The planning procedure is the same as in [14], except for Lines
10–12. In Line 10, if the current task to be decomposed is an achieve-
goals task, then our adaptation of SHOP2 returns the GoalsOf(s, t)
in the current state s. As described above, the Duet then invokes LPG
on these goals to achieve them and updates the current partial plan.

When SHOP2 returns, there are three cases:

• SHOP2 generates a plan π′ for gSHOP2 successfully using the
methods in M . In this case, the returned successor HTN w′ is
the empty HTN and there are no successor goals for LPG (i.e.,
gLPG is the empty set in Line 5).

• SHOP2 generates an achieve-goals task tLPG for Duet to invoke
LPG in the next iteration. In this case, π′ is the partial plan that
SHOP2 generated until the task tLPG in the decomposition pro-

Procedure SHOP2(s, w, π, n, M)
Input: a world state s, a task network w, a (partial) plan π,

a number of search steps n and a set of HTN-methods,
Output: a plan, its final state, a task that has no method, a task

network and a number of search steps.
1. while w is not empty do
2. nondeterministically choose a task t from w that

has no predecessors and remove it;
3. n ← n + 1;
4. if t is primitive then
5. π ← π + t; s ← γ(s, t);
6. else if t is nonprimitive then
7. choose an applicable method m for t (or if there’s
8. no such method then return failure)
9. add decomposition to the front of tasks;

10. else if t is an achieve-goals task then
11. return 〈π, s, GoalsOf(s, t), w, n〉;
12. return 〈π, s, nil, nil, n〉;

Procedure LPG(s, g, π, ninit, τ)
Input: an initial world state s, a set of goals g, a (partial) plan π,

a number of search steps ninit and a tabu-list τ ,
Output: a plan, the first abstract action in the plan and a number

of search steps.
1. A ← an action graph with the first fact level defined by s,

the action levels by π and the last fact level by g
2. for n = ninit to a predefined number of steps do
3. π ← the plan represented by A
4. if A is a solution graph then return 〈π, nil, n〉;
5. σ ← the flaw at the lowest level of A
6. if σ is an abstract action then return 〈π, σ, n〉;
7. else
8. N ← set of actions that are not in τ and

whose insertion to/removal from A fixes σ;
9. select an element from N and modify A with it

10. return 〈nil, nil, n〉.
Figure 2. Pseudocode of Duet’s modified SHOP2 and LPG procedures.

cess, s′ is the state in which LPG must be called, gLPG is the goals
for LPG specified by tLPG, w′ is the HTN that still needs to be
accomplished once Duet generates a plan that achieves the goals
gLPG, and n is the updated number of search steps.

• SHOP2 returns failure. SHOP2’s failure on gSHOP2 means that
there are no possible ways to decompose gSHOP2 given the current
domain knowledge and the input initial state, and therefore, LPG
should not consider the particular abstract action gSHOP2 in its later
planning invocations. In this case, Duet inserts gSHOP2, along with
the number of search steps generated so far, in the tabu list, and
removes gSHOP2 from the current task network (Line 7).

If SHOP2 returns a plan π′, Duet inserts it into the current plan π,
and updates the HTN w that still needs to be accomplished. Note that
at Line 8, if SHOP2 could successfully accomplish gSHOP2 without
returning any goals to LPG, the returned HTN w′ would be the empty
HTN, and there would be no update to the HTN w.

If there is a goal gLPG for LPG (see Lines 10–15), Duet invokes
LPG with this goal, the current state, the empty plan, and the current
values of the tabu list and number of search steps. The modified LPG
procedure (Figure 2) is essentially the same stochastic local search
procedure of [8] with the following differences: the action graph is
initialized using a (possibly non-empty) plan; the initial number of

A. Gerevini et al. / Combining Domain-Independent Planning and HTN Planning: The Duet Planner 575

search steps is an input number instead of zero; the action graphs can
contain a new type of flaw (an abstract action), which is handled by
just returning it to Duet together with the current plan and number of
search steps (Line 6); the search neighborhood is restricted to forbid
the insertion of an abstract action in the input tabu list (Line 8). Note
that at Line 5 the unsupported preconditions of an abstract action
are selected before the action and that, as in [8], the neighborhood
selection at Line 9 is randomized and uses a heuristic function.

There are three possible cases when LPG terminates:

• LPG tries to fix a flaw corresponding to an abstract action during
its search and needs SHOP2 to decompose this abstract action
into smaller tasks. In this case, LPG returns the current partial
plan it has (π′), the abstract action for SHOP2 (gSHOP2), and the
updated number n of performed search steps.

• LPG generates a solution plan with no abstract actions for the
input goals gLPG. In this case, LPG’s gSHOP2 output is empty.

• LPG fails because the search increases the input number of search
steps n above the predefined maximum. In this case, Duet will
return failure and can be restarted.

After the run of LPG, Duet updates the current plan π, the current
task network w and the current world state s (Lines 12–14).

If there are no immediate goals for SHOP2 or LPG (i.e., if both
gSHOP2 = ∅ and gLPG = ∅), then Duet checks whether there are
more tasks that need to be decomposed by SHOP2 (Lines 16–18) or
any remaining flaws in the current plan that need to be fixed by LPG
(Lines 19–23). In the former case, Duet invokes SHOP2 to plan for
the HTN w that still needs to be accomplished. Note that, in this
case, Duet gives SHOP2 the current partial plan as input (instead
of the empty plan as in the above case). This is because if SHOP2
generates a plan for the input abstract action then that plan must be
a part of the solution. If the task network becomes empty and the
current plan contains a flaw, Duet invokes LPG in its next iteration
(see Line 20) with the initial planning problem, except that this time
LPG starts with the current partial plan and attempts to generate a
solution based on it, rather than starting from the empty plan.

The following theorem establishes Duet’s soundness (we omit the
proof due to space limitations).

Theorem 1 Let P = (s0, g) be a classical planning problem, w0 be
a (possibly empty) HTN to accomplish the goals g, and M be a set of
HTN methods. Suppose Duet(s0, g, w0, M) returns a plan π. Then,
π is a solution for the planning problem P .

Duet is not a complete planner (i.e., it may not find a solution to
an input planning problem, although there is one) for two reasons:
(1) LPG, as a stochastic local search procedure, may return failure
without finding any solution given the number of restarts and the
bound parameter on the number of search steps; and (2) the HTNs
provided as input for SHOP2 may not be complete, and even if they
are, they may prune the solution away.

4 Experimental Evaluation

We compared LPG and SHOP2 with two versions of Duet,
one supplied with extremely sparse domain knowledge, and the
other with more detailed knowledge of one facet of the Mu-
seums domain. The planning operators for LPG in this domain
are DRIVE-TRUCK, MOVE-TO-TRUCK, MOVE-FROM-TRUCK,
and MOVE. The three move operators define a ToH subdomain
where the pegs are the truck area and the two museum pallets. Duet

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 4 5 6 7 8 9

ti
m

e
 (

s
)

number of objects

lpg-solo
duet-simple

duet-specialist
shop2-solo

 0

 10

 20

 30

 40

 50

 4 5 6 7 8 9#
 o

f
p
ro

b
le

m
s
 l
e
ft
 u

n
s
o
lv

e
d

number of objects

lpg-solo
duet-simple

duet-specialist
shop2-solo

Figure 3. In the first graph, each data point is the average running time on
50 randomly generated problems. The second graph shows how many times
the planners failed to return plans within our 500-second deadline; each such

failure was scored at 500 seconds in the first graph.

with sparse domain-knowledge, denoted as DuetSimple, used SHOP2
to choose the order in which to relocate the objects, and LPG to
plan how to move each object. Duet with rich domain-knowledge
of object-stacking, denoted as DuetSpecialist, provided LPG with ab-
stract actions LOAD and UNLOAD in place of the three primitive
move operators. In this version, LPG controls the trucks and chooses
which objects to pick up and drop off, where each pick up/drop off
request is an abstract action handled by SHOP2.

Table 1. Sizes of the human-generated Museum domain descriptions for
LPG, DuetSimple, and DuetSpecialist, and a SHOP2 HTN.

Planner Total lines Total characters Total no. of tokens
LPG 34 1658 426
DuetSimple 70 2893 694
DuetSpecialist 157 6573 1534
SHOP2 238 9549 2254

To measure the complexity of the domain knowledge needed by
the various planners, Table 1 gives several different measures of the
sizes of the domain descriptions used by the various planners. LPG
requires only a description of the operators, while SHOP2 requires
the operators and HTN methods to solve the Museum planning prob-
lems. DuetSimple and DuetSpecialist use a partial set of HTN methods:
these methods can be used to generate plans for parts of a Museums
planning problem but they cannot solve the problem entirely.

There are three parameters affecting problem difficulty in Muse-
ums domain: the number of museums, the connectivity of the muse-
ums, and the number of art objects to transport. We performed exper-
iments for each case in which we fixed two of the parameters above
and vary the other. In the cases where we varied the first two param-
eters above, we did not observe a significant change in the relative
performance of the planners since these two cases emphasized the
truck-movement subproblems in the Museums domain and all of our
planners were able to solve truck-movement subproblems easily.

All of our operator and HTN descriptions and other input files
regarding our experimental setup are available online.3

Figure 3 shows the results of our experiments with varying number
of objects where we fixed the number of museums as 3 and gener-
ated complete graphs of museums. Each data point in this figure is
the average of 50 randomly-generated planning problems. We set the
time limit of 500 seconds for the planners and we scored those runs
that did not return a plan within the limit at 500 seconds.

With increasing numbers of objects, LPG’s local search became
frequently trapped into local minima and was unable to produce any

3See http://www.cs.umd.edu/∼waisbrot/Duet

A. Gerevini et al. / Combining Domain-Independent Planning and HTN Planning: The Duet Planner576

plan within the given CPU-time limit. For example, LPG began to
struggle when the number of objects at any one museum went beyond
4, and out of the 50 9-object problems, it failed on 37.

DuetSimple outperformed LPG slightly when they both solved a
problem, but generally failed on most of the same problems as LPG,
for the same reasons. One advantage of DuetSimple over LPG was an
increase in reliability. Some of the plans produced by LPG included
repetition of actions: picking an object up and then putting it back
in the same place multiple times. LPG can be configured to do more
planning iterations and produce an improved plan, but DuetSimple was
able to produce a more directed plan in a single pass, saving time.

DuetSpecialist dramatically outperformed both DuetSimple and LPG
because it used domain-specific HTNs to solve the parts of the prob-
lem that involve object-stacking. While the object-stacking HTNs
required human authoring, we did not give DuetSpecialist any HTNs
for navigating between museums, choosing when objects should be
picked up, or choosing where to place objects. DuetSpecialist solved
all of the problems, and in most cases solved them faster than LPG.

To run SHOP2 by itself, we needed to give it HTN methods both
for stacking art objects and navigating the truck. It suffered from two
major failings, due to the inexperience of the domain writer. First, the
HTN methods focused on moving one art object at a time, rather than
loading multiple objects onto the truck before attempting delivery.
Second, the HTN methods were deeply recursive, so large problems
caused the stack to overflow. Although the SHOP2 methods could be
improved with additional time and experience, Duet produces good
results with less effort on the part of the domain writer.

One exception to Duet’s performance was that LPG outperformed
it in the easiest problems. This is because of Duet’s loose coupling
between SHOP2 and LPG, which made Duet easy to implement but
made the communication from SHOP2 to LPG very expensive. Duet
and SHOP2 are both written in LISP, so calls to SHOP2 to decom-
pose a task were inexpensive, but calls to LPG, which is written in
C, required spawning and later destroying a separate shell and pro-
cess. Because of this expense, the easiest problems were completely
solved by LPG before Duet was able to complete the necessary calls
between planners. If both planners were packaged as libraries, this
inter-planner communication cost would be significantly decreased.

5 Conclusions

We have described Duet, a new planner that incorporates adaptations
of two well-known planners, LPG [8] and SHOP2 [14]. Duet com-
bines LPG’s domain-independent local search techniques with hier-
archical domain knowledge in the form of SHOP2’s Hierarchical
Task Networks (HTNs). Duet starts with a planning problem consist-
ing of an initial state, a goal condition, and a possibly empty set of
tasks. During planning, Duet uses SHOP2 to decompose tasks into
smaller subtasks, and LPG to satisfy goal conditions.

Our experiments with Duet in the Museums domain showed that
even when Duet had only a small amount of domain-specific knowl-
edge (e.g., “choose the least-fragile object and move it to the target
museum first”), it still solved planning problems faster, on average,
than LPG. With more problem-solving knowledge (e.g., how to prop-
erly manipulate stacks of art objects), Duet outperformed both LPG
and SHOP2, in terms of both speed and the number of successfully
solved problems. To get SHOP2 to perform better, significantly more
human effort would have been needed to improve its knowledge base.

We are currently starting a further experimental evaluation of
Duet. So far, we have run experiments using the Storage domain
from the 2006 International Planning Competition and obtained sim-

ilar results to those shown here.
Although the Duet planning procedure we described in this paper

is based on SHOP2 and LPG, the ideas we described here could be
easily generalized to combine any planner that uses domain-specific
knowledge with any domain-independent classical planner. Thus, a
possible future direction is to extend Duet to work with planners
such as FF [11], FastDownward [10], and SGPlan [5].

Another direction is a tighter integration of SHOP2 and LPG,
which would probably yield more efficient planning in Duet. Not
only would this reduce the communication overhead between the
planners, it would allow Duet to provide a richer form of “knowl-
edge transfer;” the decisions that one of the planners make during its
planning time will be more closely dependent on the domain knowl-
edge that the other one could provide.

Acknowledgments. This work was supported in part by DARPA’s
Transfer Learning and Integrated Learning programs and NSF grant
IIS0412812. The opinions in this paper are those of the authors and
do not necessarily reflect the opinions of the funders.

REFERENCES

[1] F. Bacchus and F. Kabanza, ‘Using temporal logics to express search
control knowledge for planning’, Artificial Intelligence, 116(1-2), 123–
191, (2000).

[2] A. L. Blum and M. L. Furst, ‘Fast planning through planning graph
analysis’, Artificial Intelligence, 90(1-2), 281–300, (1997).

[3] B. Bonet and H. Geffner, ‘Planning as heuristic search: New results’, in
ECP, Durham, UK, (1999).

[4] Adi Botea, Markus Enzenberger, Martin Muller, and Jonathan Scha-
effer, ‘Macro-ff: Improving ai planning with automatically learned
macro-operators’, JAIR, 24, 581–621, (2005).

[5] Y. Chen, C. Hsu, and B. Wah, ‘Temporal planning using subgoal parti-
tioning and resolution in SGPlan’, JAIR, 26, 323–369, (2006).

[6] K. Currie and A. Tate, ‘O-Plan: The open planning architecture’, Arti-
ficial Intelligence, 52(1), 49–86, (1991).

[7] R. E. Fikes and N. Nilsson, ‘Strips: A new approach to the application
of theorem proving to problem solving’, Artificial Intelligence, 5(2),
189–208, (1971).

[8] A. Gerevini, A. Saetti, and I. Serina, ‘Planning through Stochastic Local
Search and Temporal Action Graphs’, JAIR, 20, 239–290, (2003).

[9] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice, Morgan Kaufmann, 2004.

[10] M. Helmert, ‘The Fast Downward planning system’, JAIR, 26, 191–
246, (2006).

[11] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan genera-
tion through heuristic search’, JAIR, 14, 253–302, (2001).

[12] S. Kambhampati, ‘Model-lite planning for the web age masses: The
challenges of planning with incomplete and evolving domain theories’,
in AAAI, Vancouver, Canada, (2007).

[13] J. Kvarnström and P. Doherty, ‘TALplanner: A temporal logic based
forward chaining planner’, Annals of Mathematics and Articial Intelli-
gence, 30, 119–169, (2001).

[14] D. Nau, T. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Ya-
man, ‘SHOP2: An HTN planning system’, JAIR, 20, 379–404, (2003).

[15] N. Nguyen, S. Kambhampati, and R. Nigenda, ‘Planning graph as the
basis for deriving heuristics for plan synthesis by state space and CSP
search’, Artificial Intelligence, 135(1-2), 73 – 124, (2002).

[16] S. Yoon and S. Kambhampati, ‘Towards Model-lite Planning: A Pro-
posal For Learning & Planning with Incomplete Domain Models’, in
Proc. ICAPS-07 Workshop on AI Planning and Learning, Providence,
RI, (2007).

[17] D. E. Wilkins, Practical Planning: Extending the Classical AI Planning
Paradigm, Morgan Kaufmann, San Mateo, CA, 1988.

A. Gerevini et al. / Combining Domain-Independent Planning and HTN Planning: The Duet Planner 577

