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Abstract. At the “functional level”, Semantic Web Services (SWS)
are described akin to planning operators, with preconditions and ef-
fects relative to an ontology; the ontology provides the formal vo-
cabulary and an axiomatisation of the underlying domain. Compos-
ing such SWS is similar to planning. A key obstacle in doing so ef-
fectively is handling the ontology axioms, which act as state con-
straints. Computing the outcome of an action involves the frame and
ramification problems, and corresponds to belief update. The com-
plexity of such updates motivates the search for tractable classes.
Herein we investigate a class that is of practical relevance because it
deals with many commonly used ontology axioms, in particular with
attribute cardinality upper bounds which are not handled by other
known tractable classes. We present an update computation that is ex-
ponential only in a comparatively uncritical parameter; we present an
approximate update which is polynomial in that parameter as well.

1 Introduction
Semantic Web Services (SWS) are pieces of software advertised with
a formal description of what they do; Web Service Composition
(WSC) means to link them together in a way satisfying a complex
user requirement. WSC is widely recognized for its economic po-
tential. In the wide-spread OWL-S [3] and WSMO [5] frameworks,
at the so-called “functional level” (which abstracts from interaction
details and specifies only overall functionality), SWS are described
akin to planning operators, with preconditions and effects relative to
an ontology. Hence planning – planning under uncertainty, since in-
formation in the web context cannot be expected to be complete – is
a prime candidate for realizing this form of WSC.

In our work, we pursue a kind of conformant planning [17]. The
tool we develop performs a forward search as per Figure 1. Each
s represents (partial) knowledge about the corresponding belief b,
where as usual b is the set of all situations possible at the given point
in time. Maintaining the states s is challenging because it involves a
belief update problem. Namely, the main difference to most work
in conformant planning is that we consider state constraints, e.g.
[8, 2, 16]: the domain axiomatization given in the ontology. Such
axioms are state constraints in the sense that any state that can be en-
countered, in the given domain, is known to satisfy them. In the pres-
ence of such axioms, computing the outcome of an action involves
the frame and ramification problems: How do the axioms affect the
previous world, and what are their side effects? Following various
authors, e.g. [10, 15], we define action outcomes as belief updates,
where the “update” is the action effect conjoined with the axioms.

Belief update has been shown to be hard even in tractable logics
(e.g. Horn [4]). Since update is a frequently solved sub-problem in
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s0 := initialise(); open-list := 〈s0〉
while TRUE do

s := choose(open-list)
if is-solution(s) then return path leading to s
for all calls a of SWS applicable in s do

s′ := update(s, a); insert(open-list,s′)
Figure 1. The main loop of our planner.

planning as per Figure 1, the need for tractable classes is tantalising.
In this context, it is of particular interest that practical WSC prob-
lems, e.g. the widely used Virtual Travel Agency (VTA) scenario,
often come with fairly simple domain axiomatizations. Some of the
most typically used axioms are: subsumption relations, which herein
we write as clauses of the form ∀x : train(x) ⇒ vehicle(x); at-
tribute range type restrictions ∀x, y : ticketfor(x, y) ⇒ person(y);
mutual exclusion ∀x : ¬train(x) ∨ ¬car(x); and bounds on the
number of distinct attribute values, such as the axiom ∀x, y1, y2, y3 :
(ticketfor(x, y1) ∧ ticketfor(x, y2) ∧ ticketfor(x, y3)) ⇒ (y1 =
y2 ∨ y1 = y3 ∨ y2 = y3) which is a cardinality upper bound saying
that at most two persons may travel on the same ticket.

The above raises the question which classes of axioms allow a
polynomial time belief update. To our knowledge, the only existing
work exploring this question is DL-Lite [6, 7], a fragment of DL for
which belief update can be done efficiently, and the new belief can be
represented in terms of a single ABox. The latter is necessary since
the updated belief will be visible to the user.

DL-Lite does not allow cardinality upper bounds. In this paper,
we identify a tractable fragment which includes such bounds. A key
difference to DL-Lite is that we don’t require beliefs to be under-
standable for a user: the representation is internal to the planner, and
so we are completely free in how to define the search states s. We
show that this enables us to deal with cardinality upper bounds, in
time exponential only in the maximum bound k imposed by any such
bound. The belief update algorithm we present deals also with binary
clauses, i.e., clauses of at most two literals, such as subsumption re-
lations, attribute range type restrictions, and mutual exclusion.

One would usually expect k to be 1 or 2 (rather than, say, 17).
However, in large tasks the complexity of the update can become
critical even for small k. We hence also pursue the idea of sacrificing
either of soundness or completeness, for tractability. We present an
approximate update algorithm that is polynomial also in k.

A few words are in order regarding our planning formalism. In dif-
ference to DL-Lite, and in line with the usual planning formalisms,
we make a closed world assumption where a finite set of constants
is fixed. The motivation for this is simply that it is closer to existing
planning tools, and hence is expected to make it easier to eventu-
ally build on that work. The other main design decision regards the
semantics of belief update. We adopt the possible models approach
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(PMA)[18], which addresses the frame and ramification problems via
a set-based notion of minimal change. Alternative semantics should
be considered in the future: from an application perspective, at the
time of writing there isn’t sufficient material on concrete use cases
in order to tell whether one or the other semantics is more practical.
The PMA has been used in many recent works related to formal se-
mantics for WSC, e.g. [15, 1, 6], and is hence somewhat canonical.2

Section 2 introduces our planning formalism. Section 3 establishes
some core observations. Sections 4 and 5 present our exact respec-
tively approximate update algorithms. Section 6 discusses closely re-
lated work and Section 7 concludes. For lack of space, we omit all
proofs and many other details such as notions of, and algorithms for,
output constants and a construct for more flexible updates of attribute
values. The full paper is available as a TR [12].

2 WSC Formalism

Our formalism follows standard notions from conformant planning,
extended by modelling constructs for axioms. Our terminology is as
used in the WSC area; it should be obvious how this corresponds to
planning terminology. We denote predicates with G, H, I , variables
with x, y, and constants with c, d, e. We treat equality as a “built-in”
predicate. Literals are possibly negated predicates whose arguments
are variables or constants; if all arguments are constants, the literal
is ground. Given a set X of variables, we denote by LX the set of
all literals which use only variables from X . If l is a literal, we write
l[X] to indicate that l uses variables X . If X = {x1, . . . , xk} and
C = {c1, . . . , ck}, then by l[c1, . . . , ck/x1, . . . , xk] we denote the
substitution, abbreviated l[C]. In the same way, we use substitution
for any construct involving variables. By l, we denote the inverse of
l. If L is a set of literals, then L := {l | l ∈ L} and

V
L :=

V
l∈L l.

An ontology Ω is a pair (P, Φ) where P is a set of predicates and
Φ is a conjunction of closed first-order formulas. We call Φ a the-
ory. A clause is a disjunction of literals with universal quantification
on the outside, e.g. ∀x.¬G(x) ∨H(x) ∨ I(x). A clause is binary if
it contains at most two literals. Φ is binary if it is a conjunction of
binary clauses. The only non-binary clauses we will consider are car-
dinality upper bounds, taking the form ∀x, y1, . . . , yk+1.(G(x, y1)∧
. . . G(x, yk+1)) ⇒ (y1 = y2∨y1 = y3∨ · · ·∨yk = yk+1); to sim-
plify notation, we will refer to such a clause as image(G) ≤ k. A
theory is binary with cardinality upper bounds if it consists entirely
of binary clauses and cardinality upper bounds. We will consider the
special case where every predicate G with a bound image(G) ≤ k
does not appear positively in any binary clause; we refer to such Φ
as binary with consequence-independent cardinality upper bounds.
Note that this includes subsumption relations, attribute range type
restrictions, mutual exclusion, and cardinality upper bounds.

A web service w is a tuple (Xw, prew, effw), where Xw is a set
of variables (the inputs), prew is a conjunction of literals from LXw

(the precondition), and effw is a conjunction of literals from LXw

(the effect).3 Before a web service can be applied, its inputs must
be instantiated with constants, yielding a service; to avoid confusion
with the search states s, we refer to services as actions a (which is

2 Notably, one of the main arguments made against the PMA, e.g. by [2, 16,
11] is that it lacks a notion of causality. However, ontology languages such
as OWL do not model causality; all we are given is a set of axioms. Hence
this criticism does not apply for WSC (unless one proposes an entirely new
framework for modelling web services, which is not our focus here).

3 Note that this definition of preconditions and effects (conjunctions of lit-
erals) is quite restrictive. This is intended since we’re looking for tractable
classes in here. It remains to be verified in future work if and inhowfar this
restriction can be relaxed without losing our tractability results.

in accordance with the usual planning terminology). Formally, for a
web service (X, pre, Y, eff) and tuple of constants Ca, an action a is
given by (prea, effa) = (pre, eff)[Ca/X]. By convention, given an
arbitrary action a, we will use Ca to denote a’s input instantiation.
WSC tasks are tuples (Ω,W, C,U). Ω is an ontology, W is a set

of web services, and C is a set of constants. U is the user requirement,
a pair (preU , effU ) of precondition and effect. For complexity consid-
erations, we will restrict WSC tasks to have fixed arity, meaning a
constant upper bound on predicate arity, the number of parameters
of any web service, and the depth of quantifier nesting in Φ. Fur-
ther, we will sometimes assume fixed maximum cardinality, meaning
a constant upper bound on k in any axiom image(G) ≤ k.

The semantics of our formalism relies on a notion of beliefs, where
each belief is a set of models. Each model is an interpretation of all
propositions formed from P and C. The initial belief b0 is undefined
if Φ ∧ preU is not satisfiable; else, b0 := {m | m |= Φ ∧ preU}. A
solved belief is a belief b s.t., for all m ∈ b, m |= effU .

It remains to define how actions affect models and beliefs. Say
m is a model and a is an action; as stated, we define the out-
come Res(m, a) following [18]. We say that a is applicable in m
if m |= prea. If a is not applicable in m, then Res(m, a) is unde-
fined. Otherwise, Res(m, a) := {m′ | m′ ∈ min(m, Φ ∧ effa)}.
Here, min(m, φ) is the set of all m′ that satisfy φ and that are mini-
mal with respect to the partial order defined by m1 ≤ m2 :iff for all
propositions p, if m2(p) = m(p) then m1(p) = m(p). That is, m′

differs in a set-inclusion minimal subset of values from m.
Say b is a belief. Res(b, a) is undefined if there exists m ∈ b

so that Res(m, a) is undefined, or so that Res(m, a) = ∅. Else,
Res(b, a) :=

S
m∈b Res(m, a). The Res function is extended to

sequences 〈a1, . . . , an〉 in the obvious way. A solution is a sequence
〈a1, . . . , an〉 s.t. Res(b0, 〈a1, . . . , an〉) is a solved belief.

Example 1 Given predicate ticketfor with image(ticketfor) ≤ 2,
and constants t,Peter ,Bob,Mary . Initially, ticketfor(t,Peter)∧
ticketfor(t,Bob). Say we apply a1 with effect ticketfor(t,Mary).
We get two resulting states, one with ticketfor(t,Peter)∧ ticketfor
(t,Mary) and one with ticketfor(t, Bob)∧ticketfor(t,Mary) (but
none with only ticketfor(t,Mary), since that would not be a mini-
mal change). Say we now apply a2 with effect ticketfor(t,Peter).
We get two states, with ticketfor(t,Peter)∧ticketfor(t,Mary) and
ticketfor(t,Peter) ∧ ticketfor(t,Bob), respectively.

3 Basic Observations
We make a number of basic observations: lemmas used in our update
computations, and negative results supporting our design decisions.
We first make some general observations about belief intersections,
then we consider binary clauses and cardinality upper bounds.

Before thinking about how to update beliefs, one needs to think
about how to represent beliefs, and, even, which aspects of beliefs to
represent. Every belief may contain an exponential number of differ-
ent models, and hence symbolic representations should be utilized,
and/or only a partial knowledge should be maintained. Herein, we
focus on the latter. Inspired by recent techniques from conformant
planning [13] (with no state constraints), we aim at maintaining only
belief intersections: the set of literals that are true in all models of a
belief b,

T
m∈b{l | m |= l} =:

T
b. Based on

T
b, we can determine

whether an action a is applicable to b, namely iff prea ⊆
T

b, and
whether b is solved, namely iff effU ⊆

T
b. So, ideally, we wish to

define the search states s from Figure 1 as sets Ls of literals: if b is
a belief and s the corresponding search state, then we want to have
Ls =

T
b. The question is, how do we maintain those s?
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First, one piece of bad news is that computing
T

Res(m, a) is
very hard in general, and is hard even if Φ is Horn. This follows
directly from earlier results in the area of belief update [4]:

Proposition 1 Assume a WSC task (Ω,W, C,U) with fixed arity.
Assume a model m, an action a, and a literal l such that m |= l. It is
Πp

2-complete to decide whether l ∈
T

Res(m, a). If Φ is Horn, then
the same decision is coNP-complete.

This shows in particular that it is not necessarily enough to restrict
ourselves to a tractable logics for Φ – at least in the case of Horn
logics, that does not make the update problem tractable. The question
arises whether the same is the case for binary clauses. As one might
suspect, the answer is “no”. The following two technical observations
can be used to prove this fact; they are also used further below to
prove the correctness of our update computations.

First, literals l ∈
T

Res(b, a) do not appear “out of thin air”:

Lemma 1 Assume aWSC task (Ω,W, C,U). Assume a belief b and
an action a. Then

T
Res(b, a) ⊆ {l | Φ ∧ effa |= l} ∪

T
b.

This is due to the PMA, which, if l 6∈
T

b and Φ ∧ effa 6|= l,
generates m′ ∈ Res(b, a) so that m′ 6|= l.

Lemma 1 means that, in general,
T

Res(b, a) can be computed in
two steps: (A) determine {l | Φ ∧ effa |= l}; (B) determine which
l ∈

T
b do not disappear, i.e., l ∈

T
Res(b, a). Obviously, (A)

is just deduction in Φ. The more tricky part is (B). The following
observation characterizes exactly when l ∈

T
b disappears:

Lemma 2 Assume a WSC task (Ω,W, C,U). Assume a belief b,
an action a, and a literal l ∈

T
b. Then, l 6∈

T
Res(b, a) iff there

exists a set L0 of literals satisfied by a model m ∈ b, such that
Φ∧effa∧

V
L0 is satisfiable and Φ∧effa∧

V
L0∧ l is unsatisfiable.

Intuitively, L0 is the “reason” why l disappears: it is consistent
with the effect and hence true in a model of Res(b, a); but it excludes
l. We can conclude that, for binary clauses, a literal disappears only
if its opposite is necessarily true:

Lemma 3 Assume aWSC task (Ω,W, C,U) where Φ is binary. As-
sume a belief b, an action a, and a literal l ∈

T
b. If l 6∈

T
Res(b, a),

then Φ ∧ effa ∧ l is unsatisfiable.

Namely: by Lemma 2 there exists L0 so that Φ ∧
V

L0 ∧ l is
satisfiable, but Φ ∧ effa ∧

V
L0 ∧ l is unsatisfiable; with binary Φ,

this implies that Φ ∧ effa ∧ l is unsatisfiable. By Lemmas 1 and 3,
and since reasoning in grounded binary Φ is polynomial, we get:

Corollary 1 Assume a WSC task (Ω,W, C,U) with fixed arity,
where Φ is binary. Assume a belief b, and an action a; let L :=
{l | Φ ∧ effa |= l}. Then

T
Res(b, a) = L ∪ (

T
b \ L). Given

T
b,

this can be computed in time polynomial in the size of (Ω,W, C,U).

Corollary 1 is a moderately interesting result since binary clauses
are somewhat complementary to DL-Lite. The more important use of
Lemmas 1, 2, and 3 will be below where we consider the combination
of binary clauses with cardinality upper bounds. Our first observation
regarding that combination is:

Proposition 2 Assume a WSC task (Ω,W, C,U) with fixed arity,
where Φ is binary with cardinality upper bounds. Deciding whether
Φ is satisfiable is NP-complete.

By a straightforward reduction from VERTEX COVER. We side-
step this source of intractability by restricting ourselves to Φ that
are binary with consequence-independent cardinality upper bounds
(c.f. Section 2): any predicate G with a bound image(G) ≤ k does
not appear positively in the binary clauses. Note that G appears only
negatively in the clause image(G) ≤ k. This removes the problem:

Lemma 4 Let φ be a propositional CNF, with φ = φ1 ∧ φ2 where
there exists no literal l s.t. l appears in φ1 and and l appears in φ2.
Let l be a literal s.t. φ |= l. Then either φ1 |= l or φ2 |= l.

This is easy to see based on the lack of conflicts between φ1 and
φ2. A more subtle point is that even dealing with cardinality upper
bounds in isolation is tricky. Namely, it is not possible to computeT

Res(b, a) based only on
T

b:

Proposition 3 There exist a WSC task (Ω,W, C,U) where Φ con-
sists entirely of cardinality upper bounds, an action a, and two
reachable beliefs b and b′ s.t.

T
b =

T
b′, but

T
Res(b, a) 6=T

Res(b′, a).

A model m may disappear when applying an action a′, and not
be re-created when a′ is inverted. This leads to beliefs b where b 6=
{m | m |= Φ∧

T
b},4 and further to b, b′ s.t.

T
b =

T
b′ but b 6= b′.

This means that it is not possible to, as envisioned, define the
search states s simply as sets Ls – at least not if we want to en-
sure that Ls is exactly the intersection of the corresponding belief.
We need to augment s with additional information. We have experi-
mented for some time with methods augmenting s with the min and
max number of attribute values present in any model of the belief.
The intuition behind such an approach would be that cardinality up-
per bounds affect only how many, not which attribute values there
are. However, this is not true since the cardinality upper bounds are
intermingled with action effects; this makes capturing the precise dis-
tribution of attribute value tuples a surprisingly tricky task.

It remains an open question whether beliefs in the presence of
cardinality upper bounds can be represented concisely. Herein, we
present two alternative options. The first option, Section 4, takes time
and space that is exponential (only) in the maximum k of any upper
bound image(G) ≤ k. The second option, Section 5, takes polyno-
mial time also in k, but sacrifices precision and guarantees only one
of soundness or completeness (the user may choose which one).

4 Exact Belief Update
We now specify search states s and associated initialise and update
procedures that enable us to maintain precise belief intersections. We
need three notations. First, by Φ|2, we denote the subset of binary
clauses of Φ. Second, if L is a set of literals, G is a predicate with
arity 2, and c is a constant, then we denote L|G,c := {d | G(c, d) ∈
L}. That is, L|G,c selects from L the values of attribute G for c. Sim-
ilarly, L|−G,c := {d | ¬G(c, d) ∈ L}. Third, say b is a belief; we
introduce a formal notation for the precise distribution, denoted Db,
of attribute value tuples. Our search states will explicitly keep track
of that distribution, and hence contain suficient information for pre-
cise belief update (this is not possible based only on

T
b, c.f. Propo-

sition 3).Db maps any G where image(G) ≤ k in Φ, and any c ∈ C,
onto a set of subsets of C. Namely, for each m ∈ b, Db(G, c) con-
tains the set {d | m |= G(c, d)}. Hence, for every G and c,Db(G, c)
specifies which combinations of attribute values occur.

Our search states s are pairs (Ls,Ds). Consider Figures 2 and 3.
In lines (1) to (3), Figure 2 determines all logical consequences, L,
of the initial literals and the binary part of Φ, and checks whether
L is contradictory. Thereafter, cardinality upper bounds are handled;
note that this can be done separately because of Lemma 4. Line (5)
detects any violated upper bounds. Line (6) says that, for any car-
dinality upper bound where we already have the maximum number

4 This relates to [14], who show that DL updates can often not be represented
in terms of a single changed ABox.
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procedure initialise()
(1) LpreU := {l | l appears in preU}
(2) L := {l | Φ|2 ∧

V
LpreU |= l}

(3) if ex. l s.t. l ∈ L and l ∈ L then return (undefined)
(4) for all image(G) ≤ k in Φ, c ∈ C do
(5) if |LpreU

|G,c | > k then return (undefined)

(6) if |LpreU
|G,c | = k then

L := L ∪ {¬G(c, d) | d ∈ C, d 6∈ L
preU
|G,c }

(7) D(G, c) := {D | D ⊆ C, L
preU
|G,c ⊆ D,

D ∩ L|−G,c = ∅, |D| ≤ k}
(8) return (L,D)

Figure 2. The initialise procedure for exact search states.

of allowed attribute values, all other values are disallowed. Line (7)
sets the D(G, c) value combination sets as appropriate, taking every
combination that adheres to all constraints.

procedure update(s, a)
(1) if prea 6⊆ Ls then return (undefined)
(2) LA := {l | l appears in effa}
(3) L := {l | Φ|2 ∧

V
LA |= l}

(4) if ex. l s.t. l ∈ L and l ∈ L then return (undefined)
(5) for all image(G) ≤ k in Φ, c ∈ C do
(6) if |LA

|G,c| > k then return (undefined)
(7) if |LA

|G,c| = k then
L := L ∪ {¬G(c, d) | d ∈ C, d 6∈ LA

|G,c}
(8) D(G, c) := ∅
(9) LAT := L; L := L ∪ {l | l ∈ Ls, l 6∈ L}
(10) for all image(G) ≤ k in Φ, c ∈ C, D ∈ Ds(G, c) do
(11) if |D ∪ LA

|G,c \ LAT
|−G,c| > k then

(12) L := L \ {G(c, d) | G(c, d) ∈ Ls \ LA}
(13) D(G, c) := D(G, c)∪

{D′ ∪ LA
|G,c | D′ ⊆ D \ (LA

|G,c ∪ LAT
|−G,c),

|D′| = k − |LA
|G,c|}

(14) else D(G, c) := D(G, c) ∪ {D ∪ LA
|G,c \ LAT

|−G,c}
(15) return (L,D)

Figure 3. The update procedure for exact search states.

The update procedure, Figure 3, is more complicated. Line (1)
tests whether a is applicable. Lines (2) to (7) are analogous to lines
(1) to (6) of Figure 2. Line (8) initialises theD structures. Line (9) ex-
tends L with all literals from Ls, except those that are contradicted
by L. By Lemma 1, the resulting L is a superset of

T
Res(b, a).

By Lemma 3, as far as binary clauses are concerned, the resulting
L is equal to

T
Res(b, a). For cardinality upper bounds, Lemma 3

does not apply, which necessitates lines (10) to (12) to check if fur-
ther “old” belief intersection literals disappear. Namely, applying
Lemma 2, an old attribute value (even if it is not contradicted) sur-
vives only if there exists no model m ∈ b so that, after the effects and
their direct consequences have been applied, m contains too many
attribute values. To figure out whether or not the latter is the case,
the information given by Ds is exploited, in a straightforward way.
(Note that this information is indeed required here. Assume that all
we know is the maximum number of attribute values in any model
m ∈ b. Then we would not know whether or not these are the same
values as set by the action effects, and hence we could not decide
whether or not an overflow occurs.)

Lines (13) and (14), finally, make sure that D is updated correctly.
If an overflow occurs, then all possible ways of minimally repair-
ing the overflow are generated. If no overflow occurs, then D(G, c)

simply changes according to the effect and its implications. We have:

Theorem 1 Assume a WSC task (Ω,W, C,U) where Φ is binary
with consequence-independent cardinality upper bounds. Assume b
is a reachable belief, and s is the corresponding search state. Then:
(1) b is defined iff s is defined; (2) if b is defined, then

T
b = Ls; (3)

if b is defined, then Db ≡ Ds.

The formal proof of Theorem 1 is quite lenghty, and involves var-
ious (sometimes rather tedious) case distinctions. The proof essen-
tially spells out the intuitive arguments given above. Our main result
here is that, provided a maximum cardinality is fixed, maintaining
belief intersections is tractable:

Corollary 2 Assume a WSC task (Ω,W, C,U) with fixed arity and
fixed maximum cardinality, where Φ is binary with consequence-
independent cardinality upper bounds. Assume b is reached by ac-
tion sequence ~a. Then the corresponding search state s is computed
in time polynomial in the size of (Ω,W, C,U) and ~a, and

T
b = Ls.

Note that it is indeed a non-trivial consequence of our particular
setting that the behavior is exponential only in the maximum k of any
image(G) ≤ k. The enabling properties are: (1) image(G) ≤ k
does not interfere in any way with image(H) ≤ k, if G 6= H; (2)
similarly, the bound on the number of y in G(c, y) does not interfere
with the bound on y in G(c′, y) if c 6= c′; (3) due to consequence-
independence, no interferences arise from the binary clauses.

Example 2 Re-consider Example 1. Running initialise, we get the
state s0 where L = {ticketfor(t,Peter), ticketfor(t,Bob)}
and D(ticketfor , t) = {{Peter ,Bob}}. Applying a1, we get
s1 = update(s0, a1) where L = {ticketfor(t,Mary)} and
D(ticketfor , t) = {{Peter ,Mary}, {Bob,Mary}}. Applying a2,
we get s2 = update(s0, a2) where L = {ticketfor(t,Peter)} and
D(ticketfor , t) = {{Peter ,Mary}, {Bob,Peter}}.

5 Approximate Belief Update
Even though it seems likely that k will be small in practice, it is ad-
visable to look for more efficient methods. The size of D(G, c) is
bounded only by

`|C|
k

´
. If there are many constants, then enumer-

ating D will become critical even for, say, k > 2. We now tackle
this complexity by approximation methods. The search states s are
pairs (L−

s , L+
s ) where L−

s and L+
s respectively under-approximate

and over-approximate the belief intersection. Both approximations
are maintained simultaneously because they are interlinked. Depend-
ing on how one tests action applicability and solutions, one obtains
a pessimistic/sound (but incomplete) planning procedure, or an op-
timistic/complete (but unsound) planning procedure. We show here
only the former; the latter can be obtained by minor modifications.

The initialise procedure changes only slightly because, there, no
update is performed. In fact the procedure is exactly as shown in
Figure 2, except that the returned s takes the form (L, L) where L –
the precise belief intersection – serves both as L− and as L+.

Consider Figure 4. Line (1) tests pessimistically whether a is not
applicable: the preconditions are tested against L−

s . Thereafter, lines
(2) and (3) determine the effects and their implications over the bi-
nary clauses. Line (4) tests for contradictions in the latter. Similarly,
line (6) aborts the algorithm in case of a conflict with a cardinal-
ity upper bound (separate treatment of the two kinds of conflicts is
justified by Lemma 4). Line (7) adds the consequences of the upper
bounds to the implied literals.
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procedure update(s, a)
(1) if prea 6⊆ L−

s then return (undefined)
(2) LA := {l | l appears in effa}
(3) L := {l | Φ|2 ∧

V
LA |= l}

(4) if ex. l s.t. l ∈ L and l ∈ L then return (undefined)
(5) for all image(G) ≤ k in Φ, c ∈ C do
(6) if |LA

|G,c| > k then return (undefined)
(7) if |LA

|G,c| = k then
L := L ∪ {¬G(c, d) | d ∈ C, d 6∈ LA

|G,c}
(8) L− := L ∪ {l | l ∈ L−

s , l 6∈ L}
(9) L+ := L ∪ {l | l ∈ L+

s , l 6∈ L}
(10) for all image(G) ≤ k in Φ, c ∈ C do
(11) if |L−

|G,c| > k then
L+ := L+ \ {G(c, d) | G(c, d) ∈ L+

s \ LA}
(12) if |(C \ L−

|−G,c) ∪ LA
|G,c| > k then

L− := L− \ {G(c, d) | G(c, d) ∈ L−
s \ LA}

(13) return (L−, L+)

Figure 4. The update procedure for approximate search states.

Lines (8) and (9) initialise the consideration of old intersection
literals. All of those which are not contradicted are taken into a re-
spective approximate set (c.f. Lemmas 1 and 3). Line (11) says that,
if even the under-approximation violates a bound, then certainly the
old attribute values get lost unless they are protected by the effect
(c.f. Lemma 2). Line (12) says that, if the number of constants that
could potentially be attribute values violates a bound, then it may
happen that the old attribute values get lost, unless they are protected
by the effect (c.f. Lemma 2). Note that the order of lines (11) and
(12) is important because line (12) changes L−. If one executes (12)
before (11), then the condition of (11) is always false, and L+ is still
an over-approximation but an unnecessarily generous one. We get:

Theorem 2 Assume a WSC task (Ω,W, C,U) where Φ is binary
with consequence-independent cardinality upper bounds. Assume b
is a reachable belief, and s is the corresponding approximate search
state. Then: (1) if b is undefined, then s is undefined; (2) if s is de-
fined, then L−

s ⊆
T

b ⊆ L+
s .

As for Theorem 1, the proof of Theorem 2 is lenghty and involves
various case distinctions. Our main result of this section is:

Corollary 3 Assume a WSC task (Ω,W, C,U) with fixed arity,
where Φ is binary with consequence-independent cardinality upper
bounds. Assume b is reached by action sequence~a. If the correspond-
ing approximate search state s is defined, then s is computed in time
polynomial in the size of (Ω,W, C,U) and ~a, and

T
b ⊇ L−

s .

Example 3 Re-consider Example 1. Running initialise, we get the
state s0 where L− = L+ = {ticketfor(t,Peter), ticketfor(t,Bob)
}. Applying a1, both lines (11) and (12) fire and so we get s1 =
update(s0, a1) where L− = L+ = {ticketfor(t,Mary)}. Applying
a2, only line (12) fires and so we get L− = {ticketfor(t,Peter)}
and L+ = {ticketfor(t,Mary), ticketfor(t,Peter)}.

6 Related Work
[6] introduces DL-Lite, where the updated belief can be represented
in terms of a new ABox computed in polynomial time. DL-Lite is
somewhat complementary to binary clauses. Disjunction is allowed
only in the form of subsumption rules in the TBox, and is binary in
that sense. However, [6] allow unqualified existential quantification,
membership assertions (ABox literals) using variables, and updates

involving general (constructed) DL concepts. On the other hand, DL-
Lite does not allow clauses with two positive literals, and DL-Lite
(like any DL) does not allow predicates of arity greater than 2. Most
importantly, DL-Lite does not allow cardinality upper bounds.

[7] considers a variant of DL-Lite where ABox assertions do not
allow variables, and hence updates cannot be represented in terms
of a new ABox. [7] show that the update from [6] can be re-used to
compute the exact set of (restricted) ABox assertions after the update;
this approximates the update in the sense that this set of assertions
does not suffice to characterize the exact set of models. This is quite
different from our approximation techniques as per Section 5, where
we use approximation (without exactness guarantees) not to handle
a different language, but to obtain efficiency.

[9, 10] address planning with belief update semantics (other than
the PMA); they do not identify tractable classes.

7 Conclusion
In planning-based WSC, one of the fundamental difficulties is the
complexity of computing the outcome of actions. Since practical do-
main axiomatizations for WSC are often simple, there is hope to
tackle this complexity by identifying tractable fragments. We make
a first step in this direction, showing how cardinality upper bounds
can be handled, in combination with binary clauses. Many questions
are left open. For example: Are our algorithms here the best possible
ones, or is there an exact update algorithm that is polynomial also in
k? Can one efficiently deal with cardinality lower bounds? We hope
that some of these questions will be clarified in future work.
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