ECAI 2008

M. Ghallab et al. (Eds.)

10S Press, 2008

© 2008 The authors and 10S Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-553

553

A Practical Temporal Constraint Management System
for Real-Time Applications

Luke Hunsberger

Abstract. A temporal constraint management system (TCMS) is a
temporal network together with algorithms for managing the con-
straints in that network over time. This paper presents a practi-
cal TCMS, called MYSYSTEM, that efficiently handles the propaga-
tion of the kinds of temporal constraints commonly found in real-
time applications, while providing constant-time access to “all-pairs,
shortest-path” information that is extremely useful in many applica-
tions. The temporal network in MYSYSTEM includes special time-
points for dealing with the passage of time and eliminating the need
for certain common forms of constraint propagation. The constraint
propagation algorithm in MYSYSTEM maintains a restricted set of
entries in the associated all-pairs, shortest-path matrix by incremen-
tally propagating changes to the network either from adding a new
constraint or strengthening, weakening or deleting an existing con-
straint. The paper presents empirical evidence to support the claim
that MYSYSTEM is scalable to real-time planning, scheduling and
acting applications.

1 Introduction

A Simple Temporal Network (STN) is a pair, (7,C), where 7 is a
set of time-point variables (or time-points) and C is a set of temporal
constraints, each having the form: ¢t; — ¢; < 4, for some t;,t; € T
and some real number ¢ [3]. In this paper, we let n = |7| and
m = |C|. A solution to an STN is a set of real-valued assignments
to the variables in 7 that satisfy all of the constraints in C. An STN
is called consistent if it has at least one solution.

Each STN, (7, C), has a corresponding graph, G = (7, £), where
the nodes of the graph are the time-points in 7', and the edges of the
graph correspond one-to-one with the constraints in C. In particular,
for each constraint, t; — ¢t; < 4, in C, there is an edge from ¢; to ¢;
with weight ¢ in £. In this paper, we let k& be the maximum number
of edges incident to any node in the graph. An STN is consistent if
and only if its corresponding graph has no negative cycles (i.e., loops
with negative path-length) [3].

Most STNs include a special time-point—called the zero time-
point (or Z)—whose value is fixed at 0. Temporal constraints involv-
ing Z are equivalent to unary constraints. For example, Z — ¢; < §; is
equivalent to the lower-bound constraint, —§1 < t;;and t; — Z < 2
is equivalent to the upper-bound constraint, t; < ds.

The distance matrix for an STN is an n-by-n matrix, D, such that
D(ts, t;) equals the length of the shortest path from ¢; to ¢; in the cor-
responding graph, G. Thus, D is the all-pairs, shortest-path (APSP)
matrix for G. If there is no path from ¢; to ¢;, then D(t;, t;) = oc.

Changing an STN over Time. An STN typically acquires new
time-points and constraints over time. Algorithms that incrementally

1 Vassar College, Poughkeepsie, NY, USA, hunsberg@cs.vassar.edu

1

propagate changes to the STN in response to adding a new constraint
or strengthening an existing constraint are called incremental algo-
rithms. Algorithms that propagate changes to the STN in response to
weakening or deleting a constraint already in the network are called
decremental algorithms. Algorithms that are both incremental and
decremental are called fully dynamic. Decremental algorithms have
higher time complexity than their incremental counterparts [16, 12].

Executing Time-Points. In most applications, the starting and
ending times of tasks are represented by time-points in a tempo-
ral network. When the task is begun—say, at time K—its starting
time-point, s, is fixed to the value K, by inserting the constraints,
K<ts<K(@e,Z—ts<—Kandts —Z < K). We say that ¢,
has been executed at time K. Similarly, when the task is completed—
say, at time L—its ending point, t., is fixed to the value L.

Cesta and Oddi’s Algorithm. Cesta and Oddi [2] presented a
fully dynamic algorithm for propagating changes to an STN. The al-
gorithm does not maintain the entire distance matrix; instead, it main-
tains only enough entries to verify the consistency of the network. In
particular, for each time-point ¢ € 7, it only maintains entries of the
form, D(Z,t) and D(t, Z). Thus, the space requirements are O(n).
The incremental portion of the algorithm, which is a variation of the
Bellman-Ford algorithm, has time complexity O(nm). The decre-
mental portion of the algorithm first determines which entries might
be affected by the change to the network and then runs the incremen-
tal portion on that part of the network. Since their algorithm does
not maintain the full distance matrix, it can only discover negative
cycles during the process of constraint propagation. Furthermore, an-
swering distance matrix queries for entries other than those involving
Z requires O(kn) time, instead of the constant look-up time that is
afforded by having the full distance matrix.

Maintaining the Full Distance Matrix. Maintaining an up-to-
date distance matrix requires O(n?) space and additional constraint
propagation; however, it has the following important advantages.
First, it provides constant-time lookup for distance-matrix entries,
which facilitates the use of multi-agent coordination algorithms (e.g.,
temporal decoupling algorithms [9]). Second, before adding a new
constraint (or strengthening an existing constraint) the consistency of
the resulting network can be determined by constant-time lookup—
in advance of any constraint propagation [11].

Researchers have developed fully dynamic algorithms for main-
taining distance matrices [7, 5, 16, 4, 12]. Although these algorithms
have attractive time complexities, they restrict the kinds of con-
straints that can populate a network and, thus, are inappropriate for
many applications. Others have presented algorithms making fewer
restrictions, but exhibiting poorer performance [13, 6].

The INCR2004 Algorithm. The author recently presented a prac-
tical incremental algorithm for maintaining the full distance ma-

554 L. Hunsberger / A Practical Temporal Constraint Management System for Real-Time Applications

directi
propag

Figure 1. The PropFwd phase of the incremental algorithm

rection of propagation

Figure 2. The PropBkwd phase of the incremental algorithm

trix [8]. For ease of exposition, we shall refer to that algorithm as the
INCR2004 algorithm. That algorithm reduces the size of the network
by collapsing all rigid components down to a single time-point.> The
INCR2004 algorithm also reduces constraint propagation by propa-
gating only along undominated edges.® The undominated edges are
stored in hash tables. In particular, for each time-point ¢, Precs(t) is
a hash table containing the undominated edges coming in to ¢; and
Succs(t) contains the undominated edges going out from ¢. The high-
level structure of the algorithm, which is based on work by several
others [12, 13, 6], has two phases, called PropFwd and PropBkwd.
The algorithm has time complexity O(kA), where A is the number
of entries of D that actually need to be changed [12].

The PropFwd Phase. Suppose a new (or stronger) constraint,
t; —t; <4, is added to the network. Fig. 1 illustrates the PropFwd
phase, in which changes to distance matrix entries of the form,
D(t;,t), are propagated by following the successors of ¢;. In the fig-
ure, decreasing the weight of the edge, ¢;t;, from 5 to 2 requires de-
creasing D(t;, t) from 9 to 6, and decreasing D(¢, t,) from 17 to
14. Since D(t;, t) does not need to be changed, forward propagation
stops at that point.* During the PropFwd phase, each time-point, t,
for which D(t;, t) changed is collected in a hash-table, AffectedTPs.

The PropBkwd Phase. Fig.?2 illustrates the PropBkwd phase of the
INCR2004 algorithm. For each t,,, in AffectedTPs collected during
the PropFwd phase, the predecessors of ¢; are followed, potentially
leading to changes in entries of the form, D(t, ¢,). For example, in
the figure, the entry D(¢;, t) had been reduced from 17 to 14 during
the first phase. Its new value, requires reducing D(ty,, t,,) from 18 to
15. However, since D(tq, tm) does not need to be changed, backward
propagation stops at that point.

Augmented STNs. An Augmented STN (ASTN) is an STN that
has been augmented to include a special time-point, N, which repre-
sents the current time (i.e., “now”) [11]. Representing the now time-
point enables the network to explicitly handle the passage of time

2 A rigid component is a set of time-points in which the temporal distance
between each pair of time-points is constrained to be some fixed value.
Other researchers have described collapsing rigid components [17, 7].

3 A constraint is called undominated if removing it from the network would
necessarily require updating the distance matrix. In contrast, removing a
dominated constraint from the network would leave the distance matrix un-
changed. The algorithm takes advantage of the fact that dominated con-
straints are easy to detect in networks with no rigid components [10].

4 For expositional simplicity, Fig. 1 shows only one branch of the sub-tree
rooted at t;. The PropFwd phase normally explores multiple branches of
that sub-tree. Similar remarks apply to the PropBkwd phase.

0 ta
—d P
-\ :4/
0 te

Figure 3. The now time-point in an ASTN

-1
fore: ZA/N‘&
—9 N
/ 2

ring: 7 _——————— %
;)

ter: ‘y N 2
’/—V
A
-2

Figure 4. The execution of the time-point ¢ at time 2

and the execution of time-points. The passage of time is handled by
including a single edge from N to Z, with weight —d, representing
the lower-bound constraint, d < N. This edge, as illustrated in Fig. 3,
is the only outgoing edge from the now time-point. As time passes,
the value of d increases (i.e., the constraint involving Z and N grows
stronger). Since the time-complexity of strengthening a constraint
is lower than that of weakening or deleting constraints, this way of
dealing with the passage of time is computationally attractive.

In an ASTN, each unexecuted time-point, ¢, is constrained to occur
at or after now—represented by an edge from ¢ to N with weight 0.
Fig. 3 illustrates these kinds of edges, which are the only incoming
edges to the now time-point. When ¢ is executed, the edge from ¢ to N
is deleted, and two edges between ¢ and Z are inserted to fix ¢’s value.
Fig. 4 provides “before”, “during” and “after”” snapshots of a network
in which ¢ is executed at time 2. In the “before” snapshot, the current
time is 1, and ¢ is constrained to occur at or after that time. In the
middle snapshot, ¢ has been executed at time 2 (i.e., the edge from
t to N has been deleted, and a pair of edges between ¢ and Z have
been inserted, fixing the value of ¢ to 2). In the bottom snapshot, the
current time has advanced to 3, but that has no effect on t.

For an ASTN, the distance matrix entry, D(Z,N), can be inter-
preted as a kind of deadline [11]. In particular, if some time-point is
not executed at or before this deadline, then the network is certain
to become inconsistent—because the passage of time (i.e., the in-
creased value of d on the edge from N to Z) will eventually generate a
negative cycle. The potential inconsistency can be averted by execut-
ing one or more time-points, thereby deleting constraints involving N
and increasing the value of D(Z, N).

2 Desiderata

The main goal for the work described in this paper is to provide a
temporal constraint management system that can serve as the ba-
sis for a temporal reasoning module in real-time planning, schedul-
ing and acting applications, including multi-agent systems involving
the coordination of temporally dependent, inter-agent activities. This
high-level goal consists of the following subsidiary goals:

e To maintain constant-time access to all distance-matrix entries

e To reduce space requirements for the distance matrix (or any other
auxiliary data structures)

e To reduce the need for constraint propagation

L. Hunsberger / A Practical Temporal Constraint Management System for Real-Time Applications 555

Figure 5. Replacing the zero time-point by a pair of time-points

e To include a fully dynamic constraint propagation algorithm that
is scalable to real-time applications

Constant-time access to distance-matrix entries facilitates multi-
agent coordination algorithms (e.g., temporal decoupling [9]). Re-
ducing space requirements for the distance matrix implies not ex-
plicitly representing every distance-matrix entry, while maintaining
constant-time access. Reducing the need for constraint propagation
makes the fully dynamic algorithm computationally palatable. “Scal-
able” means that the resulting TCMS is practical for applications in-
volving hundreds, or even thousands of time-points.

3 Approach

This paper presents a TCMS called MYSYSTEM that meets the
desiderata listed above. In MYSYSTEM:

e The now time-point, N, is explicitly represented (as in ASTNs).

e The zero time-point, Z, is replaced by a pair of time-points, Z;, and
Zout, thereby eliminating propagation through Z, and reducing the
number of distance matrix entries needing to be computed.

e Since the portion of the distance-matrix that is actually computed
is typically quite small, the values are stored in a hash table, in-
stead of a two-dimensional array.

e The incremental algorithm is essentially the same as the
INCR2004 algorithm, except that rigid components and domi-
nated constraints are handled differently.

e A new decremental algorithm is provided that manipulates the
same data structures as the incremental algorithm. The algorithm,
which draws on ideas from other researchers [4, 13], is not the
fastest possible, but requires only minor auxiliary data structures.

e Executed time-points are effectively removed from the network.

Replacing the Zero Time-Point by a Pair of Time-Points. In
real-world applications, the starting and ending times of tasks are
typically subject to a variety of unary constraints—that is, constraints
involving the zero time-point, Z. As a result, while the maximum
number of edges incident on any other time-point might be, say, ten,
the number of edges incident on Z can be O(n). Thus, a great deal
of the constraint propagation needed to fully populate the distance
matrix is due to constraints involving Z.

To eliminate constraint propagation through Z, the temporal net-
work in MYSYSTEM replaces Z by a pair of time-points, Z;, and
Zout.> In particular, as illustrated in Fig. 5, Z;,, is the destination for
all edges that would normally point to Z, and Z,; is the source of all
edges that would normally emanate from Z.

Now, adding an edge from Z;,, to Z,.: with weight O (shown as a
dashed arrow in the figure) would make the two networks in Fig. 5
equivalent; however, such an edge is purposely left out of the net-
work in MYSYSTEM. This seemingly minor change eliminates prop-
agation through Z; thus, it dramatically reduces the amount of com-
putation required to maintain the distance matrix. At the same time,

5 This treatment of the zero time-point is somewhat similar to Cesta and
Oddi’s treatment of the zero time-point as both a source and a sink [2].

MYSYSTEM retains the property of having constant-time access to all
distance-matrix entries. To see this, suppose A is a standard ASTN
and A’ is the same as A, except that the zero time-point has been
replaced by Z;, and Z,., as described above. Because the edge from
Zin t0 Zous i left out of A’, the distance matrices, D and D', are typ-
ically quite different. However, the relationship between their corre-
sponding entries is simple. In particular, for any t;, t; € 7\{z}:®

e D(t;,Z) = D' (ti, Zin)

o D(Z,t;) = D'(Zout, t;)

° D(ti, t]‘) = min{D’(ti, Zm) + 'D,(Zaut, tj), D/(ti, t]‘)}

The last equality can be glossed as: “The shortest path from ¢; to
t; either involves the zero time-point or it doesn’t.” In this way, al-
though D’ typically contains far fewer finite entries than D, it can be
used to fetch the value of any entry in D(¢;, ¢;) in constant time.

The Distance-Matrix Hash Table. Due to the use of Z;, and
Zout, the constraint propagation algorithms in MYSYSTEM typically
need to compute only a small fraction of the O(n?) entries in the
distance matrix, D’. Thus, to save space, a hash table is used to store
only those entries that are actually computed. Any entry, D’ (¢;,t;),
that has not been stored in the hash table is taken to be infinity, repre-
senting that there is no path from ¢; to ¢;. Hash-table keys are integers
of the form, Ni + j, where NN is an upper bound on the number of
time-points in the network. ’ For example, if N = 2'* = 16384,
then 28-bit values can be used for hash-table keys—which can be
quickly computed using left-shift and addition operations.

A Note about Rigid Components and Undominated Edges.
In a purely incremental context, constraints are never weakened or
deleted. Thus, rigid components, once created, can never become
non-rigid. Thus, it is safe to collapse each rigid component down to a
single point as soon as it is created. Insodoing, the network remains
free from rigidities, which simplifies the detection of dominated con-
straints. In contrast, a fully dynamic algorithm must handle the weak-
ening or deleting of constraints and, thus, cannot afford to collapse
all rigid components—because undoing such transformations can be
too computationally costly. Thus, the fully dynamic algorithm in
MYSYSTEM does not typically collapse rigid components. Thus, the
network in MYSYSTEM may contain rigidities, thereby complicating
the detection of dominated edges. For this reason, the detection of
dominated edges in MYSYSTEM is restricted to cases where a strictly
shorter alternative pathway is found.® In addition, the decremental
algorithm can sometimes insert dominated edges into the Precs and
Succs hash tables—because avoiding doing so would be too com-
putationally costly. However, when the incremental algorithm de-
tects these dominated edges, they are immediately removed from the
Precs and Succs hash tables. Thus, in this sense, the fully dynamic
algorithm in MYSYSTEM can be said to propagate along “mostly”
undominated edges.

The Decremental Algorithm in MYSYSTEM. The decremental
algorithm is used when an existing constraint, ¢t; — t; < 6, is either
weakened or deleted. The algorithm has the following three phases:

(1) In a hash-table called Changelings, collect all pairs, (tz,ty),
such that D’ (¢, t,,) might need updating.

(2) For each (tu,ty) in Changelings, check for shorter alternative
pathways from ¢, to t,; collect the shortest alternatives in a
hash-table called AltPaths.

6 7\ {2} denotes the set of time-points in .A other than Z.

7 Demetrescu and Italiano [4] encode pairs in this way.

8 In contrast, the INCR2004 algorithm also detects edges that are dominated
by a path whose length is the same as that of the edge being dominated.

556 L. Hunsberger / A Practical Temporal Constraint Management System for Real-Time Applications

(3) Incrementally propagate the constraints in AltPaths.

Phase 1. Consider the path from ¢, to ¢, shown below, where the
wavy arrows represent shortest paths and § is the original weight of
the edge being weakened/deleted.

ty — N1 Lt‘j N\t
The pair, (tz,ty), is collected during Phase 1 if and only if:
D' (ty,ty) = D' (te, ti) + 6 + D (ti, ty)

All such pairs are collected using a two-pass algorithm that has the
same structure as the PropFwd and PropBkwd phases of the incre-
mental algorithm. Thus, Phase 1 takes time O(kA), where A is the
number of pairs in Changelings.

After the Changelings hash-table has been populated, the corre-
sponding distance-matrix entries are assigned new values, as fol-
lows. If the edge, t;t;, has been deleted, then each D’ (t,,t,) is
set to oo, because the deletion of ¢;¢; might mean there no longer
is any path from ¢; to t,. On the other hand, if ¢;t; was simply
weakened—say by an amount a—then each D’ (t,,t,) is set to the
value D' (tz,t,) + o + 1. Using this value, which is necessarily
greater than the eventual updated value, forces D’ (ts,t,) to be up-
dated during Phase 2 or 3.

Since MYSYSTEM does not maintain any pointers to first or
last steps of shortest paths (e.g., as done by Rohnert [13]), the
Changelings hash table may end up containing some pairs whose
distance-matrix entries do not need to be updated. Instead of main-
taining complex auxiliary data structures to avoid this, the decremen-
tal algorithm discovers alternative paths during Phase 2 and 3 to en-
sure that the corresponding distance-matrix entries are restored.

Phase 2. For each (tz, ty) in Changelings, alternative pathways of
the forms given below are collected in a hash-table called AltPaths.’

t: > t,

edge shortest path

t, — NS t, ——» t,
shortest path edge

For some (¢, ty) in Changelings, it may be that no alternative paths
exist. For other pairs, more than one such path may exist; however,
only the shortest such paths are kept in AltPaths. The hash-key for
the AltPaths hash table is the pair, (¢., t,); the value is the length of
the alternative path. (Interior time-points on the path are not needed.)
Notice that the alternative pathways collected during Phase 2 may
well have been dominated prior to the weakening (or deleting) of the
edge t;t;, as illustrated below in the case of an alternative edge.

16

Prior to weakening ¢;¢; from 5 to 10, the edge, ¢..t, was not a shortest
path; however, afterward, it becomes a shorter (and possibly shortest)
path. For this reason, the edges considered during Phase 2 are drawn
from the set C—which contains all of the edges in the network—not
just those in the Precs and Succs hash tables.

9 Demetrescu and Italiano [4] refer to such pathways as locally shortest.

Phase 3. During Phase 3, the alternative paths found in Phase 2 are
incrementally propagated. There are several options for doing this.
Each alternative path could, in turn, be completely propagated using
the incremental algorithm. However, this sort of depth-first approach
might result in a large amount of redundant propagation. Another
option, analogous to A* search, would be to sort the alternative paths
according to how close their path-lengths were to the original value
of D’ (t4,t,) and apply the incremental algorithm to those alternative
paths in their sorted order.

The decremental algorithm in MYSYSTEM takes an iterative,
breadth-first approach. In the first iteration, each path in AltPaths is
propagated only one step along the predecessors of ¢, and the succes-
sors of ¢,. Each one-step propagation generates a new update which
is stored in a hash-table called newAltPaths. During the second iter-
ation, each update in newAltPaths is propagated only one step, gen-
erating new updates for the third iteration. This iterative process ter-
minates when no more updates are generated. Empirical evidence
suggests that this form of incremental propagation is quite practical.

Removing Executed Time-Points. As discussed earlier, the fully
dynamic algorithm does not typically collapse rigid components, be-
cause undoing such transformations in response to constraint relax-
ations can be too computationally costly. However, when a time-
point, ¢, is executed, it forms a rigid component with Z;, and Z,.
that is guaranteed to persist. Thus, it is safe to collapse this kind of
rigid component. Doing so effectively removes ¢ from the network
by reorienting constraints involving ¢ toward Z;, and Z .

4 Empirical Evaluation

The MYSYSTEM TCMS was tested on a set of thirty 25-agent
scheduling problems drawn from the Phase 2 Evaluation for the
DARPA Coordinators Project [15]. These kinds of problems are rep-
resented in the cTAEMS language, the details of which are described
elsewhere [1]. The important characteristics of the test problems are
shown in the top plot in Fig. 6. Each problem involved between 1507
and 3273 time-points (plotted on the horizontal axis) and between
803 and 1686 activities (ACTS).!” For each problem, a centralized
scheduler [14] was used to generate a set of agent schedules seeking
to optimize the cTAEMS quality metric. In the process, the scheduler
invoked the incremental algorithm of MYSYSTEM between 3461 and
7353 times (INCRS), and the decremental algorithm between 254
and 1185 times (DECRS). The resulting schedules included a total of
between 139 and 243 activities (SCHEDS), and resulted in networks
with between 3326 and 6797 edges (EDGES).

The middle plot of Fig. 6 shows the CPU time used by MYSYSTEM
to do all of the temporal computations for each scheduling problem.
The CPU time ranged from 2 seconds to 2 minutes for each problem.
In the worst case, the 2 minutes of computation, spread over 8000
invocations of the incremental or decremental algorithms, averaged
to about 15 msec per invocation.

The bottom plot of Fig. 6 shows the memory usage by MYSYS-
TEM. The number of finite distance-matrix cells (i.e., those that were
actually stored in a hash table) ranged from about 77,000 to about
850,000 per problem. In contrast, the full distance matrix would have
required between 2.2 and 10.7 million cells. Given that typical entries
are four bytes, such a matrix could have required over 40 megabytes
of memory. In contrast, the fotal memory used by MYSYSTEM during
the course of each scheduling problem, most of which was dynami-
cally allocated and freed, ranged from about 8 to 92 megabytes.

10 Some activities share time-points; hence the number of time-points is
somewhat less than double the number of activities.

L. Hunsberger / A Practical Temporal Constraint Management System for Real-Time Applications 557

. INCRS
DGES

7 ACTS
" DECRS
; : s *7 SCHEDS
T T T T T T T T
1600 2000 2400 2800 3000
NUMBER OF TIME POINTS
10]
(%))
[i%é
= 3 * LI
5101 % % ;ﬁ *
8] * * *
o]
] Low ¥
z *
% 1 * % *
10 1 *
] *
] % *
0 T T T T T T T T T T T T T T T
10 1600 2000 2400 2800 3000
NUMBER OF TIME POINTS
103 Total Memory Used (Bytesp & , ¢+ ¢ P
] E NPT A ¢
7 AR £ -
74 o . o &0
3 o o
10 3 o © ©© w o0 ¢
1 o Potential Size of Distance Matrix
63 *
10 ; * * R
4 * . * ¥
54 * %
10 3 Number of Finité Distance Kiatrix Entries
4 T T T T T T T T T T T T T T T
10 1600 2000 2400 2800 3000

NUMBER OF TIME POINTS

Figure 6. Results of experiments on 25-agent scheduling problems

All experiments were run on an IBM Thinkpad laptop with a
2.4GHz Intel processor using Allegro Common Lisp, version 8.1.

5 Conclusion

This paper presented a new temporal constraint management sys-
tem, called MYSYSTEM, that combines novel STN representations
with a fully dynamic propagation algorithm that is practical for real-
world, real-time applications. The temporal network in MYSYSTEM
includes special time-points to eliminate a common form of con-
straint propagation and reduce the number of distance-matrix en-
tries that typically need to be computed. The fully dynamic algo-
rithm extends an earlier incremental algorithm. It limits propagation
to “mostly” undominated edges. The paper provided empirical re-

sults on temporal networks derived from a centralized scheduler ap-
plied to a variety of 25-agent scheduling problems involving thou-
sands of time-points.

Acknowledgments

The research presented in this paper was supported in part by sub-
contract 55-000723 between Vassar College and SRI International
as part of the DARPA Coordinators Project (Contract FA8750-05-C-
0033). Any opinions, findings and conclusions or recommendations
expressed in this paper are those of the author and do not necessar-
ily reflect the views of DARPA. The author thanks Stephen Smith,
Zachary Rubinstein, Terry Zimmerman, Laura Barbulescu and An-
thony Gallagher from Carnegie Mellon University for providing ac-
cess to their scheduler.

REFERENCES

[1] M. Boddy, B. Horling, J. Phelps, R. Goldman, R. Vincent, C. Long, and
B. Kohout, ‘C_taems language specification, version 1.06 (0)’.

[2] Amedeo Cesta and Angelo Oddi, ‘Gaining efficiency and flexibility in
the simple temporal problem’, in Proceedings of the Third International
Workshop on Temporal Representation and Reasoning (TIME-96), pp.
45-50. IEEE, (1996).

[3] Rina Dechter, Itay Meiri, and Judea Pearl, ‘Temporal constraint net-
works’, Artificial Intelligence, 49, 61-95, (1991).

[4] C. Demetrescu and G. Italiano, ‘A new approach to dynamic all pairs
shortest paths’, in Proceedings of the 35th STOC, pp. 159-166, (2003).

[5] Camil Demetrescu and Giuseppe F. Italiano, ‘Improved bounds and
new trade-offs for dynamic all pairs shortest paths’, Technical Report
ALCOMFT-TR-02-1, ALCOM, (2002).

[6] Shimon Even and Hillel Gazit, ‘Updating distances in dynamic graphs’,
Methods of Operations Research, 49, 371-387, (1985).

[7] Alfonso Gerevini, Anna Perini, and Francesco Ricci, ‘Incremental al-
gorithms for managing temporal constraints’, Technical Report IRST-
9605-07, IRST.

[8] Luke Hunsberger, ‘Quantitative temporal reasoning in planning prob-
lems’. AAAI-2004 Tutorial MP-2, slides available at:
http://www.cs.vassar.edu/ hunsberg.

[9] Luke Hunsberger, ‘Algorithms for a temporal decoupling problem in
multi-agent planning’, in Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence (AAAI-2002), (2002).

[10] Luke Hunsberger, Group Decision Making and Temporal Reasoning,
Ph.D. dissertation, Harvard University, 2002. Available as Harvard
Technical Report TR-05-02.

[11] Luke Hunsberger, ‘Distributing the control of a temporal network
among multiple agents’, in Proc. of the 2nd Int’l. Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS-03), (2003).

[12] G. Ramalingam and Thomas Reps, ‘On the computational complexity
of dynamic graph problems’, Theoretical Computer Science, 158, 233—
2717, (1996).

[13] Hans Rohnert, ‘A dynamization of the all pairs least cost path problem’,
in 2nd Symposium of Theoretical Aspects of Computer Science (STACS
85), ed., Kurt Mehlhorn, volume 182 of Lecture Notes in Computer
Science, 279-286, Springer, (1985).

[14] S. Smith, A.T. Gallagher, T.L. Zimmerman, L. Barbulescu, and Z. Ru-
binstein, ‘Distributed management of flexible times schedules’, in Intl.
Conf. on Autonomous Agents and Multiagent Systems, (2007).

[15] Valerie Guralnik Thomas Wagner, John Phelps and Ryan VanRiper,
‘COORDINATORS: Coordination managers for first responders’, in
Proc. of the 3rd Intl. Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS-2004). IEEE Computer Society, (2004).

[16] Mikkel Thorup, ‘Worst-case update times for fully-dynamic all-pairs
shortest paths’, in Annual ACM Symposium on Theory of Computing,
pp. 112-119, (2005).

[17] Toannis Tsamardinos, Reformulating Temporal Plans for Efficient Exe-
cution, Master’s thesis, University of Pittsburgh, 2000.

