
Using Abstraction in Two-Player Games
Mehdi Samadi , Jonathan Schaeffer1, Fatemeh Torabi Asr , Majid Samar , Zohreh Azimifar 2

Abstract. For most high-performance two-player game programs,
a significant amount of time is devoted to developing the evaluation
function. An important issue in this regard is how to take advantage
of a large memory. For some two-player games, endgame databases
have been an effective way of reducing search effort and introducing
accurate values into the search. For some one-player games (puz-
zles), pattern databases have been effective at improving the quality
of the heuristic values used in a search.

This paper presents a new approach to using endgame and pat-
tern databases to assist in constructing an evaluation function for
two-player games. Via abstraction, single-agent pattern databases are
applied to two-player games. Positions in endgame databases are
viewed as an abstraction of more complicated positions; database
lookups are used as evaluation function features. These ideas are il-
lustrated using Chinese checkers and chess. For each domain, even
small databases can be used to produce strong game play. This re-
search has relevance to the recent interest in building general game-
playing programs. For two-player applications where pattern and/or
endgame databases can be built, abstraction can be used to automat-
ically construct an evaluation function.

1 Introduction and Overview

Almost half a century of AI research into developing high-
performance game-playing programs has led to impressive suc-
cesses, including DEEP BLUE (chess), CHINOOK (checkers), TD-
GAMMON (backgammon), LOGISTELLO (Othello), and MAVEN
(Scrabble). Research into two-player games is one of the most visible
accomplishments in artificial intelligence to date.

The success of these programs relied heavily on their ability to
search and to use application-specific knowledge. The search compo-
nent is largely well-understood for two-player games (whether per-
fect or imperfect information; stochastic or not); usually the effort
goes into building a high-performance search engine. The knowl-
edge component varies significantly from domain to domain. Various
techniques have been used, including linear regression (as in LOGIS-
TELLO) and temporal difference learning (as in TD-GAMMON). All
of them required expert input, especially the DEEP BLUE [10] and
CHINOOK [16] programs.

Developing these high-performance programs required substantial
effort over many years. In all cases a major commitment had to be
made to developing the program’s evaluation function. The standard
way to do this is by hand, using domain experts if available. Typi-
cally, the developer (in consultation with the experts) designs multi-
ple evaluation function features and then decides on an appropriate

1 Department of Computing Science, University of Alberta, Edmonton, Al-
berta, Canada T6G 2E8, email: {msamadi,jonathan}@cs.ualberta.ca

2 Department of Computer Science and Engineering Shiraz University, Shi-
raz, Iran, email:{torabi,samar,azimifar}@cs.shirazu.ac.ir

weighting for them. Usually the weighted features are summed to
form the assessment. This technique has proven to be effective, al-
beit labour intensive. However, this method fails in the case of a new
game or for one in which there is no expert information available (or
no experts). The advent of the annual General Game Playing (GGP)
competition at AAAI has made the community more aware of the
need for general-purpose solutions rather than custom solutions.

Most high-performance game-playing programs are compute in-
tensive and benefit from faster and/or more CPUs. An important is-
sue is how to take advantage of a large memory. Transposition tables
have proven effective for improving search efficiency by eliminating
redundancy in the search. However, these tables provide diminish-
ing returns as the size increases [3]. For some two-player games,
endgame databases (sometimes called tablebases) have been an ef-
fective way of reducing search effort and introducing accurate values
into the search. These databases enumerate all positions with a few
pieces on the board and compute whether each position is a provable
win, loss or draw. Each database position, however, is applicable to
only one position.

The single-agent (one-player) world has also wrestled with the
memory issue. Pattern databases have been effective for improving
the performance of programs to solve numerous optimization prob-
lems, including the sliding-tile puzzles and Rubik’s Cube [8]. They
are similar to endgame databases in that they enumerate a subset of
possible piece placings and compute a metric for each (e.g., mini-
mum number of moves to a solution). The databases are effective for
two reasons. First they can be used to provide an improved lower
bound on the solution quality. Second, using abstraction, multiple
states can be mapped to a single database value, increasing the utility
of the databases.

The main theme of this paper is to investigate and propose a new
approach to use endgame and pattern databases to assist in automat-
ing the construction of an evaluation function for two-player games.
The research also carries over to multi-player games, but this is not
addressed in this paper. The key idea is to extend the benefits of
endgame and pattern databases by using abstraction. Evaluation of
a position with N pieces on the board is done by looking up a sub-
set of pieces M < N in the appropriate database. The evaluation
function is built by combining the results of multiple lookups and by
learning an appropriate weighting of the different lookups. The algo-
rithm is simple and produces surprisingly strong results. Of greater
importance is that this is a new general way to use the databases.

The contributions of this research are as follows:

1. Abstraction is used to extend pattern databases (even additive pat-
tern databases) for constructing evaluation functions for a class of
two-player games.

2. Pattern-database-based evaluation functions are shown to pro-
duce state-of-the-art play in Chinese checkers (10 pieces a side).
Against a baseline program containing the latest evaluation func-

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-545

545

tion enhancements, the pattern-database-based program scores
68% to 79% of the possible points.

3. Abstraction is used to extend endgame databases for constructing
evaluation functions for a class of two-player games.

4. Chess evaluation functions based on four- and five-piece endgame
databases are shown to outplay CRAFTY, the strongest free-
ware chess program available. On seven- and eight-piece chess
endgames, the endgame-database program scores 54% to 80% of
the possible points.

Abstraction is a key to extending the utility of the endgame and pat-
tern databases. For domains for which these databases can be con-
structed, they can be used to build an evaluation function automati-
cally. As the experimental results show, even small databases can be
used to produce strong game plays.

2 Related Work

Endgame databases have been in use for two-player perfect informa-
tion games for almost thirty years. They are constructed using ret-
rograde analysis [18]. Chess was the original application domain,
where databases for all positions with six or fewer pieces have been
built. Endgame databases were essential for solving the game of
checkers, where all positions with ten or fewer pieces have been
computed [6]. The databases are important because they reduce the
search tree and introduce accurate values into the search. Instead of
using a heuristic to evaluate these positions (with the associated er-
ror), a game-playing program can use the database value (perfect
information). The limitation, however, is that each position in the
database is applicable to a single position in the search space.

Pattern databases also use retrograde analysis to optimally solve
simplified versions of a state space [4]. A single-agent state space is
abstracted by simplifying the domain (e.g., only considering a subset
of the features) and solving that problem. The solutions to the ab-
stract state are used as lower bounds for solutions to a set of positions
in the original search space. For some domains, pattern databases can
be constructed so that two or more database lookups can be added to-
gether while still preserving the optimality of the combined heuristic
[13]. Abstraction means that many states in the original space can
use a single state in the pattern database. Pattern databases have been
used to improve the quality of the heuristic estimate of the distance
to the goal, resulting in many orders of magnitude reduction in the
effort required to solve the sliding-tile puzzles and Rubik’s Cube [8].

The ideas presented in this paper have great potential for General
Game Playing (GGP) programs [9]. A GGP program, given only the
rules of the game/puzzle, has to learn to play that game/puzzle well.
A major bottleneck to producing strong play is the discovery of an ef-
fective evaluation function. Although there is an interesting literature
on feature discovery applied to games, to date the successes are small
[7]. It is still early days for developing GGP programs, but the state
of the art is hard coding into the program several well-known heuris-
tics that have been proven to be effective in a variety of games, and
then testing them to see if they are applicable to the current domain
[15]. It remains an open problem how to automate the discovery and
learning of an effective evaluation function for an arbitrary game.

3 Using Abstraction in Two-Player Games

Abstraction is a mapping from a state in the original search space
into a simplified representation of that state. The abstraction is often
a relaxation of the state space or a subset of the state. In effect, ab-
straction maps multiple states in the original state space to a single

state in the abstract search space. Information about the abstract state
(e.g., solution cost) can be used as a heuristic for the original state
(e.g., a bound on the solution cost).

Here we give the background notation and definitions using chess
as the illustrative domain. Let S be the original search space and S′

be the abstract search space.

u

Abstract space

Original space

 v

 a*(u,v)

)(v)(u),(a)*(

(u)

(v)

Figure 1. Original states and edges mapped to an abstract space.

Definition 1 (Abstraction Transformation): An abstraction
transformation φ : S → S′ maps 1) states u ∈ S to states
φ(u) ∈ S′, and 2) actions a ∈ S to actions φ(a) ∈ S′. This is
illustrated in Figure 1.

Consider the chess endgame of white king, rook, and pawn versus
black king and rook (KRPKR). The original space (S) consists of all
valid states where these five pieces can be placed on the board. Any
valid subset of the original space can be considered as an abstrac-
tion. For example, king and rook versus king (KRK) and king, rook,
and pawn versus king (KRPK) are abstractions (simplifications) of
KRPKR. For any particular abstraction S′, the search space contains
all valid states in the abstract domain (all piece location combina-
tions). The new space S′ is much smaller than the original space S,
meaning that a large number of states in S are being mapped to a
single state in S′. For instance, for every state in the abstracted KRK
space, all board positions in S where the white king, white rook and
black king are on the same squares as in S′ are mapped onto a sin-
gle abstract state (i.e., white pawn and black rook locations are ab-
stracted away). Actions in S′ contain all valid moves for the pieces
that are in the abstracted state.

Definition 2 (Homomorphism): An abstraction transformation φ

is a homomorphism transformation if for all series of actions that
transforms state u to state v in S then there is a corresponding trans-
formation for φ(u) to φ(v) in S′. This is illustrated in Figure 1,
where a∗ represents zero or more actions.

If there is a solution for a state in the original space S, then the ho-
momorphism property guarantees the existence of a solution in the
abstracted space S′. Experimental results indicate that this character-
istic can be used to improve search performance in S.

Various abstractions can be generated for a given search problem.
The set of relaxing functions is defined as φ = {φ1, φ2, . . . , φn},
where each φi is an abstraction. Define the distance between any two
states u and v in the relaxed environment as φi with hφi

(u, v). For
example, for an endgame or pattern database, v is usually set to a
goal state meaning that hφi

(u, v) is the minimal number of moves
needed to achieve the goal.

Using off-line processing, the distance from each state in φi to the
nearest goal can be computed and saved in a database (using retro-
grade analysis). For a pattern database (one-player search), the min-
imal distance to the goal is stored. For an endgame database (two-

M. Samadi et al. / Using Abstraction in Two-Player Games546

player search), the minimal number of moves to win (maximal moves
to postpone losing) are recorded. This is the standard way that these
databases are constructed.

Given a problem instance to solve, during the search all val-
ues from those lookup tables are retrieved for further processing.
To evaluate a position p from the original space, the relaxed state,
φi(p), is computed and the corresponding hφi(p) is retrieved from
the database. The abstract values are saved in a heuristic vector
h =< hφ1

, hφ2
, . . . , hφn

>. The evaluation function value for state
p is calculated as a function of h. For example, popular techniques
used for two-player evaluation functions include temporal difference
learning to linearly combine the hφi

values [1], and neural nets to
achieve non-linear relations [17].

For example, let us evaluate a position p in the KRPKR chess
endgame. In this case, the abstracted states could come from the
databases KRPK, KRKR, KRK and KPK. First, for each abstraction,
the abstract state is computed and the heuristics value hφi(p) is re-
trieved from the database. In this case, the black rook is removed and
the resulting position is looked up in the KRPK database; the white
pawn is removed and the position looked up in the KRKR database;
etc. The heuristic value for p could be, for example, the sum of the
four abstraction scores.

4 Experimental Results

In this section, we explore using abstraction to apply pattern database
technology to two-player Chinese checkers and chess endgame
database technology to playing more complicated chess endgames.
Unlike chess, Chinese checkers has the homomorphism property (the
proof is simple, but not shown here for reasons of space).

4.1 Chinese Checkers

Chinese checkers is a 2-6 player game played on a star shaped board
with the squares hexagonally connected. The objective is to move all
of one’s pieces (or marbles) from the player’s home zone (typically
10) to the opposite side of the board (the opponent’s home zone).
Each player moves one marble each turn. A marble can move by
rolling to an adjacent position (one of six) or by repeatedly jumping
over an adjacent marble, of any color, to an adjacent empty location
(the same as jumps in 8 × 8 checkers/draughts). In general, to reach
the goal in the shortest possible time, the player should jump his
pieces towards the opponent’s home zone.

Here we limit ourselves to two-player results, although the results
presented here scale well to more players (not reported here). Due
to the characteristics of Chinese checkers, three different kinds of
abstractions might be considered. Given N pieces on each side of
the original game:

1. Playing K ≤ N white pieces against L ≤ N black pieces;
2. Playing K ≤ N white pieces to take them to opponent’s home

zone (a pattern database including no opponent’s marble); and
3. Playing K ≤ N white pieces against L ≤ N black pieces, but

with a constraint that the play concentrates on a partition of the
board.

For any given search space, the more position characteristics that
are exploited by the set of abstractions, the more likely that the com-
bination of abstraction heuristics will be useful for the original prob-
lem space. The first two abstractions above have the homomorphism
property, and the empirical results indicate that they better approxi-
mate the original problem space. In the first abstraction, a subset of

pieces for both players (e.g., the three-piece versus two-piece game)
is considered and the minimal number of moves to win (most moves
to lose) is used. The second abstraction ignores all the opponent’s
pieces. This abstraction gives the number of moves required to get all
of one’s pieces into the opponent’s zone. This value is just a heuristic
estimate (not a bound), since the value does not take into account the
possibility of jumping over the opponent’s pieces (which precludes
it from being a lower bound) and does not take into account interfer-
ence from the opponent’s pieces (precluding it from being an upper
bound). Clearly, the first abstraction is a better representation of the
original problem space. The third abstraction considers only a part
of the board to build a pattern database. For example, the goal of the
abstraction can be changed so that the pieces only have to enter the
goal area (without caring about where the end up).

The state space for the first abstraction is large; the endgame
database of three versus two pieces requires roughly 256MB. The
second relaxation strategy makes the search space simpler, allow-
ing for pattern databases that include more pieces on the board. The
database size for five pieces of the same side needs roughly 25MB,
10% of the first abstraction database. Our experience with Chinese
checkers shows that during the game five cooperating pieces will re-
sult in more (and longer) jump moves (hence, less moves to reach
the goal) than five adversarial pieces. Although the first abstraction
looks more natural and seems to better reflect the domain, the second
abstraction gives better heuristic values. Thus, here we present only
the second and third abstractions.

The baseline for comparison is a Chinese checkers program (10
pieces a side) with all the current state-of-the-art enhancements. The
evaluation function is based on the Manhattan distance for each
side’s pieces to reach the goal area. Recent research has improved on
this simple heuristic by adding additional evaluation terms: 1) curved
board model, incremental evaluation, left-behind marbles [19]; and
2) learning [11]. All of these features have been implemented in our
baseline program.

Experiments consisted of the baseline program playing against a
program using a PDB- or endgame-based evaluation function. Each
experimental data point consists of a pair of games (switching sides)
for each of 25 opening positions (after five random moves have been
made). Experiments are reported for search depths of three and five
ply (other search depth results are similar). The branching factor in
the middlegame of Chinese checkers is roughly 60-80. Move gen-
eration can be expensive because of the combination of jumps for
each side. This slows the program down, limiting the search depth
that can be achieved in a reasonable amount of time. The average re-
sponse time for a search depth of six in the middlegame is more than
thirty seconds per move (1.5 hours per game). Our reported exper-
iments are limited to depths three through five because of the wide
range of experiments performed.

In this paper, we report the results for three interesting heuristic
evaluation functions. Numerous functions were experimented with
and achieved similar performance to those reported here. For the fol-
lowing abstractions, the pieces were labeled 1 to 10 in a right-to-left,
bottom-up manner. The abstractions used were:

PDB(4): four-piece pattern database (second abstraction) with the
goal defined as the top four squares in the opponent’s home zone.
Three abstractions (three lookups) were used to cover all available
ten pieces: pieces 1-4, 4-7, and 7-10. We also tested other lookups
on this domain. Obviously increasing the number of lookups can
increase the total amount of time to evaluate each node. On the
other hand, the overlap of using pieces four and seven in the eval-
uation function does not have a severe effect on the cost of an

M. Samadi et al. / Using Abstraction in Two-Player Games 547

evaluation function.
PDB(6): six-piece pattern database (second abstraction) with the

goal defined as the top six squares in the opponent’s home zone.
Two abstractions (two lookups) were used to cover all 10 pieces:
pieces 1-6 and 5-10. Again, two pieces are counted twice in an
evaluation (pieces 5 and 6), as a consequence of minimizing the
execution overhead.

PDB(6+4): a probe from the six-piece PDB is added to a probe from
the four-piece PDB (a combination of second and third abstrac-
tion). Two abstractions (two lookups) were used to cover all 10
pieces: pieces 1-6 from the PDB(6) and 7-10 from the PDB(4)
with its goal defined as passing all pieces from the opponent’s
front line (third abstraction). In other words, for the four-piece ab-
straction we delete the top six squares of the board such that the
new board setup introduces our new goal.

The weighting of each probe is a simplistic linear combination of the
abstraction heuristic values.

Abstraction Search Win
(Pieces) Depth %
PDB (4) 3 79
PDB (6) 3 68
PDB (6+4) 3 74
PDB (4) 4 69
PDB (6) 4 68
PDB (6+4) 4 80
PDB (4) 5 78
PDB (6) 5 70
PDB (6+4) 5 78

Table 1. Experiments in Chinese checkers.

Table 1 presents the results achieved using these abstractions. The
three rows of results are given for each of search depths three, four
and five. The win percent reflects two points for a win, one for a tie
and zero for a loss.

Evidently, PDB(6+4) has the best performance, winning about
80% of the games against the baseline program. Perhaps surpris-
ingly, PDB(4) performs very well, even better than PDB(6) does.
One would expect PDB(6) to perform better since it implicitly con-
tains more knowledge of the pieces interactions. However, note that
the more pieces on the board, the more frequent long jump sequences
will occur. The longer the jump sequence the smaller the probability
that it can be realized, given that there are other pieces on the board.
Hence, we conclude that a larger PDB may not be as accurate as a
smaller PDB.

The additive evaluation function (using PDB(4+6)) gives the best
empirical results. Not only is it comparable to the PDB(4), but also
it achieves its good performance with one fewer database lookup
per evaluation. Although the experiments were done to a fix search
depth (to ensure a uniform comparison between program versions),
because of the relative simplicity of the evaluation function an ex-
tra database lookup represented a significant increase in execution
cost. In part this is due to the pseudo-random nature of access-
ing the PDB, possibly incurring cache overhead. Our implementa-
tion takes advantage of obvious optimizations to eliminate redundant
database lookups (e.g., reusing a previous lookup if still applicable).
By employing these optimizations, we observed that the time for both
heuristic functions are very close and does not change the results.

Several experiments were also performed using the first abstrac-
tion, with three-against-two-piece endgame databases. A program
based on the second abstraction (pattern databases with five pieces)
significantly outperformed the first abstraction. The values obtained

from five cooperating pieces were a better heuristic predictor than
that obtained from the adversarial three versus two pieces database.

The results reported here do not necessarily represent the best pos-
sible. There are numerous combinations of various databases that one
can try. The point here is that simple abstraction can be used to build
an effective evaluation function. In this example, single-agent pattern
databases are used in a new way for two-player heuristic scores.

4.2 Chess

This section presents experimental results for using four- and five-
piece chess endgame databases to play seven- and eight-piece chess
endgames. The abstracted state space is constructed using a subset
of available pieces. For example, for the KRPKR endgame one can
use the KRK, KRPK, and KRKR subset of pieces as abstractions
of the original position. All the abstractions are looked up in their
appropriate database. The endgame databases are publicly available
at numerous sites on the Internet. For each position, they contain one
of the following values: win (the minimum number of moves to mate
the opponent), loss (the longest sequence of moves to be mated by the
opponent) or draw (zero). The values retrieved from the abstractions
are used as evaluation function features. They are linearly combined;
no attempt at learning proper weights has been done yet.

In chess, as opposed to Chinese checkers, ignoring all the oppo-
nent pieces does not improve the performance given the tight mutual
influence they have on each other (i.e., piece captures are possible).
Hence pattern databases are unlikely to be effective. One could use
pattern databases for chess, even though, we expect a learning algo-
rithm to discover a weight of zero for such abstractions.

The chess abstraction does not have the homomorphism property
because of the mutual interactions among the pieces. In other words,
it is possible to win in the original position while not achieving this
result in the abstract position. For example, there are many winning
positions in the KRPKR endgame but in the abstraction of KRKR
almost all states lead to a draw.

Our experiments used the four- and five-piece endgame databases.
Note that the state-of-the-art in endgame database construction is six
pieces [2]. These databases are too large to fit into RAM, making
their access cost prohibitively high. Evaluation functions must be
fast, otherwise they can dramatically reduce the search speed. Hence
we restrict ourselves to databases that can comfortably fit into less
than 1GB of RAM. This work will show that even the small databases
can be used to improve the quality of play for complex seven- and
eight-piece endgames.

In our experiments the proposed engine (a program consisting
solely of an endgame-database-based evaluation) played against the
baseline program (as the opponent). Each experimental data point
consisted of a pair of games (switching sides) for each of 25 endgame
positions. The programs searched to a depth of seven and nine ply.
Results are reported using four- and five-piece abstractions of seven-
and eight-piece endgames. Because of the variety of experiments per-
formed, the search depth was limited to nine.

The baseline considered here is CRAFTY, the strongest freeware
chess program available [12]. It has competed in numerous World
Computer Chess Championships, often placing near the top of the
standings.

Table 2 shows the impact of two parameters on performance: the
endgame database size and the search space depth. The table gives re-
sults for three representative seven-piece endgames. The first column
gives the endgame, the second gives the win percentage (as stated be-
fore, wins is counted as two, draws as one and losses as zero), and

M. Samadi et al. / Using Abstraction in Two-Player Games548

Endgame Search Win Abstractions Used
Depth %

KRPP–KBN 7 60 KPPK, KKBN, KRK
KRPP–KNN 7 68 KRK, KRKP, KRPK, KNKP
KRP–KNPP 7 72 KKPP, KBKP, KPKN, KRK
KRPP–KBN 7 68 KPKBN, KRPKB, KRPKN
KRPP–KNN 7 76 KRPKN, KPPKN, KPKNN
KRP–KNPP 7 80 KRPKN, KRKNP, KPKNP, KPKPP
KRPP–KBN 9 54 KPPK, KKBN, KRK
KRPP–KNN 9 64 KRK, KRKP, KRPK, KNKP
KRP–KNPP 9 70 KKPP, KBKP, KPKN, KRK
KRPP–KBN 9 56 KPKBN, KRPKB, KRPKN
KRPP–KNN 9 68 KRPKN, KPPKN, KPKNN
KRP–KNPP 9 76 KRPKN, KRKNP, KPKNP, KPKPP

Table 2. Experiments in chess (four-piece and five-piece abstractions).

the last column shows the abstractions used. The first six lines are for
a search depth of seven; the remaining six for a search depth of nine.
For each depth, the first three lines show the results for using three-
and four-piece databases as an abstraction; the last three rows show
the results when five-piece databases are used.

CRAFTY was used unchanged. It had access to the same endgame
databases as our program, but it only used them when the current po-
sition was in the database. For all positions with more pieces, it used
its standard endgame evaluation function. In contrast, our program,
using abstraction, queried the databases every time a node in the
search required to be evaluated. By eliminating redundant database
lookups, the cost of an endgame-database evaluation can be made
comparable to that of CRAFTY’s evaluation.

Not surprisingly, the five-piece databases had superior perfor-
mance to the four-piece databases (roughly 8% better for depth seven
and 4% better at depth nine). Clearly, these databases are closer to
the original position (i.e., less abstract) and hence are more likely
to contain relevant information. Further, a significant drawback of
small-size abstraction models is the large number of draw states in
the database (e.g. KRKR), allowing little opportunity to differentiate
between states. The five-piece databases contain fewer draw posi-
tions, giving greater decision domain to the evaluation function.

As the search depth is increased, the benefits of the superior
evaluation function slightly decrease. This is indeed expected, as
the deeper search allows more potential errors by both sides to be
avoided. This benefits the weaker program.

Position Search Win Abstractions Used
Depth %

KQP–KRNP 7 64 KQKRP, KQKNP, KPKRN , KQKRN
KRRPP–KQR 7 76 KQKRP, KQKNP, KPKRN
KRPP–KRN 7 60 KRPKN, KPPKR, KPKRN
KQP–KNNPP 7 76 KPKNN, KQKNN, KQKNP
KQP–KRBPP 7 64 KPKNN, KQKNN, KQKNP
KQP–KRNP 9 64 KQKRP, KQKNP, KPKRN, KQKRN
KRRPP–KQR 9 76 KQKRP, KQKNP, KPKRN
KRPP–KRN 9 64 KRPKN, KPPKR, KPKRN
KQP–KNNPP 9 72 KPKNN, KQKNN, KQKNP
KQP–KRBPP 9 62 KQKRB, KQPKR, KQKRP, KQKBP

Table 3. Experiments for chess.

Table 3 shows the results for some interesting (and complicated)
seven- and eight-piece endgames, all using five-piece abstraction.
These represent difficult endgames for humans and computers to
play. Again, the endgame-database-based evaluation function is su-
perior to CRAFTY, winning 60% to 76% of the games. This perfor-
mance is achieved using three or four abstraction lookups, in contrast
to CRAFTY’s hand-designed rule-based system.

Why is the endgame database abstraction effective? The abstrac-

tion used for chess is, in part, adding heuristic knowledge to the
evaluation function about exchanging pieces. In effect, the smaller
databases are giving information about the result when pieces come
off the board. This biases the program towards lines which result in
favorable piece exchanges, and avoids unfavorable ones.

5 Conclusion and Future Works

The research presented in this paper is a step towards increasing
the advantages of pre-computed lookup tables for the larger class
of multi-agent problem domains. The main contribution of this re-
search was to show that the idea of abstraction can be used to extend
the benefits of pre-computed databases for use in new ways in build-
ing an accurate evaluation function. For domains for which pattern
and/or endgame databases can be constructed, the use of this data can
be extended beyond its traditional usage and be be used to build an
evaluation function automatically. As the experimental results show,
even small databases can be used to produce strong game play.

Since 2005, there has been interest in the AI community in build-
ing a general game-playing (GGP) program. The application-specific
research in building high-performance games is being generalized
to handle a wide class of games. Research has already been done
in identifying GGP domains for which databases can be built [14].
For those domains, abstraction is a promising way to automatically
build an evaluation function. An automated system has been devel-
oped to build a pattern databases for planning domains using bin-
packing algorithm to select the appropriate symbolic variables for
pattern database [5]. Similar approach can be used to automatically
select variables in GGP to build endgame/pattern databases.

REFERENCES
[1] J. Baxter, A. Tridgell, and L. Weaver, ‘Learning to play chess using

temporal differences’, Machine Learning, 40(3), 243–263, (2000).
[2] E. Bleicher, 2008. http://k4it.de/index.php?topic=

egtb&lang=en.
[3] D. Breuker, Memory Versus Search in Games, Ph.D. dissertation, Uni-

versity of Maastricht, 1998.
[4] J. Culberson and J. Schaeffer, ‘Searching with pattern databases’, in

Canadian Conference on AI, pp. 402–416, (1996).
[5] S. Edelkamp, ‘Planning with pattern databases’, in Proceedings of the

6th European Conference on Planning (ECP-01), pp. 13–34, (2001).
[6] J. Schaeffer et al., ‘Checkers is solved’, Science, 317(5844), 1518–

1522, (2007).
[7] T. Fawcett and P. Utgoff, ‘Automatic feature generation for problem

solving systems’, in ICML, pp. 144–153, (1992).
[8] A. Felner, U. Zahavi, J. Schaeffer, and R. Holte, ‘Dual lookups in pat-

tern databases’, in IJCAI, pp. 103–108, (2005).
[9] M. Genesereth, N. Love, and B. Pell, ‘General game playing: Overview

of the AAAI competition’, AI Magazine, 26, 62–72, (2005).
[10] F h. Hsu, Behind Deep Blue, Princeton University Press, 2002.
[11] Alistair Hutton, Developing Computer Opponents for Chinese Check-

ers, Master’s thesis, University of Glasgow, 2001.
[12] R. Hyatt, 2008. http://www.craftychess.com/.
[13] R. Korf and A. Felner, ‘Disjoint pattern database heuristics’, Artificial

Intelligence, 134, 9–22, (2002).
[14] Arsen Kostenko, Calculating End Game Databases for General Game

Playing, Master’s thesis, Fakultat Informatik, Technische Universitat
Dresden, 2007.

[15] G. Kuhlmann and P. Stone, ‘Automatic heuristic construction for gen-
eral game playing’, in AAAI, pp. 1457–1462, (2006).

[16] J. Schaeffer, One Jump Ahead, Springer-Verlag, 1997.
[17] G. Tesauro, ‘Temporal difference learning and TD-Gammon’, CACM,

38(3), 58–68, (1995).
[18] K. Thompson, ‘Retrograde analysis of certain endgames’, Journal of

the International Computer Chess Association, 9(3), 131–139, (1986).
[19] Paula Ulfhake, A Chinese Checkers-playing program, Master’s thesis,

Department of Information Technology Lund University, 2000.

M. Samadi et al. / Using Abstraction in Two-Player Games 549

