
Justification-Based Non-Clausal Local Search for SAT
Matti Järvisalo and Tommi Junttila and Ilkka Niemelä1

Abstract. While stochastic local search (SLS) techniques are very
efficient in solving hard randomly generated propositional satisfia-
bility (SAT) problem instances, a major challenge is to improve SLS
on structured problems. Motivated by heuristics applied in complete
circuit-level SAT solvers in electronic design automation, we develop
novel SLS techniques by harnessing the concept of justification fron-
tiers. This leads to SLS heuristics which concentrate the search into
relevant parts of instances, exploit observability don’t cares and allow
for an early stopping criterion. Experiments with a prototype imple-
mentation of the framework presented in this paper show up to a four
orders of magnitude decrease in the number of moves on real-world
bounded model checking instances when compared to WalkSAT on
the standard CNF encodings of the instances.

1 INTRODUCTION

Advances in propositional satisfiability (SAT) testing have estab-
lished SAT based methods as a competitive way of solving combi-
natorial problems in various domains. Stochastic local search (SLS)
methods, such as [16, 15, 10, 3], are very efficient especially in solv-
ing randomly generated SAT instances. However, for structural real-
world SAT instances complete DPLL based SAT solvers seem to
dominate SLS solvers (see, e.g., results of the latest SAT competi-
tions at http://www.satcompetition.org/). Further work
on improving SLS techniques for structural problems is needed and,
in particular, developing techniques for handling variable dependen-
cies efficiently has been identified a major challenge [7].

One problem in developing efficient techniques for handling vari-
able dependencies is that typically the most efficient SLS solvers
work on the flat CNF input format. Some techniques for CNF
level SLS solvers have been developed to utilize propagation dur-
ing search [2]. However, there seems to be room for novel structure-
based SLS techniques exploiting variable dependencies more di-
rectly. Indeed, in SAT based approaches, direct CNF encodings of
a problem domain are rarely used: the problem at hand is typi-
cally encoded with a structure-preserving general propositional for-
mula φ which can then be translated into an equi-satisfiable CNF
formula by introducing additional variables for the subformulas of
φ. There are also SAT solvers which—instead of demanding CNF
translation before solving—work directly on general formulas. Such
solvers use Boolean circuits [11] as the compact representation for
a general propositional formula in a DAG-like structure. However,
such solvers are typically complete DPLL style non-clausal algo-
rithms [5, 8, 9, 17]. Only a few SLS methods have been proposed for

1 Helsinki University of Technology, Dept. Information and Comp. Sci., Fin-
land. Emails: {matti.jarvisalo,tommi.junttila,ilkka.niemela}@tkk.fi. Re-
search supported by Academy of Finland (#122399 (MJ,IN) and #112016
(TJ)). MJ additionally acknowledges support from the HeCSE graduate
school, Emil Aaltonen Foundation, Jenny and Antti Wihuri Foundation,
Nokia Foundation, and Foundation for Technology Promotion TES.

general propositional formulas [14, 6, 12]. Common to these SLS ap-
proaches is that they attempt to explicitly exploit variable dependen-
cies through independent (or input) variables, i.e., sets of variables
such that a truth value assignment for them uniquely determines the
truth values of all other variables, by focusing the search on truth
assignments of input variables.

In this paper we develop a novel non-clausal SLS method for struc-
tural SAT problems from a different starting point. Our aim is to
bring structure-exploiting techniques into local search for SAT in or-
der to lift the performance of local search SAT solving especially on
structural real-world problem domains. We employ Boolean circuits
as the representation of general propositional formulas. Motivated
by justification frontier heuristics (see e.g. [9]) applied in complete
circuit-level SAT solvers in electronic design automation, our search
technique looks for a justification for the Boolean circuit instead of
focusing on finding a satisfying truth assignment. The idea is to be
able to drive local search more top-down in the overall structure of
the circuit rather than in a bottom-up mode as is done in local search
techniques focusing on input variables. This is achieved by guiding
the search using justification frontiers that enable exploiting observ-
ability don’t cares (see e.g. [13]), drive the search to relevant parts
of the circuit, and offer early stopping criteria which allow to end the
search when the circuit is de facto satisfiable even if no concrete sat-
isfying truth assignment has been found. Experiments with a proto-
type implementation of the framework presented in this paper show
up to a four orders of magnitude decrease in the number of moves
on real-world bounded model checking instances when compared to
WalkSAT on the standard CNF encodings of the instances.

The rest of this paper is organized as follows. First, Boolean cir-
cuits and related central concepts are defined (Sect. 2). The pro-
posed justification-based non-clausal SLS method is then described
(Sect. 3) and analyzed w.r.t. both CNF level and previous non-clausal
methods (Sect. 4). Initial experiments are presented in Sect. 5.

2 CONSTRAINED BOOLEAN CIRCUITS

Boolean circuits offer a natural non-clausal representation for propo-
sitional formulas in a compact DAG-like structure with subformula
sharing. Rather than translating circuits to CNF for solving the re-
sulting SAT instance by local search, in this work we will work di-
rectly on the Boolean circuit representation.

A Boolean circuit over a finite set G of gates is a set C of equa-
tions of form g := f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and
f : {f, t}n → {f, t} is a Boolean function, with the additional re-
quirements that (i) each g ∈ G appears at most once as the left hand
side in the equations in C, and (ii) the underlying directed graph

〈G(C),E(C) =
˘
〈g′

, g〉 ∈ G × G | g := f(. . . , g′
, . . .) ∈ C

¯
〉

is acyclic. The set of gates in a circuit C is denoted by G(C). If
〈g′, g〉 ∈ E(C), then g′ is a child of g and g is a parent of g′. The

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-535

535

descendant and ancestor relations are defined in the usual way as the
transitive closures of the child and parent relations, respectively. If
g := f(g1, . . . , gn) is in C, then g is an f -gate (or of type f), oth-
erwise it is an input gate. The set of input gates in C is denoted by
inputs(C). A gate with no parents is an output gate.

An assignment for C is a (possibly partial) function τ : G →
{f, t}. A total assignment τ is consistent with C if τ (g) =
f(τ (g1), . . . , τ (gn)) for each g := f(g1, . . . , gn) in C.

A constrained Boolean circuit Cα is a pair 〈C, α〉, where C is a
circuit and α is an assignment for C. Each 〈g, v〉 ∈ α is called a
constraint where g is constrained to v (typically used for setting an
output gate to a truth value). A total assignment τ for C satisfies Cα

if (i) τ is consistent with C, and (ii) respects the constraints: τ ⊇
α. If some total assignment satisfies Cα, then Cα is satisfiable and
otherwise unsatisfiable. In this work we consider Boolean circuits in
which the following Boolean functions are available as gate types.

• NOT(v) is t iff v is f.
• OR(v1, . . . , vn) is t iff at least one of v1, . . . , vn is t.
• AND(v1, . . . , vn) is t iff all v1, . . . , vn are t.
• XOR(v1, v2) is t iff exactly one of v1, v2 is t.

However, notice that the techniques developed in this paper can be
adapted for a wider range of types such as equivalence and cardinal-
ity gates. In order to keep the presentation and algorithms simpler, we
assume that constraints only appear in the output gates of constrained
circuits. Any circuit can be rewritten into such a normal form by us-
ing the rules in [5].

Example 1 Figure 1 shows a Boolean circuit for a full-adder with
the constraint that the carry-out bit c1 is t. One satisfying total as-
signment for the circuit is

{〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, t〉, 〈b0, f〉, 〈c0, t〉}. (1)

a0 b0 c0

AND XOR

OR

AND XORt3t2

o0

c1 t

t1

C = {c1 := OR(t1, t2)

t1 := AND(t3, c0)

o0 := XOR(t3, c0)

t2 := AND(a0, b0)

t3 := XOR(a0, b0)}

α = {〈c1, t〉}

Figure 1. A constrained Boolean circuit Cα.

The restriction of an assignment τ to a set G′ ⊆ G of gates is
defined as usual: τ |G′ = {〈g, v〉 ∈ τ | g ∈ G′}. Given a non-input
gate g := f(g1, . . . , gn) and a value v ∈ {f, t}, a justification for
the pair 〈g, v〉 is a partial assignment σ : {g1, . . . , gn} → {f, t} to
the children of g such that f(τ (g1), . . . , τ (gn)) = v holds for all
extensions τ ⊃ σ. That is, the values assigned by σ to the children
of g are enough to force g to have the value v. A gate g is justified
in an assignment τ if it is assigned, i.e. τ (g) is defined, and (i) it is
an input gate, or (ii) g := f(g1, . . . , gn) ∈ C and τ |{g1,...,gn} is a
justification for 〈g, τ (g)〉. For example, consider the gate t1 in Fig. 1.
The possible justifications for 〈t1, f〉 are {〈t3, f〉}, {〈t3, f〉, 〈c0, t〉},
{〈t3, f〉, 〈c0, f〉}, {〈c0, f〉}, and {〈t3, t〉, 〈c0, f〉}; the first and fourth
are subset minimal ones. Gate t1 is justified in the assignment (1).

Given a constrained circuit Cα and an assignment τ ⊇ α for C,
the justification cone of Cα under τ , denoted by jcone(Cα, τ), is the
minimal set of gates satisfying the following requirements.

1. All constrained gates belong to the cone. That is, if 〈g, v〉 ∈ α,
then g ∈ jcone(Cα, τ).

2. If a justified gate belongs to the cone, then all the gates that par-
ticipate in some subset minimal justification for the gate are also
in the cone. Formally, if g ∈ jcone(Cα, τ) and (i) g is a non-input
gate, (ii) g is justified in τ , and (iii) 〈gi, vi〉 ∈ σ for some sub-
set minimal justification σ for 〈g, τ (g)〉, then gi ∈ jcone(Cα, τ).
In principle it would be sufficient to consider only one, arbitrarily
chosen subset minimal justification. However, such a formaliza-
tion would make jcone(Cα, τ) ambiguously defined.

The justification frontier of Cα under τ is the “bottom edge” of the
justification cone, i.e. those gates in the cone that are not justified:

jfront(Cα
, τ) = {g ∈ jcone(Cα

, τ) | g is not justified in τ}.

A gate g is interesting in τ if it belongs to the frontier
jfront(Cα, τ) or is a descendant of a gate in it; the set of
all gates interesting in τ is denoted by interest(Cα, τ). A gate
g is an (observability) don’t care if it is neither interesting
nor in the justification cone jcone(Cα, τ). For instance, con-
sider the constrained circuit Cα in Fig. 1. Under the assignment
τ = {〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, f〉, 〈b0, f〉, 〈c0, t〉},
the justification cone jcone(Cα, τ) is {c1, t1, t3, c0}, the justifica-
tion frontier jfront(Cα, τ) is {t3}, interest(Cα, τ) = {t3, a0, b0},
and the gates t2 and o0 are don’t cares.

Proposition 1 If the justification frontier jfront(Cα, τ) is empty for
some total assignment τ , then the constrained circuit Cα is satisfi-
able.

When jfront(Cα, τ) is empty, a satisfying assignment can be ob-
tained by (i) restricting τ to the input gates appearing in the justifica-
tion cone, i.e. to the gate set jcone(Cα, τ)∩ inputs(C), (ii) assigning
other input gates arbitrary values, and (iii) recursively evaluating the
values of non-input gates. Thus, whenever jfront(Cα, τ) is empty,
we say that τ de facto satisfies Cα. As an example, the assignment
τ = {〈c1, t〉, 〈t1, f〉, 〈o0, f〉, 〈t2, t〉, 〈t3, t〉, 〈a0, t〉, 〈b0, t〉, 〈c0, t〉} de
facto satisfies the constrained circuit Cα in Fig. 1. Also note that if a
total truth assignment τ satisfies Cα, then jfront(Cα, τ) is empty.

Translating Circuits to CNF. Each constrained Boolean circuit
Cα can be translated into an equi-satisfiable CNF formula cnf(Cα)
by applying the standard “Tseitin translation”. In order to obtain
a small CNF formula, the idea is to introduce a variable g̃ for
each gate g in the circuit, and then to describe the functional-
ity of each gate with a set of clauses. For instance, an AND-gate
g := AND(g1, . . . , gn) is translated into the clauses (¬g̃ ∨ g̃1),. . . ,
(¬g̃ ∨ g̃n), and (g̃ ∨ ¬g̃1 ∨ . . . ∨ ¬g̃n). The constraints are trans-
lated into unit clauses: 〈g, t〉 ∈ α introduces the unit clause (g̃) and
〈g, f〉 ∈ α the negated unit clause (¬g̃).

A Note on Negations. As usual in many SAT algorithms, we will
implicitly ignore NOT-gates of form g := NOT(g1); g and g1 are
always assumed to have the opposite values. Thus NOT-gates are, for
instance, (i) “inlined” in the cnf translation by substituting ¬g̃1 for
g̃, and (ii) never counted in an interest set interest(Cα, τ).

3 JUSTIFICATION-BASED NON-CLAUSAL SLS

In contrast to typical local search algorithms for SAT, which work on
CNF formulas, we develop justification-based non-clausal stochastic

M. Järvisalo et al. / Justification-Based Non-Clausal Local Search for SAT536

local search techniques. As typical in clausal SLS, a configuration is
described by a total truth assignment. However, our method works
directly on general propositional formulas represented as Boolean
circuits, and hence a configuration is a total assignment on the gates
of the Boolean circuit at hand. In contrast to typical local search for
SAT, we exploit—motivated by successful implementations of com-
plete circuit SAT solving techniques (see, e.g., [9])–techniques for
detecting justification-based don’t cares within our Boolean circuit
SAT local search (BC SLS) framework. This is based on justification
frontiers, which guide the search heuristics to concentrate on rele-
vant parts of the instance and, moreover, provide an alternative, early
stopping criterion for the search.

We demonstrate the novel approach by developing a WalkSAT type
algorithm [15] that exploits justification frontiers in guiding search.
In the clausal WalkSAT local moves are based on randomly selecting
a clause falsified by the current truth assignment. In our algorithm
the role of the falsified clauses is played by the gates in the justifica-
tion front, i.e., the gates in the justification cone not justified by the
current assignment. WalkSAT flips one of the variables in the chosen
clause in the greedy move to maximize the decrease in the number
of falsified clauses. In our case a greedy move selects a justification
for the chosen gate to minimize the number of interesting gates.

The resulting method is presented as Algorithm 1. Given a con-
straint circuit Cα and a noise parameter p ∈ [0, 1] (with p = 0 only
greedy moves are made), the algorithm performs local search over
the assignment space of all the gates in C (inner loop on lines 3-13).

Algorithm 1 BC SLS

Input: constrained Boolean circuit Cα, parameter p ∈ [0, 1]
Output: a de facto satisfying assignment for Cα or “don’t know”
Explanations:
τ : current truth assignment on all gates with τ ⊇ α

δ: next move (a partial assignment)

1: for try := 1 to MAXTRIES(Cα) do
2: τ := pick an assignment over all gates in C s.t. τ ⊇ α

3: for move := 1 to MAXMOVES(Cα) do
4: if jfront(Cα, τ) = ∅ then return τ

5: Select a random gate g ∈ jfront(Cα, τ)
6: with probability (1 − p) do %greedy move
7: δ := a random justification from those justifications

for 〈g, v〉 ∈ τ that minimize cost(τ, ·)
8: otherwise %non-greedy move (with probability p)
9: if g is unconstrained in α

10: δ := {〈g,¬v〉} where 〈g, v〉 ∈ τ

11: else
12: δ := a random justification for 〈g, v〉 ∈ τ

13: τ := (τ \ {〈g,¬w〉 | 〈g, w〉 ∈ δ}) ∪ δ

14: return “don’t know”

We will next describe the inner loop of BC SLS in more detail.

3.1 Stopping Criterion

Similar to typical CNF level SLS methods, one could terminate the
search in BC SLS by applying the standard stopping criterion: when
all gates are justified in the current configuration τ , then τ is in itself
a satisfying truth assignment for the circuit. However, the justifica-
tion frontier allows for an early stopping criterion by Proposition 1:
when the current front jfront(Cα, τ) is empty (line 4), the current

configuration τ de facto satisfies Cα. Thus we can obtain from τ a
satisfying assignment after the search is terminated by simply eval-
uating the unconstrained gates in Cα by using the values for input
gates in τ . This is a stronger stopping criterion than the standard
one, since the front is empty whenever the standard one holds, but
the opposite does not necessarily hold: the front can be empty even
if there are gates in the circuit which are not justified in τ .

3.2 Making Moves

For each of the MAXTRIES(Cα) runs of the inner loop,
MAXMOVES(Cα) moves are made. The moves exploit structural in-
formation and semantics of individual gates for finding a justification
for the currently assigned value of a chosen gate (lines 6-12).

Given the current configuration τ , we concentrate on making
moves on gates in jfront(Cα, τ) by randomly picking a gate g from
this set. For a gate g and its current value v in τ , the possible greedy
moves are induced by the justifications for 〈g, v〉. The idea is to min-
imize the size of the interest set. In other words, the value of the cost
function for a move (justification) δ is

cost(τ, δ) =
˛
˛interest(Cα

, τ
′)

˛
˛,

where τ ′ = (τ \ {〈g,¬w〉 | 〈g,w〉 ∈ δ}) ∪ δ. That is, the cost of a
move δ is given by the size of the interest set in the configuration τ ′

where for the gates mentioned in δ we use the values in δ instead of
those in τ . The move is then selected randomly from those justifica-
tions δ for 〈g, v〉 for which the value cost(τ, δ) is smallest over all
justifications for 〈g, v〉.

During a non-greedy move (lines 9-12, executed with probability
p), we invert the value of the gate g itself whenever this is possible,
i.e., when g is not constrained in α. The idea here is to try to escape
from possible local minima by more radically changing the justifica-
tion front, most likely upwards in the circuit structure. In the case that
we may not invert the value of g (since it is constrained), the move is
chosen randomly from the set of all justifications for 〈g, v〉 ∈ τ .

4 ANALYSIS

4.1 Interest Set Size Driven Greedy Moves

Considering greedy moves, the objective function under minimiza-
tion in BC SLS is cost(τ, ·). Alternatively, one could use the ob-
jective of minimizing |jfront(Cα, τ ′)|, since (i) flipping is con-
centrated on gates in jfront(Cα, τ) and (ii) the stopping criterion
jfront(Cα, τ) = ∅ is used. The reasoning behind choosing to mini-
mize the number of gates in interest(Cα, τ ′) is that it gives a better
progress measure than minimizing the number of gates in the justi-
fication front. First, notice that the justification front cannot become
empty before it reaches a subset of the input gates, since only input
gates are justified by default. Now, the size of the interest set gives
an upper bound on the number of gates that still need to be justified
(the descendants of the gates in the front). Following this intuition,
by minimizing the size of the interest set the greedy moves drive the
search towards the input gates.

4.2 Comparison with Clausal Methods

One of the main advantages of the proposed BC SLS method over
clausal local search methods is that BC SLS can exploit observabil-
ity don’t cares. As an example, consider the circuit in Fig. 2(a), where
the gate g1 is constrained to true and the other t and f symbols depict

M. Järvisalo et al. / Justification-Based Non-Clausal Local Search for SAT 537

the current configuration τ . All the gates, except g6, in the complex
subcircuit rooted at the gate g2 are don’t cares under τ . Therefore BC
SLS can ignore the subcircuit and terminate after flipping the input
gate g5 as the justification front becomes empty. However, assume
that we translate the circuit into a CNF formula by using the Tseitin
translation cnf given in Sect. 2. If we apply a clausal SLS algorithm
such as WalkSAT on the CNF formula, observability don’t cares are
no longer available in the sense that the algorithm must find a total
truth assignment that simultaneously satisfies all the clauses originat-
ing from the subcircuit. This can be a very complex task.

subcircuit

complex

f t xor

g1

g2 g3and

and g5f f

g6

or

f t

t

or or

not

t t

g
x1

g
x2

g
x3

g
x4

(a) Exploiting don’t cares. (b) A CNF circuit.

Figure 2. Example circuits

We can also analyze how BC SLS behaves on flat clausal in-
put. To do this, we associate a CNF formula F = C1 ∧ . . . ∧ Ck

with a constrained CNF circuit ccirc(F) = 〈C, α〉 as fol-
lows. Take an input gate gx for each variable x occurring in F .
Now C = {gCi

:= OR(gl1 , ..., glm) | Ci = (l1 ∨ . . . ∨ lm)} ∪˘
g¬x := NOT(gx) | ¬x ∈ ∪k

i=1Ci

¯
and the constraints force each

“clause gate” gCi
to true: α = {〈gCi

, t〉 | 1 ≤ i ≤ k}. This is illus-
trated in Fig. 2(b) for F = (x1 ∨ ¬x2) ∧ (¬x2 ∨ x3 ∨ x4).

When BC SLS is run on a CNF circuit, it can only flip input vari-
ables. If input gates were excluded from the set interest(Cα, τ) of in-
teresting gates, then |interest(Cα, τ)| would equal to the number of
unjustified clause gates in the configuration τ . Thus the greedy move
cost function cost(τ, ·) would equal to that applied in WalkSAT mea-
suring the number of clauses fixed/broken during a flip. Since input
gates are included in interest(Cα, τ), the BC SLS cost function also
measures, in CNF terms, the number of variables occurring in unsat-
isfied clauses.

4.3 Comparison with Non-Clausal Methods

SLS techniques working directly on non-clausal problems closest to
our work include [14, 6, 12]. They are all based on the idea of limiting
flipping to input (independent) variables whereas we allow flipping
all gates (subformulas) of the problem instance. Moreover, in these
approaches the greedy part of the search is driven by a cost function
which is substantially different from the justification-based cost func-
tion that we employ. Sebastiani [14] generalizes the GSAT heuristic
to general propositional formulas and defines the cost function by
(implicitly) considering the CNF form cnf(φ) of the general formula
φ: the cost for a truth assignment is the number of clauses in cnf(φ)
falsified by the assignment. The approaches of Kautz and Selman [6]
and Pham et al. [12] both use a Boolean circuit representation of the
problem and employ a cost function which, given a truth assignment
for the input gates, counts the number of constrained output gates
falsified by the assignment. This cost function provides limited guid-
ance to greedy moves in cases where there are few constrained output
gates or they are far from the input gates. A worst-case scenario oc-
curs when the Boolean circuit given as input has a single output gate
implying that the cost function can only have the values 0 or 1 for

any flip under any configuration. Such a cost function does not offer
much direction for the greedy flips towards a satisfying truth assign-
ment. Our cost function appears to be less sensitive to the number of
output gates or their distance from the input gates. This is because
the search is based on the concept of a justification frontier which is
able to distribute the requirements implied by the constrained output
gates deeper in the circuit.

5 EXPERIMENTS

In order to evaluate the ideas behind the BC SLS framework, we
have implemented a prototype on top of the bc2cnf Boolean cir-
cuit simplifier/CNF translator [4]. The computation of justification
cone is implemented directly by the definition. When making greedy
and random moves, justifications are selected from the set of sub-
set minimal justifications for the gate value; for a true OR-gate and
false AND-gate, the value of a single child is inverted, and for a
true OR-gate and false AND-gate the values of all children are in-
verted. As structural benchmarks we use a set of Boolean circuits
encoding bounded model checking of asynchronous systems for
deadlocks [1], available at http://www.tcs.hut.fi/∼mjj/
benchmarks/. Although rather easy for current DPLL solvers,
these benchmarks are challenging for typical SLS methods.

Since our implementation is at present a very preliminary non-
incremental one, we will compare the number of moves made by
WalkSAT and our prototype.2 We use WalkSAT, since the current
prototype—as explained also in Sect. 3—can be basically seen as
a justification-based variation of WalkSAT. For running WalkSAT,
we apply exactly the same Boolean circuit level simplification in
bc2cnf to the circuits as in our prototype (including, e.g., circuit
level propagation that is equivalent to unit propagation), and then
translate the simplified circuit to CNF with the Tseitin-style trans-
lation implemented in bc2cnf for running WalkSAT. We run both
WalkSAT and our prototype implementation with the default noise
value p = 0.5 (that is, 50%). To make a fair evaluation (not favor-
ing our prototype), we allow WalkSAT 108 moves and limit our im-
plementation to a maximum of 106 moves. Each instance is run 9
times without restarts. The number of gates in the simplified circuits
(column #gates), and the number of variables (#vars) and clauses
(#clauses) resulting from the standard CNF translation, are given
in Table 1. Furthermore, the minimum (min), median (med), and
maximum (max) number of moves for each instance is presented.
The number of runs without a satisfying truth assignment is given
in the column max in parentheses. Additionally, we give the ratio
of the number of moves made by our prototype and WalkSAT for
the minimum, median, and maximum number of moves done by the
solvers. For example, the max/max ratio of 533.43 for the instance
speed 1.fsa-b10-s means that the maximum number of moves made
by WalkSAT over the nine runs was 533.43 times as large as the max-
imum number of moves done by our implementation on the instance.

To sum up, the experiments demonstrate potential of our novel
approach when solving structural (non-clausal) SAT instances. A
promising observation is that our justification frontier based tech-
nique seems to keep the search rather focused when the size of the
instance grows as witnessed by the modestly increasing number of
moves. In particular, this compares favorably to WalkSAT which typ-
ically exceeds the cutoff of 108 moves as the instance sizes grow.

2 The prototype computes the justification front and cone repeatedly in a
global, non-incremental way. This naive implementation makes around 80-
250 times fewer flips per second (fps) than WalkSAT on instances with
1000-2500 gates. By careful re-implementation a very substantial increase
is expected in the fps rate by incrementally computing the front and cone.

M. Järvisalo et al. / Justification-Based Non-Clausal Local Search for SAT538

Table 1. Comparison of a prototype implementation of BC SLS with WalkSAT

CNF BC SLS #moves WalkSAT #moves relative gain in #moves
Instance #gates #vars #clauses min med max min med max min/min med/med max/max
speed 1.fsa-b6-s 836 688 2087 965 965 4358 2252 5805 11368 2.33 6.02 2.61
speed 1.fsa-b7-s 1142 943 2875 2266 2578 5077 6255 20915 38237 2.76 8.11 7.53
speed 1.fsa-b8-s 1448 1198 3660 1633 1849 5518 9266 62497 95837 5.67 33.80 17.37
speed 1.fsa-b9-s 1754 1453 4444 5029 6695 12616 25911 330321 1643032 5.15 49.34 130.23
speed 1.fsa-b10-s 2060 1708 5226 5089 11313 28423 1511045 4376285 15161778 296.92 386.84 533.43
speed 1.fsa-b12-s 2672 2218 6786 6899 41379 141700 - - - (9) >14494.85 >2416.68 >705.72
speed 1.fsa-b13-s 2978 2473 7563 31384 139921 415601 - - - (9) >3186.34 >714.69 >240.62
speed 1.fsa-b14-s 3284 2728 8338 43690 179967 587184 - - - (9) >2288.85 >555.66 >170.30
speed 1.fsa-b15-s 3590 2983 9111 33647 321554 - (1) - - - (9) >2972.03 >310.99 -
speed 1.fsa-b6-p 687 577 1666 1129 1129 1129 1342 1851 7706 1.19 1.64 6.83
speed 1.fsa-b7-p 1022 863 2528 2148 2777 7614 4636 10916 25955 2.16 3.93 3.41
speed 1.fsa-b8-p 1359 1149 3387 4338 8248 22294 10991 40833 278042 2.53 4.95 12.47
speed 1.fsa-b9-p 1696 1435 4245 5176 10610 27500 33752 76864 288506 6.52 7.24 10.49
speed 1.fsa-b10-p 2033 1721 5101 7249 30846 60009 2043613 4638369 10800631 281.92 150.37 179.98
speed 1.fsa-b12-p 2703 2289 6793 45304 144787 735228 - - - (9) >2207.31 >690.67 >136.01
speed 1.fsa-b13-p 3040 2575 7643 34363 328346 709696 - - - (9) >2910.11 >304.56 >140.91
dp 12.fsa-b5-s 1579 1339 4148 8880 27519 36421 14469 37361 81102 1.63 1.36 2.23
dp 12.fsa-b6-s 2060 1748 5418 23740 52975 106542 123249 790190 2299552 5.19 14.92 21.58
dp 12.fsa-b7-s 2541 2157 6688 28289 69029 170824 397887 28360757 - (1) 14.07 410.85 >585.40
dp 12.fsa-b8-s 3022 2566 7958 33935 91764 461459 - - - (9) >2946.81 >1089.75 >216.70
dp 12.fsa-b9-s 3503 2975 9228 83107 162137 446453 - - - (9) >1203.27 >616.76 >223.99
dp 12.fsa-b5-p 1267 1111 3210 4838 85808 411793 4619 12545 46037 0.95 0.15 0.11
dp 12.fsa-b6-p 1844 1616 4673 38563 118477 221461 17961 85344 145830 0.47 0.72 0.66
dp 12.fsa-b7-p 2421 2121 6136 22545 69040 214360 113932 244863 406876 5.05 3.55 1.90
dp 12.fsa-b8-p 2998 2626 7599 73826 132431 576672 379112 14101664 69496990 5.14 106.48 120.51
dp 12.fsa-b9-p 3575 3131 9062 50227 148409 425594 - - - (9) >1990.96 >673.81 >234.97
elevator 1-b4-p 264 230 649 171 171 171 1176 3041 10801 6.88 17.78 63.16
elevator 1-b4-s 534 447 1363 869 869 1723 2450 51226 270317 2.82 58.95 156.89
elevator 1-b5-s 841 704 2163 2543 3632 4788 19472 202139 391216 7.66 55.66 81.71
elevator 1-b6-s 1307 1093 3388 5073 57305 116572 305888 1317650 4433915 60.30 22.99 38.04
elevator 2-b6-p 896 775 2308 1789 4376 15621 16898 1134779 2824590 9.45 259.32 180.82
elevator 2-b7-p 1606 1379 4214 6221 18601 91691 492869 2756750 13232933 79.23 148.20 144.32
elevator 2-b6-s 1582 1339 4157 6776 16702 - (1) 13576544 - - (8) 2003.62 >5987.31 -
elevator 2-b7-s 2448 2070 6495 7940 28524 72247 - - - (9) >12594.46 >3505.82 >1384.14
mmgt 2.fsa-b6-p 903 777 2285 1220 1220 34132 170454 620821 1260101 139.72 508.87 36.92
mmgt 2.fsa-b7-p 1283 1113 3278 5671 32236 86944 873901 4289501 16896746 154.10 133.07 194.34
mmgt 2.fsa-b6-s 1421 1188 3722 3051 10831 38780 8586379 67686412 - (3) 2814.28 6249.32 >2578.65
mmgt 3.fsa-b7-p 1953 1692 5034 5136 7264 48315 6886854 - - (6) 1340.90 >13766.52 >2069.75
mmgt 3.fsa-b7-s 3079 2600 8260 39796 178191 833128 - - - (9) >2512.82 >561.20 >120.03

Considering the input flipping SLS methods in the literature (recall
Sect. 4.3), we were, unfortunately, unable at the moment to obtain
implementations of these methods for comparison. Comparing input
flipping methods to our current framework remains thus an important
aspect of future work. We did also investigate the performance of
AdaptNovelty+ [3] on the benchmarks. We omit the precise results
here due to space reasons. On the whole, although AdaptNovelty+
does find satisfying truth assignments for more instances than Walk-
SAT using the cutoff of 108 moves, our prototype shows typically a
one-to-three orders of magnitude reduction in the number of moves
compared to AdaptNovelty+ — rather similarly as when compared
to WalkSAT.

6 CONCLUSIONS

Motivated by techniques applied in circuit-level SAT solvers in elec-
tronic design automation, we present a novel approach to solving
structural SAT problems with local search on non-clausal level.
By incorporating justification frontiers, we develop SLS heuristics
which concentrate the search into relevant parts of instances, exploit
observability don’t cares and allow for an early stopping criterion.
Encouraged by the potential witnessed by low move counts of a pro-
totype implementation, we see various directions for further work.
We plan to replace the prototype with a proper solver implemen-
tation with specialized data structures. For achieving self-tuning of
the greediness parameter for effectively escaping from local minima,
developing adaptive noise mechanisms [3] for non-clausal SLS is
a topic for further work. Another aspect is to investigate the effect
of adding local consistency checking (on the circuit level, extending
studies on adding propagation to CNF level SLS [2]) into the frame-
work, and possibly even conflict learning.

REFERENCES

[1] K. Heljanko, ‘Bounded reachability checking with process semantics’,
in CONCUR, volume 2154 of LNCS, pp. 218–232. Springer, (2001).

[2] E.A. Hirsch and A. Kojevnikov, ‘UnitWalk: A new SAT solver that uses
local search guided by unit clause elimination’, Annals of Mathematics
and Artificial Intelligence, 43(1), 91–111, (2005).

[3] H.H. Hoos, ‘An adaptive noise mechanism for WalkSAT’, in AAAI, pp.
655–660, (2002).

[4] T. Junttila. The BC package and a file format for constrained Boolean
circuits˙http://www.tcs.hut.fi/∼tjunttil/bcsat/.

[5] T. Junttila and I. Niemelä, ‘Towards an efficient tableau method for
Boolean circuit satisfiability checking’, in CL 2000, volume 1861 of
LNAI, pp. 553–567. Springer, (2000).

[6] H. Kautz, D. McAllester, and B. Selman, ‘Exploiting variable depen-
dency in local search’, in IJCAI poster session, (1997). http://www.
cs.rochester.edu/u/kautz/papers/dagsat.ps.

[7] H.A. Kautz and B. Selman, ‘The state of SAT’, Discrete Applied Math-
ematics, 155(12), 1514–1524, (2007).

[8] A. Kuehlmann, M.K. Ganai, and V. Paruthi, ‘Circuit-based Boolean
reasoning’, in DAC, pp. 232–237. ACM, (2001).

[9] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, ‘Robust
Boolean reasoning for equivalence checking and functional property
verification’, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 21(12), 1377–1394, (2002).

[10] D. McAllester, B. Selman, and H. Kautz, ‘Evidence for invariants in
local search’, in AAAI, pp. 321–326, (1997).

[11] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1995.
[12] D.N. Pham, J. Thornton, and A. Sattar, ‘Building structure into local

search for SAT’, in IJCAI, pp. 2359–2364, (2007).
[13] S. Safarpour, A. Veneris, R. Drechsler, and J. Lee, ‘Managing don’t

cares in Boolean satisfiability’, in DATE’04. IEEE, (2004).
[14] R. Sebastiani, ‘Applying GSAT to non-clausal formulas’, Journal of

Artificial Intelligence Research, 1, 309–314, (1994).
[15] B. Selman, H.A. Kautz, and B. Cohen, ‘Noise strategies for improving

local search’, in AAAI, pp. 337–343, (1994).
[16] B. Selman, H. Levesque, and D. Mitchell, ‘A new method for solving

hard satisfiability problems’, in AAAI, pp. 440–446, (1992).
[17] C. Thiffault, F. Bacchus, and T. Walsh, ‘Solving non-clausal formu-

las with DPLL search’, in CP, volume 3258 of LNCS, pp. 663–678.
Springer, (2004).

M. Järvisalo et al. / Justification-Based Non-Clausal Local Search for SAT 539

