
Hybrid tractable CSPs which generalize tree structure

Martin C. Cooper1 and Peter G. Jeavons2 and András Z. Salamon3

Abstract. The constraint satisfaction problem (CSP) is a central
generic problem in artificial intelligence. Considerable progress has
been made in identifying properties which ensure tractability in such
problems, such as the property of being tree-structured. In this pa-
per we introduce the broken-triangle property, which allows us to
define a hybrid tractable class for this problem which significantly
generalizes the class of problems with tree structure. We show that
the broken-triangle property is conservative (i.e., it is preserved un-
der domain reduction and hence under arc consistency operations)
and that there is a polynomial-time algorithm to determine an order-
ing of the variables for which the broken-triangle property holds (or
to determine that no such ordering exists). We also present a non-
conservative extension of the broken-triangle property which is also
sufficient to ensure tractability and can be detected in polynomial
time.

Keywords: constraint satisfaction, tractability, computational
complexity, arc consistency.

1 INTRODUCTION

Constraint satisfaction problems with tree structure have been widely
studied, and are known to have efficient algorithms [8].

However, tree structure is quite restricted. It is therefore worth-
while exploring more general problem classes, to identify more
widely-applicable properties which still allow efficient solution al-
gorithms. A subclass of the general CSP which can be solved in
polynomial time, and also identified in polynomial time, is called
a tractable subclass.

There has been a considerable research effort in identifying
tractable subclasses of the CSP over the past decade. Most of this
work has focused on one of two general approaches: either iden-
tifying forms of constraint which are sufficiently restrictive to en-
sure tractability no matter how they are combined [2, 9], or else
identifying structural properties of constraint networks which ensure
tractability no matter what forms of constraint are imposed [7, 5].

The first approach has had considerable success in characteriz-
ing precisely which forms of constraint ensure tractability no mat-
ter how they are combined. A set of constraint types with this prop-
erty is called a tractable constraint language. In general it has been
shown that any tractable constraint language must have certain al-
gebraic properties known as polymorphisms [13]. A complete char-
acterization of all possible tractable constraint languages has been
established in the following cases: conservative constraint languages

1 IRIT, University of Toulouse III, 31062 Toulouse, France, email:
cooper@irit.fr

2 Computing Laboratory, University of Oxford, Oxford, OX1 3QD, UK,
email: Peter.Jeavons@comlab.ox.ac.uk

3 Computing Laboratory, University of Oxford, Oxford, OX1 3QD, UK, and
The Oxford-Man Institute of Quantitative Finance, 9 Alfred Street, Oxford,
OX1 4EH, UK, email: Andras.Salamon@comlab.ox.ac.uk

(i.e. constraint languages containing all unary constraints) [3], and
constraint languages over a 2-element domain [17] or a 3-element
domain [4].

The second approach has also had considerable success in char-
acterizing precisely which structures of constraint network ensure
tractability no matter what constraints are imposed. For the class of
problems where the arity of the constraints is bounded by some fixed
constant (such as binary constraint problems) it has been shown that
(subject to certain technical assumptions) the only class of structures
which ensure tractability are structures of bounded tree-width [12].

However, many constraint satisfaction problems do not possess a
sufficiently restricted structure or use a sufficiently restricted con-
straint language to fall into any of these tractable classes. They may
still have properties which ensure they can be solved efficiently,
but these properties concern both the structure and the form of the
constraints. Such properties have sometimes been called hybrid rea-
sons for tractability [16], and they are much less widely-studied and
much less well-understood than the language properties and struc-
tural properties described above.

In this paper we introduce a new hybrid property which we call the
broken-triangle property. We show that this property is sufficient to
ensure that a CSP instance is tractable, and also show that checking
whether an instance has the broken-triangle property can be done
in polynomial time. Moreover, we show that all tree-structured CSP
instances have this property, as well as many other instances that are
not tree-structured (including some with unbounded tree-width).

The broken triangle property can be thought of as a kind of transi-
tivity condition. By processing the variables in an appropriate order,
an algorithm akin to those used for solving tree-structured CSP in-
stances can be applied to find a solution. Moreover, a suitable such
ordering of variables can be found efficiently. The general technique
for finding a suitable ordering, and then exploiting it to generate a
solution, is discussed in Section 3. Sections 4 to 6 extend these ideas.

2 THE BROKEN TRIANGLE PROPERTY

In this paper we focus on binary constraint satisfaction problems. A
binary relation over domains Di and Dj is a subset of Di × Dj .
For a binary relation R, the relation rev(R) is defined as {(v, u) |
(u, v) ∈ R}.

A binary CSP instance consists of a set of variables (where each
variable is denoted by a number i ∈ {1, 2, . . . , n}); for each variable
i, a domain Di containing possible values for variable i; and a set of
constraints, each of the form 〈(i, j), R〉, where i and j are variables
and R is a relation such that R ⊆ Di × Dj .

To simplify the notation we introduce the notion of a canonical
constraint relation which combines all of the specified information
about a pair of variables i, j.

Definition 1 Suppose i and j are variables of a CSP instance. De-

ECAI 2008
M. Ghallab et al. (Eds.)

IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-891-5-530

530

note by Uij the set of constraint relations specified for the (ordered)
pair of variables (i, j). The canonical constraint relation between
variables i and j will be denoted Rij and is defined as

Rij =
\

(Uij ∪ {rev(R) | R ∈ Uji}) .

The canonical constraint relation Rij contains precisely the pairs of
values that are allowed for the variables i and j by all the constraints
on i and j. Note that Rij = rev(Rji). If there are no constraints
involving i and j, then Rij is the intersection of an empty set, and is
defined to be the complete relation Di×Dj . If relation Rij is neither
empty nor the complete relation, we say it is proper.

Definition 2 A binary CSP instance satisfies the broken-triangle

property (BTP) with respect to (w.r.t.) the variable ordering <, if,
for all triples of variables i, j, k such that i < j < k, if (u, v) ∈
Rij , (u, a) ∈ Rik and (v, b) ∈ Rjk, then either (u, b) ∈ Rik or
(v, a) ∈ Rjk.

The broken-triangle property can be understood by the implication
shown in Figure 1. In this figure, each oval represents the domain of
an associated variable, and each line represents a consistent assign-
ment of values for a pair of variables. A line joins element u ∈ Di

and element v ∈ Dj if (u, v) ∈ Rij . The BTP on i, j, k simply says
that for any “broken triangle” a−u−v−b, as illustrated in Figure 1,
there is always a true triangle u − v − c (where c is either a or b).
BTP is similar to but stronger than directional path consistency [18].

It is important to note that the BTP must be satisfied for all triples
i < j < k, even if the description of the instance does not specify a
constraint between variables i and j. If there is no specified constraint
between i and j, then Rij allows all pairs of values.

A set of CSP instances may satisfy the broken-triangle property
due to the structure of the constraint graph, due to the language of
the constraint relations, or due to a combination of these.

i

j

ku

v

a

b

⇓

i

j

ku

v

c

Figure 1. The broken-triangle property on variables i, j, k.

For an element a ∈ Di, we write Rij(a) to represent {b ∈ Dj :
(a, b) ∈ Rij}, the image of a in relation Rij .

Lemma 3 A binary CSP instance satisfies the broken-triangle prop-
erty with respect to the variable ordering < if and only if for all
triples of variables i < j < k, and for all (u, v) ∈ Rij ,

(Rik(u) ⊆ Rjk(v)) ∨ (Rjk(v) ⊆ Rik(u)). (1)

Proof: The condition that either Rik(u) ⊆ Rjk(v) or Rjk(v) ⊆
Rik(u) is equivalent to stating that there do not exist elements a of
Rik(u) and b of Rjk(v) such that a �∈ Rjk(v) and b �∈ Rik(u). By
the definition of the image of an element in a relation, this in turn
is equivalent to the statement that there do not exist a, b ∈ Dk such
that (u, a) ∈ Rik, (v, b) ∈ Rjk, (u, b) �∈ Rik and (v, a) �∈ Rjk.
Sentence (1) therefore exactly forbids the presence of a configuration
that would prevent the instance from satisfying the BTP.

Using this result we can obtain the following simple sufficient con-
dition for the broken-triangle property.

Lemma 4 A binary CSP instance satisfies the broken-triangle prop-
erty with respect to a variable ordering < if, for all triples of vari-
ables i < j < k, either Rik or Rjk is a complete relation.

Proof: If Rik is a complete relation, then Rik(u) = Dk, while if
Rjk is a complete relation, then Rjk(v) = Dk. In either case, by
Lemma 3, the instance satisfies the BTP.

Definition 5 A class of CSP instances is called conservative if it is
closed under domain restrictions (i.e., the addition of arbitrary unary
constraints).

It is easy to verify from the definition that the broken-triangle prop-
erty is conservative. This has two important benefits. First, the
broken-triangle property is invariant under arc consistency opera-
tions: if a binary CSP instance satisfies the broken-triangle prop-
erty, then so does its arc consistency closure. Second, if the broken-
triangle property is satisfied on all triples of variables i, j, k belong-
ing to some subset of variables W , then the CSP instance which re-
sults when all of the variables not in W have been assigned will sat-
isfy the broken-triangle property, and hence be efficiently solvable.

3 TRACTABILITY OF BTP INSTANCES

In this section we show that if a CSP instance has the broken-triangle
property with respect to some fixed variable ordering, then finding
a solution is tractable. Moreover, the problem of finding a suitable
ordering if it exists is also tractable.

For a binary CSP instance with n variables, let d =
max{|D1|, . . . , |Dn|} and let q be the number of constraints.

Definition 6 An assignment of values (u1, . . . , uk) to the first k
variables of a binary CSP instance is called consistent if ui ∈ Di

whenever 1 ≤ i ≤ k, and (ui, uj) ∈ Rij whenever 1 ≤ i < j ≤ k.

Theorem 7 For any binary CSP instance which satisfies the BTP
with respect to some known variable ordering <, it is possible to find
a solution in O(d2q) time (or determine that no solution exists).

Proof: By the discussion above, if an instance has the BTP with
respect to <, then establishing arc consistency preserves the BTP.
Furthermore, it is known that arc consistency can be established in
O(d2q) time [1]. If this results in an empty domain, then the instance
has no solutions. Therefore, we assume in the following that the CSP
instance is arc consistent and has non-empty domains.

M.C. Cooper et al. / Hybrid Tractable CSPs Which Generalize Tree Structure 531

We can assign some value u1 ∈ D1 to the first variable, since
D1 �= ∅. To prove the result it is sufficient to show, for all
k = 2, . . . , n, that any consistent assignment (u1, . . . , uk−1) for
the first k − 1 variables can be extended to a consistent assignment
(u1, . . . , uk) for the first k variables. The case k = 2 follows from
arc consistency.

By Lemma 3, if i < j < k then either Rik(ui) ⊆ Rjk(uj) or
Rjk(uj) ⊆ Rik(ui). Thus the set {Rik(ui) | i < k} is totally
ordered by subset inclusion, and hence has a minimal element

Ri0k(ui0) =
\

i<k

Rik(ui) (2)

for some i0 < k. Since the instance is arc consistent, Ri0k(ui0) �= ∅.
By the definition of Rik(ui), it follows that (u1, . . . , uk) is a con-
sistent assignment for the first k variables, for any choice of uk ∈
Ri0k(ui0).

The time taken to calculate the intersections in (2) is at most
O(d2q) overall, since each pair of values must be checked against
each relevant constraint.

Theorem 8 The problem of finding a variable ordering for a binary
CSP instance such that it satisfies the broken-triangle property with
respect to that ordering (or determining that no such ordering exists)
is solvable in polynomial time.

Proof: Given a CSP instance P , we define a new CSP instance P ′

that has a solution precisely when there exists a suitable variable or-
dering for P .

To construct P ′, let O1, . . . , On be variables taking values in
{1, . . . , n} representing positions in the ordering. We impose the
ternary constraint

Ok < max{Oi, Oj} (3)

for all triples of variables i < j < k in P such that the broken-
triangle property fails to hold for some u ∈ Di, v ∈ Dj , and
a, b ∈ Dk. The instance P ′ then has a solution precisely if there is
an ordering of the variables 1, . . . , n of P which satisfies the broken-
triangle property. Note that if the solution obtained represents a par-
tial order (for instance, if Oi and Oj are assigned the same value
for some i �= j), then it can be extended to a total order which still
satisfies all the constraints by using a linear time topological sort.

For each triple of variables in P , the construction of the corre-
sponding constraints in P ′ requires O(d4) steps to check which con-
straints to add. There are O(n3) such triples, so constructing instance
P ′ takes O(n3d4) steps, which is polynomial in the size of P .

The constraints in P ′ are all of the form (3), and such constraints
are max-closed [14] (if p1 < max{q1, r1} and p2 < max{q2, r2}
then max(p1, p2) < max{max(q1, q2), max(r1, r2)}). Max-
closed constraints are a tractable constraint language [14]: any CSP
instance with max-closed constraints can be solved by establishing
generalized arc consistency [15] and then choosing the maximum el-
ement which remains in each variable domain. Since the size of P ′

is polynomial in the size of P , it follows that the instance P ′ can be
solved in time polynomial in the size of P .

Because the BTP is conservative, any pre-processing operations
which only perform domain reductions, such as arc consistency,
path-inverse consistency [11], or neighbourhood substitution [10, 6],
can be applied before looking for a variable ordering for which the
broken-triangle property is satisfied; these reduction operations can-
not destroy the broken-triangle property, but they can make it more
likely to hold (and easier to check).

4 RELATED CLASSES

In this section we will show that the broken-triangle property gen-
eralizes two other known tractable classes: one based on language
restrictions and one based on structural restrictions.

Throughout this section we suppose that the values in the variable
domains are totally ordered.

Definition 9 A binary relation Rij is right monotone if ∀b, c ∈ Dj ,

(a, b) ∈ Rij ∧ b < c ⇒ (a, c) ∈ Rij .

A commonly-used right monotone constraint is the inequality con-
straint: Xi ≤ Xj . The complete relation is also right monotone.

Lemma 10 If the relations Rik, Rjk are both right monotone, then
the broken triangle property is satisfied on the triple of variables
i < j < k, whatever the relation Rij .

Proof: Suppose that Rik, Rjk are both right monotone and that
(u, v) ∈ Rij , (u, a) ∈ Rik and (v, b) ∈ Rjk. If a < b, then (u, b) ∈
Rik (since Rik is right monotone); if a > b, then (v, a) ∈ Rjk (since
Rjk is right monotone).

Definition 11 Consider a binary CSP instance P . For a given vari-
able ordering <, denote by parents<(k) the set of variables i < k
such that Rik is proper.

Definition 12 A binary CSP instance is renamable right monotone

with respect to a variable ordering < if, for each k ∈ {2, . . . , n},
there is an ordering of Dk, such that Rik is right monotone for every
i ∈ parents<(k).

Lemma 13 If a binary CSP instance is renamable right monotone
with respect to a variable ordering <, then it satisfies the broken-
triangle property with respect to <.

Proof: Suppose the CSP instance is renamable right monotone with
respect to variable ordering <, and let k be any variable. Since the
instance is renamable right monotone with respect to <, there is an
ordering of Dk such that whenever i ∈ parents<(k) then Rik is
right monotone. Now suppose i < j < k are variables in this or-
dering. Then each of Rik and Rjk is either the complete relation
(and hence right monotone), or right monotone in its own right. By
Lemma 10, the broken triangle property is satisfied for i, j, k. Since
the choice of k was arbitrary, it follows that the instance satisfies the
BTP.

Lemma 14 If a CSP instance has a tree structure, then it satisfies
the broken-triangle property with respect to any variable ordering
in which each node occurs before its children.

Proof: If a CSP instance has tree structure, then any variable
ordering < from any designated root to the leaves is such that
|parents<(k)| ≤ 1 for every variable k. Hence, by Lemma 4, it
satisfies the BTP with respect to that ordering.

Let TREE be the constraint satisfaction problem consisting of all in-
stances that have tree structure, RRM be the CSP consisting of all
instances that are renamable right monotone w.r.t. some variable or-
dering, and BTP be the CSP consisting of all instances which have
the broken-triangle property w.r.t. some variable ordering. Note that
the class RRM contains instances of arbitrary tree-width, for instance
some CSPs where the constraint structure is a grid.

M.C. Cooper et al. / Hybrid Tractable CSPs Which Generalize Tree Structure532

0

1

2

Figure 2. An instance in BTP that is not in RRM or TREE.

Theorem 15 TREE � BTP and RRM � BTP.

Proof: The inclusions follow from Lemma 14 and Lemma 13; the
instance shown in Figure 2 establishes the strict separations.

5 ALTERNATIVE CHARACTERIZATION

In this section we consider properties which are both conservative
and preserved by taking subproblems. We show that the broken-
triangle property is the only such property which ensures that the
following desirable behaviour can be guaranteed simply by achiev-
ing a certain level of arc-consistency:

Definition 16 A CSP instance is universally backtrack-free with
respect to an ordering < of its n variables if ∀k ∈ {2, . . . , n}, any
consistent assignment for the first k−1 variables can be extended to
a consistent assignment for the first k variables.

Definition 17 Given a CSP instance I on variables 1, . . . , n, the
subproblem I({i1, . . . , im}), where 1 ≤ i1 < i2 < . . . < im ≤ n,
is the m-variable CSP instance with domains Di1 , . . . , Dim and ex-
actly those constraints of I whose scopes are subsets of {i1, . . . , im}.

Definition 18 A set Σ of CSP instances is inclusion-closed if ∀I ∈
Σ, all subproblems I(M) on subsets M of the variables of I also
belong to Σ.

Definition 19 A binary CSP instance is directional arc-consistent

with respect to a variable ordering <, if for all pairs of variables
i < j, ∀a ∈ Di, ∃b ∈ Dj such that (a, b) ∈ Rij .

Proposition 20 A conservative inclusion-closed set Σ of CSP in-
stances is such that the directional arc-consistency closure DAC(I)
of every I ∈ Σ with respect to a variable ordering < is universally
backtrack-free with respect to < if and only if ∀I ∈ Σ, DAC(I) sat-
isfies the broken-triangle property with respect to <.

Proof: The argument used in the proof of Theorem 7 shows that if
any binary CSP instance satisfies the broken-triangle property then
its directional arc-consistency closure is universally backtrack-free.

To prove the converse, suppose that Σ is a conservative inclusion-
closed set of CSP instances and consider any I ∈ Σ. Since Σ is
conservative, DAC(I) also belongs to Σ, since it is obtained from
I by a sequence of domain reductions. In the following, we let Di

denote the domain of variable i in DAC(I). Consider three variables
i < j < k and four domain values u ∈ Di, v ∈ Dj , a, b ∈ Dk such

that (u, v) ∈ Rij , (u, a) ∈ Rik and (v, b) ∈ Rjk. Denote by I ′ the
subproblem of DAC(I) on variables i, j, k and with reduced domain
{a, b} for variable k. Establishing directional arc consistency in I ′

may reduce the domains of variables i and j, but cannot delete v
from the domain of variable j (since it has a support, namely b, at
k) nor can it delete u from the domain of variable i (since it has
supports at variables j and k). If DAC(I ′) is universally backtrack-
free, then the consistent assignment (u, v) for the variables (i, j) can
be extended to a consistent assignment for (i, j, k), which must be
either (u, v, a) or (u, v, b). This corresponds exactly to the definition
of the broken-triangle property, and so DAC(I) satisfies the BTP.

6 GENERALIZING THE BTP

In this section we show that a weaker form of the broken-triangle
property also implies backtrack-free search. This leads to a larger,
but non-conservative, tractable class of CSP instances. Throughout
this section, we assume that domains are totally ordered.

Definition 21 A binary CSP instance is min-of-max extendable

with respect to the variable ordering <, if for all triples of variables
i, j, k such that i < j < k, if (u, v) ∈ Rij , then (u, v, c) is a consis-
tent assignment for (i, j, k), where

c = min(max(Rik(u)), max(Rjk(v)))

The symmetrically equivalent property max-of-min extendability is
defined similarly, with c = max(min(Rik(u)), min(Rjk(v))).

Lemma 22 A binary CSP instance satisfies the broken-triangle
property w.r.t. a variable ordering < if and only if it is min-of-max
extendable w.r.t. < for all possible domain orderings.

Proof: Suppose that a CSP instance satisfies the broken-triangle
property with respect to <, and consider an arbitrary ordering of
each of the domains. To prove min-of-max extendability, it suf-
fices to apply the broken-triangle property to a = max(Rik(u))
and b = max(Rjk(v)). Since a and b are maximal, it must be
(u, v, min(a, b)) which is the consistent extension of (u, v).

To prove the converse, suppose that a CSP instance is min-of-max
extendable for all possible domain orderings. For any a, b ∈ Dk,
consider an ordering of Dk for which a, b are the two maximal ele-
ments. The broken-triangle property then follows from the definition
of min-of-max extendability.

Theorem 23 If a binary CSP instance is min-of-max extendable
w.r.t. some known variable ordering < and some (possibly unknown)
domain orderings, and is also directional arc-consistent with respect
to <, then it is universally backtrack-free w.r.t. <, and hence can be
solved in polynomial time.

Proof: Suppose that (u1, . . . , uk−1) is a consistent assignment for
the variables (1, . . . , k − 1). By directional arc consistency, ∀i < k,
Rik(ui) �= ∅. This means that

c = min{max(Rik(ui)) : 1 ≤ i ≤ k − 1}

is well-defined. Let j ∈ {1, . . . , k − 1} be such that c =
max(Rjk(uj)). Let i be any variable in {1, . . . , k − 1} − {j}. Ap-
plying the definition of min-of-max extendability to variables i, j, k
allows us to deduce that (ui, c) ∈ Rik. It follows that ∃uk ∈ Dk

M.C. Cooper et al. / Hybrid Tractable CSPs Which Generalize Tree Structure 533

(namely uk = c) such that (u1, . . . , uk) is a consistent assignment
for the variables (1, . . . , k).

Note that we used the ordering of domain Dk only to prove the
existence of a consistent extension (u1, . . . , uk) of (u1, . . . , uk−1).
A backtrack-free search algorithm need not necessarily choose uk =
c and hence does not need to know the domain orderings.

Theorem 24 The problem of finding a variable ordering for a bi-
nary CSP instance with ordered domains such that it is min-of-max
extendable w.r.t. that ordering (or determining that no such ordering
exists) is solvable in polynomial time.

Proof: The requirements for the ordering are a subset of the require-
ments for establishing the broken triangle property. Hence the result
can be proved exactly as in the proof of Theorem 8.

We can use Theorem 24 in the following way: given a CSP in-
stance with ordered domains, compute its arc consistency closure,
and then test (in polynomial time) whether this reduced instance is
min-of-max extendable for some ordering of its variables. If we find
such an ordering, then the instance can be solved in polynomial-time,
by Theorem 23.

However, this approach is not guaranteed to find all possible useful
variable orderings achieving min-of-max extendability. Since min-
of-max extendability is not a conservative property, it may be that,
for some variable orderings, the directional arc-consistency closure
is min-of-max extendable but the full arc-consistency closure is not
(or vice versa). In fact we conjecture that, for a given binary CSP
instance with fixed domain orderings, determining whether there ex-
ists some variable ordering such that the directional arc-consistency
closure is min-of-max extendable with respect to that ordering is
NP-complete. We also conjecture that determining whether a CSP
instance is min-of-max extendable for some unknown domain order-
ings, even for a fixed variable ordering, is NP-complete.

Finally, we show that min-of-max extendability is a generalization
of a previously-identified hybrid tractable class based on row-convex
constraints [18].

Definition 25 A CSP instance is row-convex (w.r.t. a fixed variable
ordering and fixed domain orderings) if for all pairs of variables
i < j, ∀u ∈ Di, Rij(u) is the interval [a, b] for some a, b ∈ Dj .

It is known that a directional path-consistent row-convex binary
CSP instance is universally backtrack-free and hence tractable [18].
(However, it should be noted that establishing directional path con-
sistency may destroy row-convexity.) Our interest in this hybrid
tractable class is simply to demonstrate that it is a special case of
min-of-max extendability.

Proposition 26 If a binary CSP instance is directional path-
consistent and row-convex, then it is min-of-max extendable (and
also max-of-min extendable).

Proof: Consider the triple of variables i < j < k and sup-
pose that (u, v) ∈ Rij . By directional path consistency, ∃c ∈ Dk

such that (u, c) ∈ Rik and (v, c) ∈ Rjk. By row-convexity,
Rik(u) and Rjk(v) are intervals in the ordered domain Dk. The
existence of c means that these intervals overlap. Both end-points
of this overlap provide extensions of (u, v) to a consistent as-
signment for the variables (i, j, k). One end-point is given by
min(max(Rik(u)), max(Rjk(v))) which ensures min-of-max ex-
tendability. (The other ensures max-of-min extendability.)

7 CONCLUSION

We have described new hybrid tractable classes of binary CSP in-
stances which significantly generalize tree-structured problems as
well as previously-identified language-based and hybrid tractable
classes. The new classes are based on local properties of ordered
triples of variables. Moreover, we have shown that the problem of
determining a variable ordering for which these properties hold is
solvable in polynomial time.

We see this work as a first step towards a complete characteriza-
tion of all hybrid tractable classes of constraint satisfaction problems.

REFERENCES

[1] C. Bessière and J.-C. Régin, ‘Refining the basic constraint propagation
algorithm’, in Proc IJCAI’01, Seattle, WA, pp. 309–315, (2001).

[2] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin, ‘Classifying the
complexity of constraints using finite algebras’, SIAM Journal on Com-
puting, 34(3), 720–742, (2005).

[3] Andrei A. Bulatov, ‘Tractable conservative constraint satisfaction prob-
lems’, in Proceedings of 18th IEEE Symposium on Logic in Computer
Science (LICS 2003), 22-25 June 2003, Ottawa, Canada, pp. 321–330.
IEEE Computer Society, (2003).

[4] Andrei A. Bulatov, ‘A dichotomy theorem for constraint satisfaction
problems on a 3-element set’, Journal of the ACM, 53(1), 66–120,
(2006).

[5] David Cohen, Peter Jeavons, and Marc Gyssens, ‘A unified theory of
structural tractability for constraint satisfaction problems’, Journal of
Computer and System Sciences, 74(5), 721–743, (2008).

[6] Martin C. Cooper, ‘Fundamental properties of neighbourhood substitu-
tion in constraint satisfaction problems’, Artificial Intelligence, 90(1–
2), 1–24, (1997).

[7] R. Dechter and J. Pearl, ‘Network-based heuristics for constraint satis-
faction problems’, Artificial Intelligence, 34(1), 1–38, (1987).

[8] Rina Dechter, ‘Tractable structures for constraint satisfaction prob-
lems’, in Handbook of Constraint Programming, eds., Francesca Rossi,
Peter van Beek, and Toby Walsh, 209–244, Elsevier, (2006).

[9] Tomás Feder and Moshe Y. Vardi, ‘The computational structure of
monotone monadic SNP and constraint satisfaction: A study through
Datalog and group theory’, SIAM Journal of Computing, 28(1), 57–
104, (1998).

[10] Eugene C. Freuder, ‘Eliminating interchangeable values in constraint
satisfaction problems’, in Proc. AAAI-91, Anaheim, CA, pp. 227–233,
(1991).

[11] Eugene C. Freuder and Charles D. Elfe, ‘Neighborhood inverse consis-
tency preprocessing’, in Proc. AAAI/IAAI-96, Portland, OR, Vol. 1, pp.
202–208, (1996).

[12] Martin Grohe, ‘The structure of tractable constraint satisfaction prob-
lems’, in Proceedings of the 31st Symposium on Mathematical Founda-
tions of Computer Science, volume 4162 of Lecture Notes in Computer
Science, pp. 58–72. Springer-Verlag, (2006).

[13] P.G. Jeavons, ‘On the algebraic structure of combinatorial problems’,
Theoretical Computer Science, 200, 185–204, (1998).

[14] P.G. Jeavons and M.C. Cooper, ‘Tractable constraints on ordered do-
mains’, Artificial Intelligence, 79(2), 327–339, (1995).

[15] R. Mohr and G. Masini, ‘Good old discrete relaxation’, in Proceed-
ings 8th European Conference on Artificial Intelligence —ECAI’88,
ed., Y. Kodratoff, pp. 651–656. Pitman, (1988).

[16] J.K. Pearson and P.G. Jeavons, ‘A survey of tractable constraint satis-
faction problems’, Technical Report CSD-TR-97-15, Royal Holloway,
University of London, (July 1997).

[17] T.J. Schaefer, ‘The complexity of satisfiability problems’, in Proceed-
ings 10th ACM Symposium on Theory of Computing, STOC’78, pp.
216–226, (1978).

[18] Peter van Beek and Rina Dechter, ‘On the minimality and decompos-
ability of row-convex constraint networks’, Journal of the ACM, 42(3),
543–561, (1995).

M.C. Cooper et al. / Hybrid Tractable CSPs Which Generalize Tree Structure534

