
Vivifying Propositional Clausal Formulae

Cédric PIETTE1 and Youssef HAMADI2 and Lakhdar SAÏS1

Abstract. In this paper, we present a new way to prepro-
cess Boolean formulae in Conjunctive Normal Form (CNF). In
contrast to most of the current pre-processing techniques, our
approach aims at improving the filtering power of the original
clauses while producing a small number of additional and rele-
vant clauses. More precisely, an incomplete redundancy check
is performed on each original clauses through unit propaga-
tion, leading to either a sub-clause or to a new relevant one
generated by the clause learning scheme. This preprocessor
is empirically compared to the best existing one in terms of
size reduction and the ability to improve a state-of-the-art
satisfiability solver.

1 INTRODUCTION

Since a few years, preliminary computations on CNF formulae
have been more and more studied by the SAT community.
This renewal of interest can be explained by different factors.
First, reducing the huge size of the SAT instances encoding
real world problems increases the robustness of SAT solvers.
Secondly, these instances contain different kinds of structures
that can be handled more efficiently before search.

One of the most effective preprocessing techniques
(SatElite) is currently integrated in state-of-the-art SAT
solvers such as Minisat and Rsat. It is now well acknowledged
that the performances of these solvers is usually greatly im-
proved by this particular preprocessing, up to the point where
SatElite is often used by SAT competitors.

Thus, preprocessing a formula before solving is now known
as an important step, and a lot of preprocessors have al-
ready been proposed. One of the first and efficient prepro-
cessing algorithm, called 3-Resolution was incorporated to
the Satz solver [10]. It consists in adding to the formula all
resolvent clauses of size less or equal to 3, until saturation.
2-SIMPLIFY, a less computationally heavy preprocessor was
proposed in [2]. It has been developed to better manage real-
world benchmarks, which often contain a lot of binary clauses.
Roughly, the idea is thus to use those binary clauses to con-
struct an implication graph, from which unit clauses can be
deduced by computing the transitive closure. If unit clauses
have been obtained, they are propagated and this process is it-
erated until a fix point is reached. Later on, HyPre generalized
2-SIMPLIFY by computing hyper-binary resolution to deduce
new binary clauses [1]. Moreover, HyPre is able to detect and
substitute equivalent literals incrementally. The classical DP

1 Université Lille-Nord de France, Artois, CRIL-CNRS UMR 8188,
F-62307 Lens, email: {piette,sais}@cril.fr

2 Microsoft Research, 7 J J Thomson Avenue, Cambridge, United
Kingdom email: youssefh@microsoft.com

procedure, based on variable elimination through resolution,
has also been used in a limited way as a preprocessing step.
A weaker schema has been adopted by the NiVER procedure
[13]. This one eliminates variables by resolution if this com-
putation does not increase the number of literals of the CNF
formula. NiVER has been improved later by a so-called sub-
stitution rule, together with the use of clause signatures and
touched lists to define the recent SatElite preprocessor [6].

However, only preprocessors that eliminate variables by a
limited application of resolution are now grafted to modern
SAT solvers. Indeed, the other kinds of preprocessors aim at
modifying the CNF formula with some addition and/or re-
moval of clauses, keeping generally the same set of variables.
The main problem of these preprocessors is that it is difficult
to measure the relevance of each added or eliminated clause
with respect to the resolution step. One can eliminate clauses
and can derive an harder sub-formula. Similarly, adding new
clauses might lead to an increase in the space complexity,
without reducing the search space. Indeed, the added clauses
can only clutter the solver by creating redundant information.

In this paper, we revisit this kind of preprocessing, using
only forms of resolution that aims at substituting existing
clauses by more constrained ones. In other words, our main
goal is to strengthen, or to vivify, the redundant clauses from
the original formula. To this end, we apply a limited check
of redundancy on each clause of the CNF formula in order to
derive or to approximate one of its minimally redundant sub-
clauses. Interestingly, our proposed approach can also take
advantage of modern learning scheme to produce new resol-
vents that are conditionally added to the formula.

This paper is organized as follow: in the next section basic
notations and definitions about propositional clausal formu-
lae and SAT are provided. In section 3, different simplifica-
tion techniques and their practical usefulness are discussed.
Next, particular forms of resolution hidden by unit propa-
gation are presented, and an incomplete method which can
produce them is presented. The resulting preprocessor is de-
tailed and evaluated in section 4. Finally, we conclude the
paper by some perspectives and further works.

2 DEFINITIONS AND NOTATIONS

We briefly state here some definitions and notations used in
the rest of this paper. A propositional formula is in conjunc-
tive normal form (CNF for short), if it can be represented
using a set (interpreted as a conjunction) of clauses, where
a clause is a set (interpreted as a disjunction) of literals, a
literal being a propositional variable, or its negation. The set
of variables that appear in a CNF formula Σ will be denoted

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-525

525

Var(Σ). Lit(Σ) is defined as the set {x,¬x|x ∈ Var(Σ)}. For
a set of literals L, L̄ is defined as {l̄|l ∈ L}.

An interpretation ρ of a CNF formula Σ is an application
from Var(Σ) to the set of truth values {true, false}. It is called
a model iff it provides the value true to Σ (in short ρ |= Σ).
SAT is the problem of deciding whether a given CNF formula
admits a model, or not.

Let ca = {la1 , . . . , lan , l} and cb = {lb1 , . . . , lbm ,¬l} be two
clauses. The clause c = {la1 , . . . , lan , lb1 , . . . , lbm} is a logical
consequence (called resolvent) of ca and cb. This production
rule is called resolution and is denoted ⊗R. We note the resol-
vent c as ca⊗Rcb. Most of the techniques used for solving SAT
(e.g. DP-like procedure, unit propagation, learning schemes,
etc.) are based on implicit or explicit application of resolu-
tion. This is clearly the case for most preprocessors, including
the one presented in this paper.

Let c and c′ be two clauses of Σ. We say that a clause c′

(resp. c) subsumes (resp. is subsumed by) c (resp. c′) iff c′ ⊂ c.
Subsumed clauses c can be removed from Σ while preserving
satisfiability. Given x ∈ Lit(Σ), we define Σ|x, the formula
simplified by the assignment of x to true. We recursively de-
fine UP (Σ) as follows : (1) UP (Σ) = Σ if Σ does not contain
unit clauses, (2) UP (Σ) =⊥ if Σ contains two unit-clauses {x}
and {¬x}, (3) otherwise, UP (Σ) = UP (Σ|x) with x a unit lit-
eral appearing in a unit clause of Σ. A clause c is implied by
unit propagation from Σ, denoted Σ |=UP c, if UP (Σ|c̄) =⊥.

In the next section, the main preprocessing strategies are
discussed, and a limited form of resolution that produces more
constrained clauses than the original ones is presented.

3 PREPROCESSING CNF FORMULAE

3.1 Adding and/or removing clauses?

Two main categories of preprocessors have been proposed: the
first one aims at eliminating variables through a partial appli-
cation of the DP procedure [5]. Actually, only variables which
can be eliminated keeping the formula within a “reasonable”
size (w.r.t. the original size) are exhaustively processed by res-
olution. SatElite belongs to this category of preprocessors.
The principle of the second category is to modify the original
formula by adding and/or removing clauses, usually keeping
the whole set of variables. Most of the time, the production
of new clauses is made by resolution. For instance, HyPre per-
forms hyper resolution to produce binary clauses [1] that are
added to the formula. These new clauses represent redundant
information with respect to the original CNF formula, and
this information seems to generally help solvers.

Recently, a new approach introduced in [7] aims at remov-
ing from a formula some of the redundant clauses, namely
clauses c of Σ s.t. Σ\{c} � c. Obviously enough, performing
such a test is computationally intractable. Therefore, this re-
dundancy is only checked through unit propagation. As a con-
sequence, this approach is incomplete, but it is able to remove
some redundant clauses in polynomial time. As other clause-
filtering techniques, the resulting preprocessor can sometimes
slow down the whole resolution process because of the removal
of some important redundant clauses.

The main problem with those techniques is that it is hard
to characterize which redundant clauses are useful. Indeed, a
tradeoff has to be made between the management of a large

number of clauses, which slows down DPLL implementations,
and their relevance, namely their ability to trigger propaga-
tions. Indeed, it is well-known that redundant information can
actually help SAT solvers; for instance, the powerful learn-
ing scheme, which produces a particular resolvent clause af-
ter each conflict, can be viewed as a dynamic addition of re-
dundant clauses during search. This learning strategy is now
known to be one of the key features of modern solvers, which
proves the interest of redundant information with respect to
practical SAT resolution. Nevertheless, a simple experiment
which consists in adding all learnt clauses to a CNF formula
after its resolution shows that this new redundant information
makes the formula generally more difficult to solve. Hence,
how can we ensure that a particular clause-adding approach
can effectively boost a given SAT solver?

A priori, one interesting option would consider the efficient
generation of sub-clauses from the original CNF. In this way,
there is neither addition nor removal of any clause, but the
substitution of existing clauses by more constrained ones. In
current solvers, this computation would have great advan-
tages: it could not only increase the number of unit propa-
gations with no more clauses to manage, but would also lead
to shorter learnt clauses during the search by reducing the
reason of the propagated literals. Several techniques have al-
ready been proposed to generate sub-clauses. For instance, it
is proposed in [4] to explore the implication graph to generate
resolvent clauses and to only take into account the ones which
subsume at least one original clause of the CNF formula, in
order to substitute this latter clause by the shorter produced
one. Actually, this computation is exponential in the worst
case, and a weaker polynomial version restricted to a single
literal assignment is proposed. In the next section, a new ap-
proach that aims at checking more systematically whether a
clause can be shortened or not, is presented.

3.2 One answer: shorten existing clauses

The way a problem is encoded in CNF is crucial for its prac-
tical resolution, and can lead to exponential differences in
resources requirement. Analyzing the different kinds of mod-
elling is now an active path of research (see e.g. [8]). However,
even with “good” modelling, some clauses might be redun-
dant. A clause is redundant if it can be inferred from the
remaining part of the CNF formula. In our approach redun-
dancy check is only used to shorten clauses by eliminating
some redundant literals.

However, checking whether a clause is redundant is CoNP-
complete [11]. Hence, an incomplete but linear time deduc-
tion strategy has been adopted. Indeed, this check is per-
formed with respect to unit propagation, only. More formally,
a clause c of Σ is redundant modulo unit propagation (in short
RedUP (Σ, c)), iff Σ\{c} |=UP c. Obviously, if RedUP (Σ, c′),
and c′ ⊂ c, then we also have RedUP (Σ, c). The converse
is not true. This observation lead us to a new definition of
minimal redundancy of clauses. We say that a clause c of Σ is
minimally redundant modulo UP iff �c′ ⊂ c s.t. RedUP (Σ, c′).

One of the main goals behind our vivification process is
to find for each redundant clause, one of its minimal redun-
dant sub-clauses. Actually, a clause checked to be shortened
is removed from the CNF formula, and the opposite of its lit-
erals are assigned one by one according to their lexicographic

C. Piette et al. / Vivifying Propositional Clausal Formulae526

ordering. Given a CNF formula Σ and c = {l1, l2, . . . , ln} a
clause from Σ. Assuming that the order in which the literals
are assigned is (¬l1, . . . ,¬ln), two possible cases may occur:

1. ∃i ∈ {1, . . . , n − 1} s.t. Σ\{c} ∪ {¬l1, . . . ,¬li} �UP ⊥
In this case, we have Σ\{c} �UP c′ with c′ = (l1 ∨ . . . ∨ li)
This new clause c′ strictly subsumes c. Hence, the original
clause can be substituted by the new deduced one. Ob-
viously, c′ is not necessarily minimally redundant modulo
UP. Indeed, another ordering on the literals {l1, l2, . . . , li}
might lead to an even shorter sub-clause. Thanks to a con-
flict analysis, the deduced sub-clause c′ could be shortened
again leading to an even smaller sub-clause. Indeed, a new
clause η can be generated by a complete traversal of the
implication graph associated to Σ and to the assignments
of the literals {¬l1, . . . ,¬li} . The complete traversal of the
implication graph ensure that the clause η contains only
literals from c′. Thereby, η is a sub-clause of (l1 ∨ . . . ∨ li).

2. Otherwise, as unit propagation is performed after each as-
signment, if one of the remaining literals is assigned by
this filtering operation, then a sub-clause is produced. Triv-
ially, when this phenomenon occurs, the propagated literal
is either assigned positively (it satisfies the removed clause
of the CNF formula) or negatively (it is falsified in this
clause). Considering i and j with 1 ≤ i < j ≤ n, the two
possible cases are:

• Σ\{c} ∪ {¬l1, . . . ,¬li} �UP ¬lj
In this case, we can deduce: Σ\{c} �UP (l1∨ . . .∨li∨¬lj)
Applying resolution between this new clause and c (using
the variable lj), we obtain:
(l1 ∨ . . .∨ lj ∨ . . .∨ ln)⊗R (l1 ∨ . . .∨ li ∨¬lj) = (l1 ∨ . . .∨
lj−1 ∨ lj+1 ∨ . . . ∨ ln). This new clause clearly subsumes
c. Hence, the original clause can be substituted by the
new deduced one.

• Σ\{c} ∪ {¬l1, . . . ,¬li} �UP lj
In this case, we can deduce: Σ\{c} �UP (l1 ∨ . . .∨ li ∨ lj)
In this case too, the produced clause subsumes c and
enables to “remove” literals from it.

Accordingly, from the iterative assignments of the opposite
literals of a clause, one reduced clause could be produced. This
computation can clearly be integrated into a modern SAT
solver, and benefit from lazy data structures to be performed.
Moreover, during such a search, some assignments could lead
to a conflict. As explained above, when this case occurs, the
procedure can use the conflict analysis implemented in current
solvers to produce smaller sub-clauses in a polynomial time.

Using the previous rules and the learning feature of SAT
solvers, a CNF formula can be vivified, namely made easier
to solve. In the next section, we present the practical imple-
mentation that has been made, based on the previous ideas.

4 CNF FORMULAE VIVIFICATION

4.1 Technical choices

In this section, different practical parameters are discussed,
some of them resulting from extensive experiments.

First, the ideas proposed in the previous section imply to
test the clauses of a formula to shorten some of them. How-
ever, if a literal is actually removed from a clause, new prop-
agations can be performed using this clause, meaning that all

the failed tests made on previous clauses could then succeed
with this shortened clause. Hence, whenever a test succeeds
to produce a sub-clause, all other clauses are checked again
with a new iteration of the procedure.

Second, the presented sub-clause production technique sup-
poses that the order in which the literals are assigned is im-
portant. Clearly, to ensure a maximal clause reduction, one
has to check all possible orders of literals. However, this could
lead to a pretty heavy computation; then, an incomplete strat-
egy that consists in trying only one particular order has been
adopted. Actually, a variant of the MOMS branching heuris-
tic [9] is used to sort the literals in order to maximize the
number of implied literals by unit propagation.

Yet, using only this heuristic makes the order very sim-
ilar from one iteration to the other. As said previously, a
clause is tested again only if at least one other clause has been
shortened. However, keeping only the MOMS ordering does
not appear as a good solution, because the procedure would
not benefit of the potential multiple iterations made on each
clause. To diversify the search, some randomization is used as
follows: assuming that the literals of a clause are sorted with
respect to MOMS, two of them are selected randomly and are
exchanged in this ordering.

Finally, when a conflict occurs, the tested clause c = (l1 ∨
. . . ∨ ln) is substituted by its sub-clause c′ = (l1 ∨ . . . ∨ li).
As mentioned above, a complete traversal of the implication
graph could lead to an even more reduced clause, but for
efficiency purposes, this computation is not performed. In our
implementation, classical learning scheme is used to generate
a nogood η corresponding to the first UIP. If this new clause
η subsumes the sub-clause c′, then c′ is now substituted by η;
otherwise η is only added to the formula if its size (in term of
number of literals) is strictly less than the size of the original
clause. As the results show, this strategy only adds a few
number of nogoods (< 5% of the number of original clauses),
which prove useful for the future exhaustive search.

Considering these choices, a new polynomial preproces-
sor called ReVivAl (for pReprocessing based on Vivification
Algorithm) has been developed. This method is described in
the Algorithm 1. Roughly, for each clause c of an input CNF
Σ, c is removed from Σ and the opposite of each literal is as-
signed alternatively with unit propagation (loop from line 5
to 29). Moreover, different checks about the remaining literals
(that “should” be unassigned) and the presence of a conflict
are performed, as presented in section 3.2 (tests on lines 11,
13, 17, 19, 23 and 27). The order in which the literals are se-
lected for assignment is given by the function select a literal
which just selects the highest literal with respect to our ran-
domized MOMS-like score, where two randomly chosen liter-
als have their score reversed. As long as one of the clauses
has been reduced (change set to true), the process continues
with all the other clauses. Let us note that our implemen-
tation has been integrated into a modern SAT solver, which
enables the use of most recent data structures and mecan-
isms designed for SAT resolution. Hence, the redundancy test
of each clause, performed by a serie of assignments, takes ad-
vantage of the efficiency of watched literals. In the same way,
the conditional add of clauses is achieved through the “clas-
sical” learning functions, usually called by the solver after
each conflict. Exploiting those structures and techniques im-
plemented into exhaustive methods not only leads to an easy

C. Piette et al. / Vivifying Propositional Clausal Formulae 527

Algorithm 1: Vivification of a CNF formula

Input: Σ : a CNF formula
Output: a vivified CNF formula
begin1

change ←− true; ;2

while change do3

change ←− false ;4

foreach c ∈ Σ do5

Σ ←− Σ\{c} ; Σb ←− Σ ;6

cb ←− ∅ ; shortened ←− false ;7

while (Not(shortened) And (c �= cb)) do8

l ←− select a literal(c\cb) ;9

cb ←− cb ∪ {l} ; Σb ←− (Σb ∪ {¬l}) ;10

if ⊥ ∈ UP(Σb) then11

cl ←− conflict analyze and learn() ;12

if cl ⊂ c then13

Σ ←− Σ ∪ {cl} ;14

shortened ←− true ;15

else16

if |cl| < |c| then17

Σ ←− Σ ∪ {cl} ; cb ←− c ;18

if c �= cb then19

Σ ←− Σ ∪ {cb} ;20

shortened ←− true ;21

else22

if ∃(ls ∈ (c\cb)) s.t. ls ∈ UP(Σb) then23

if (c\cb) �= {ls} then24

Σ ←− Σ ∪ {cb ∪ {ls}} ;25

shortened ←− true ;26

if ∃(ls ∈ (c\cb)) s.t. ¬ls ∈ UP(Σb)27

then
Σ ←− Σ ∪ {c\{ls}} ;28

shortened ←− true ;29

if Not(shortened) then Σ ←− Σ ∪ {c} ;30

else change ←− true ;31

return Σ ;32

end33

implementation of our method within most of current solvers,
but also provides our approach with their effectiveness for the
different performed tests. Our approach is thoroughly evalu-
ated in the following section.

4.2 Empirical Evaluation

We have compared ReVivAl against the preprocessor which is
actually considered as the best approach, namely SatElite.
The state-of-the-art SAT solver RSAT [12] has been selected,
since it has been recognized in the last competition as very
adapted for structured problems. All our experiments have
been conducted on Intel Xeon 3GHz under Linux CentOS 4.1.
(kernel 2.6.9) with a RAM limit of 2GB. For all experiments,
a timeout of 3 hours has been respected.

We have compared the preprocessors both on their size re-
duction and their impact on the efficiency of RSAT. Actually,
this comparison has been conducted on a very large set of

benchmarks from the SAT competitions, SAT Race, SATLIB
and other sources; more than 5000 instances have been used
for those experiments that have needed about 600 days of
CPU time. A sample of experiments where examples will be
referred in the following is proposed in Table 1, but the ex-
haustive results are available at:
http://www.cril.fr/~piette/preprocessor.html.

The first main part of Table 1 provides the name of the
tested problem together with the number of clauses (#cla)
and literals (#lit) it contains.The two other parts of the ta-
ble are similar (one for each preprocessor), and contain the
time of preprocessing in seconds, the size of the resulting for-
mula in term of number of literals and clauses after the corre-
sponding preliminary computation, and the solving time (in
seconds) needed to solve the CNF formula after simplification.
In addition, for ReVivAl, the number of performed iterations
and learnt clauses are provided in the columns “#ite” and
“#learnt”, respectively. The best preprocessing on a given
instance corresponds to the best one in term of cumulated
preprocessing and solving time (reported in boldface).

First, let us focus on benchmarks that can be actually
solved being only preprocessed. Indeed, it exists such CNF
formulae, including some instances proposed for the SAT com-
petitions and/or the SAT Races. Given the features of the
presented preprocessing approaches, when one of them (or
both) succeed(s) to prove (un)satisfiability of a CNF formula,
this clearly means that the CNF formula is solvable in poly-
time (indicated Polynomial in the table). The interest of such
formulae can be questioned for solvers empirical evaluations,
because they do not exhibit any computational difficulties,
which should be the key point of comparison between ex-
haustive procedures. Among the tested formulae, SatElite

(resp. ReVivAl) proves 35 (resp. 167) instances polynomial.
Moreover, note that for both preprocessors, those computa-
tions are most often performed within a few seconds (see e.g.
SAT dat.k1, ezfact16 3).

Second, let us consider the size of CNF formula after be-
ing preprocessed. Some differences can be observed between
both approaches. Indeed, on the first hand, the purpose of
SatElite is to eliminate variables without increasing the size
of the CNF formula. Thus, resulting CNF formula can have
about the same number of clauses, but they can exhibit a
higher number of literals. On the opposite, ReVivAl tries to
minimize the size of clauses and to add limited relevant ones.
As a consequence, the simplified formulae sometimes contain
a little more clauses than the original ones, but in general the
average number of literals per clause is reduced, making them
more exploitable for the solver’s unit-propagation mechanism.
As an example, on the benchmark alu4mul.miter which ex-
hibits 30465 clauses and 103040 literals (ratio #lit/#cla =
3.38), SatElite eliminates variables keeping about the same
number of clauses and literals whereas ReVivAl returns a
smaller CNF formula in number of clauses (28992) for a ra-
tio equal to 3.11. Cases where SatElite provides a formula
with a largely bigger ratio can occur (see e.g. 3pipe 3 ooo and
3bitadd 31), but not with ReVivAl.

More generally, discarding the instances that cannot be
solved using any of the preprocessors in conjunction to RSAT,
a time gap of 18.8% can be observed in favour of ReVivAl.
Futhermore, using SatElite RSAT cannot decide the sat-
isfiability of 2508 instances within 3 hours of CPU time

C. Piette et al. / Vivifying Propositional Clausal Formulae528

Instance SatElite ReVivAl
name (#cla,#lit) time (#cla,#lit) solv. time time (#cla,#lit) solv. time #ite #learnt
pbl-00250 (32700,256765) 0.33 (31115,245053) time out 59.8 (34815,219076) 613.89 30 2785
velev-fvp-sat-3.0-07 (1012271,2979665) 4.05 (998048,3017403) 9.84 61.53 (990394,2928889) 16.04 2 19
alu4mul.miter (30465,103040) 0.1 (30392,102976) 915.91 17.99 (28992,90194) 670.66 15 502
Composite-024BitPrimes-1 (11158,49842) 0.02 (10087,44762) 7403.21 0.56 (10728,35545) 2013.16 20 163
Composite-024BitPrimes-0 (11158,49842) 0.02 (10016,44487) 733.2 0.48 (10395,34668) 16.59 18 132
velev-eng-uns-1.0-04 (66654,188252) 0.5 (62239,201530) 11.67 60.09 (57518,157260) 14.24 15 89
3bitadd 31 (31310,86676) 0.38 (31186,108004) 5058.73 10.17 (33125,83346) 1.71 28 1815
SAT dat.k1 (3868,9928) 0 Polynomial - 0 Polynomial - - -
c3540mul.miter (33199,112244) 0.13 (33066,112216) 1635.29 3.3 (27206,80134) 2186.01 13 815
logistics-rotate-10t5 (338789,680799) 2.45 (317194,687554) 1250.5 11.67 (277860,558081) 151.64 1 0
ezfact16 3 (1113,4089) 0 (990,3586) 0 0 Polynomial - - -
ezfact48 8 (11001,41369) 0.02 (9215,34333) 61.99 1.37 (9582,27880) 46.71 18 315
ezfact48 9 (11001,41369) 0.02 (10532,39464) 204.94 1.26 (9558,27858) 82.46 17 344
ezfact64 1 (19785,74601) 0.06 (16716,62498) time out 2.77 (17265,50532) 3049.66 15 549
abb313GPIA-8-c (426860,2561106) 1.47 (421719,2521104) 366.29 60.88 (404007,2340042) 12.05 28 236
qg7-10 (33736,89626) 0.04 (11038,27452) 0.01 0.15 Polynomial - - -
color-10-3 (6475,25200) 0.08 (6175,32600) 1.28 0.06 (6475,25200) 19.41 1 0
grieu-vmpc-s05-27r (96849,253854) 0.15 (96849,253854) 104.02 25.87 (96482,239730) 51.76 9 154
ferry12 (32199,71303) 0.21 (30268,68540) 8.28 0.5 (30405,67168) 1.87 1 12
mod2c-3cage-unsat-9-1 (464,1856) 0 (464,1856) 2152.31 0 (472,1533) 2942.17 9 8
544707209399nw (18031,53975) 0.12 (16032,49234) 1477.7 2.26 (14768,34277) 814.4 9 628
rand net40-60-10 (14321,33560) 0.1 (10778,29243) 486.48 3.74 (14321,33152) 421.97 8 0
abb313GPIA-8-cn (693640,2080902) 16.73 (388404,2307599) 143 23.27 (677607,2017201) 2321.44 12 19
equilarge m1 (11489,33442) 0.07 (11158,41295) time out 0.12 (11489,33164) time out 5 0
hanoi5u (73777,160717) 0.29 (61778,135270) 183.74 1.18 (59467,129001) 284.83 1 9
shuffling-2-s1765005333 (30465,103040) 0.13 (30392,102976) 1380.07 23.93 (28975,89789) 1023.51 11 592
lksat-n2200. . .s1262048766 (7524,22572) 0.04 (6322,19609) 201.38 0.19 (7629,20439) 59.91 16 105
3pipe 3 ooo (33270,95618) 0.19 (31735,101212) 9.67 30.86 (31150,87665) 9.13 33 60
gripper12 (30746,68144) 0.12 (28060,62815) time out 0.26 (27871,61632) 676.2 1 2
gripper13 (40461,89385) 0.16 (37437,83384) 1300.36 0.37 (37195,82030) 1183.14 1 4

Table 1. SatElite VS ReVivAl

(preprocessing and solver), while the solver fails for only
2457 benchmarks with our approach. This 51 instances dif-
ference does not look big, but SAT competitions and Races
are usually settled by even smaller gaps. However, even if
ReVivAl has in general a better effect on CNFs than SatElite,
counter-examples can obviously be provided (see e.g. hanoi5u
and abb313GPIA-8-cn). Nevertheless, many classes of SAT
instances are typically more sensitive to the ReVivAl pro-
cess, which is better than SatElite at improving RSAT.
For example, on ezfact-*, encoding circuits factorization,
Composite-*BitPrimes instances, encoding composite num-
bers (suggested as a challenge to SAT solvers in 1997 by Cook
and Mitchell [3]), gripper* planning instances, our proposed
approach clearly outperforms SatElite.

5 CONCLUSION

In this paper, ReVivAl, a new preprocessing based on limited
forms of resolution and conflict analysis has been proposed.
Our approach, called vivification, makes an original use of
clause redundancy checking to produce sub-clauses and to add
new relevant clauses obtained thanks to the clause learning
scheme. Its efficiency is illustrated through extensive experi-
ments with a state-of-the-art DPLL solver. A comparison with
the best known preprocessing technique shows that ReVivAl,
achieves interesting improvements, especially on circuits fac-
torization, composite numbers and planning instances.

Our results open many interesting future directions of re-
search. It appears that combining several preprocessors often
enables to even better improvements. Indeed, a combination
of SatElite and ReVivAl obtained parlicularly interesting re-

sults at the SAT-Race 2008 (6th on 19 submitted solvers).
A dynamic selection of preprocessors based on automated-

tuning approaches is thus a path that should be explored.
The periodical use of ReVivAl, for example during restarts, is
also a promising future direction.

REFERENCES
[1] F. Bacchus and J. Winter, ‘Effective preprocessing with

hyper-resolution and equality reduction’, in SAT’03, pp. 341–
355, (2003).

[2] Ronen I. Brafman, ‘A simplifier for propositional formulas
with many binary clauses’, in IJCAI’01, pp. 515–522, (2001).

[3] S.A. Cook and D.G. Mitchell, ‘Finding hard instances of the
satisfiability problem: A survey’, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 35, (1997).

[4] S. Darras, G. Dequen, L. Devendeville, B. Mazure, R. Os-
trowski, and L. Sais, ‘Using boolean constraint propagation
for sub-clause deduction’, in CP’05, pp. 757–761, (2005).

[5] M. Davis and H. Putnam, ‘A computing procedure for quan-
tification theory’, Journal of the ACM, 7(3), 201–215, (1960).

[6] N. Eén and A. Biere, ‘Effective preprocessing in SAT through
variable and clause elimination’, in SAT’05, pp. 61–75, (2005).

[7] O. Fourdrinoy, E. Grégoire, B. Mazure, and L. Sais, ‘Elimi-
nating redundant clauses in SAT instances’, in CP-AI-OR’07,
pp. 71–83, (2007).

[8] A. Hertel, P. Hertel, and A. Urquhart, ‘Formalizing dangerous
SAT encodings’, in SAT’07, pp. 159–172, (2007).

[9] R. G. Jeroslow and J. Wang, ‘Solving propositional satisfia-
bility problems’, Annals of mathematics and artificial intel-
ligence, 1, 167–187, (1990).

[10] C. Li and Anbulagan, ‘Look-ahead versus look-back for sat-
isfiability problems.’, in CP’97, pp. 341–355, (1997).

[11] Paolo Liberatore, ‘Redundancy in logic I: CNF propositional
formulae’, Artif. Intell., 163(2), 203–232, (2005).

[12] K. Pipatsrisawat and A. Darwiche, ‘RSAT 2.0: SAT solver
description’, Technical Report D–153, Automated Reasoning
Group, Computer Science Department, UCLA, (2007).

[13] S. Subbarayan and D. Pradhan, ‘NiVER: Non increasing vari-
able elimination resolution for preprocessing SAT instances’,
SAT’04, 276–291, (2004).

C. Piette et al. / Vivifying Propositional Clausal Formulae 529

