
Solving Necklace Constraint Problems
Pierre Flener and Justin Pearson 1

Abstract. Some constraint problems have a combinatorial struc-
ture where the constraints allow the sequence of variables to be ro-
tated (necklaces), if not also the domain values to be permuted (un-
labelled necklaces), without getting an essentially different solution.
We bring together the fields of combinatorial enumeration, where ef-
ficient algorithms have been designed for (special cases of) some of
these combinatorial objects, and constraint programming, where the
requisite symmetry breaking has at best been done statically so far.
We design the first search procedure and identify the first symmetry-
breaking constraints for the general case of unlabelled necklaces.
Further, we compare dynamic and static symmetry breaking on real-
life scheduling problems featuring (unlabelled) necklaces.

1 INTRODUCTION

In combinatorics, a necklace of n beads over k colours is the lexi-
cographically smallest element in an equivalence class of the set of
k-ary n-tuples under rotations; the underlying symmetry group is the
cyclic group Cn acting on the indices. For example, the binary triple
001 is the representative necklace of {001, 010, 100}. Combinatorial
objects are enumerated under some chosen total order. For example,
under the lexicographic order, the binary 3-bead necklaces are 000,
001, 011, and 111. If the values (colours) of a tuple are interchange-
able, then we speak of unlabelled tuples (symmetric group Sk acting
on the values) and unlabelled necklaces (product group Cn × Sk).
For example, under the lexicographic order, the unlabelled binary
3-tuples are 000, 001, 010, and 011, while the unlabelled binary 3-
bead necklaces are 000 (representing the necklaces 000 and 111) and
001 (representing the necklaces 001 and 011). The generating func-
tions for counting (unlabelled) necklaces are given in [6], and the
sequences of their counts (for k ≤ 6) can be found in [16].

A constraint satisfaction problem (CSP) is a triplet 〈X, D, C〉,
where X is a sequence of n variables, D is a set of k possible val-
ues for these variables and is called their domain, and C is the set of
constraints specifying which assignments of values to the variables
are solutions. If the constraint set C allows the variable sequence
X to be rotated, then a necklace is a combinatorial sub-structure of
the CSP and we say that the CSP has rotation variable symmetry. If
the constraint set C has a domain D containing interchangeable ele-
ments, then we say that the CSP has full value symmetry. Exploiting
such symmetry is important in order to solve a CSP efficiently. For
example, compare the ternary object counts in Table 1 with 3n.

CSPs with an (unlabelled) necklace as a combinatorial sub-
structure are not unusual. For example, Gusfield [9, page 12] states
that “circular DNA is common and important. [sample organisms
omitted.] Consequently, tools for handling circular strings may
someday be of use in those organisms”. One such problem is studied

1 Department of Information Technology, Uppsala University, Box 337, SE –
751 05 Uppsala, Sweden. Email: Firstname.Surname@it.uu.se

in [3]. Necklaces occur in coding theory [7], genetics [7], and mu-
sic [6], while unlabelled necklaces occur in switching theory [6]. We
study a real-life problem with (unlabelled) necklaces in scheduling,
different from the one in [8].

In this paper, we propose to bring together combinatorial enu-
meration and constraint programming (CP). Very efficient combi-
natorial enumeration algorithms exist for some of the mentioned
combinatorial objects, but not for unlabelled necklaces (except over
two colours [2]). These algorithms can be used as CP search proce-
dures for CSPs having those objects as combinatorial sub-structures,
thereby breaking a lot of symmetry dynamically. This has also been
advocated in [13], say, where a generic CP search procedure is pro-
posed for an arbitrary symmetry group acting on the values; however,
except for [15] not much dynamic symmetry breaking seems to have
been done for groups acting on the variables. Conversely, CP princi-
ples can be used for devising enumeration algorithms for the combi-
natorial objects where efficient algorithms have remained elusive to
date. The contributions of this paper can be summarised as follows:

• Design of an enumeration algorithm, and hence a CP search proce-
dure, for (partially) unlabelled k-ary necklaces (Sections 2 and 4).

• Identification of symmetry-breaking constraints for (partially) un-
labelled k-ary necklaces, including filtering algorithms for the
identified new global constraints (Sections 3 and 4).

• Experiments on real-world problems validating the usefulness of
the proposed dynamic and static symmetric-breaking methods for
(partially unlabelled) k-ary necklaces (Section 4).

Finally, in Section 5, we conclude and discuss future research.
In the following, consider a CSP 〈X, D, C〉 where X is a sequence

of n ≥ 2 variables and D is a set of k ≥ 1 domain values. We assume
that D = {0, . . . , k − 1}; this also has the advantage that the order
is obvious whenever we require D to be totally ordered.

2 DYNAMIC SYMMETRY BREAKING

Unlabelled Tuples. If the domain values of D are interchangeable,
then we impose a total order on D, and the enumeration algorithm
of [5], say, can be used to generate all unlabelled tuples (modulo the
full value symmetry). We present it as Algorithm 1 in the style of a
search procedure in constraint programming (CP), so that it can in-
teract with any problem constraints. The initial call is utuple(1,−1).
At any time, j is the index of the next variable to be assigned (and
j = n + 1 when none remains) while u is the largest value used
so far (and u = −1 when none was used yet). The idea is to try
for each variable all the values used so far plus one unused value,
since all unused values are still interchangeable at that point. Upon
backtracking, the try all construct non-deterministically tries all the
alternatives, in the given value order (line 6). Each alternative con-
tains the assignment of the chosen value i to the chosen variable X[j]

ECAI 2008
M. Ghallab et al. (Eds.)

IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-891-5-520

520



1: procedure utuple(j, u : integer)
2: var i : integer
3: if j > n then
4: return true
5: else
6: try all i = 0 to min(u + 1, k − 1) do
7: X[j] ← i;
8: utuple(j + 1, max(i, u))
9: end try

10: end if

Algorithm 1: Search procedure for unlabelled tuples [5]

1: procedure necklace(j, p : integer)
2: var i : integer
3: if j > n then
4: return n mod p = 0
5: else
6: try all i = X[j − p] to k − 1 do
7: X[j] ← i;
8: necklace(j + 1, if i = X[j − p] then p else j)
9: end try

10: end if

Algorithm 2: Search procedure for necklaces [2]

(line 7) and a recursive call for the next variable (line 8). Note that
we have fixed the variable order to be from left to right across X , and
the tuples are thus generated in lexicographic order; this is an unnec-
essary restriction, but the reason for this choice will become clear in
a few lines. This algorithm takes constant amortised time and space,
and the number of objects generated is actually equal to the number
of unlabelled tuples.
Necklaces. If the variable sequence X is circular, then the enumera-
tion algorithm of [2], say, can be used to generate all necklaces (mod-
ulo the rotation variable symmetry). We present it as a CP search pro-
cedure in Algorithm 2. The initial call is X[0] ← 0;necklace(1, 1),
where X[0] is a dummy element. At any time, j is the index of
the next variable to be assigned (and j = n + 1 when none re-
mains) while p is the period, explained next. The idea is either to
try and keep replicating the values at the previous p positions, or to
try all larger values with a new period of j. At any time, the pre-
fix X[1, . . . , j] is a pre-necklace, that is a prefix of some necklace,
which may however be longer than n. The variable order is necessar-
ily from left to right across X , due to the role of p, and the necklaces
are thus generated in lexicographic order. This algorithm takes con-
stant amortised time and space, and the number of objects generated
is proportional by a constant factor (tending down to (k/(k−1))2 as
n → ∞) to the number of necklaces: note that only n-tuples where
the period p divides n actually are necklaces (line 4). In other words,
not all symmetry is broken at every node of the search tree, and some
backtracking is forced (by a constant-time test on p) only at leaf level;
at present, loopless necklace enumeration remains elusive.
Unlabelled Necklaces. If the variable sequence X is circular and the
domain values of D are interchangeable, then a constant-amortised-
time enumeration algorithm [2] only exists for generating all binary
(k = 2) unlabelled necklaces (modulo the symmetries). We do not
present it here, but instead construct a novel enumeration algorithm
for any amount of colours. Noting that unlabelled necklaces are a
subset of the necklaces (Algorithm 2) that are unlabelled tuples (Al-
gorithm 1), and observing that the control flows of those two al-
gorithms match line by line, the skeleton of an enumeration algo-
rithm for unlabelled necklaces can be obtained simply by “intersect-
ing” those two algorithms, which yields all but lines 7 and 10 of

1: procedure uneck(j, p, u : integer)
2: var i : integer
3: if j > n then
4: return n mod p = 0
5: else
6: try all i = X[j − p] to min(u + 1, k − 1) do
7: if probe(j, i, p) then
8: X[j] ← i;
9: uneck(j+1, if i = X[j−p] then p else j, max(i, u))

10: end if
11: end try
12: end if
13: function probe(j, i, p : integer) : boolean
14: X[j] ← i;
15: if j = n ∧ n mod (if i = X[j − p] then p else j) = 0 then
16: return

Vq=n

2
X[q, . . . , n, 1, . . . , q − 1] ≥lex X[1, . . . , n]

17: else if j < n then
18: return

Vj−1

q=2
X[j − q + 1, . . . , j] ≥lex X[1, . . . , q]

19: else
20: return false
21: end if

Algorithm 3: Probing search procedure for unlabelled necklaces

the CP search procedure uneck in Algorithm 3. The initial call is
X[0] ← 0; uneck(1, 1,−1), where X[0] is a dummy element.

We now gradually refine the probe(j, i, p) function (called in
line 7), guarding the non-deterministic assignment of value i to the
current variable X[j] followed by the continued enumeration.
Leaf Probing. If probe always returns true, then uneck will enu-
merate a superset of the unlabelled necklaces, as their symmetry
group is the product rather than just the union of the symmetry
groups for necklaces and unlabelled tuples. For example, the binary
3-necklace 011 will erroneously be returned, even though it can be
transformed into the unlabelled necklace 001 (by first rotating the
second position of the circular sequence 011 into first position, giving
110, and then minimally renaming its colours, giving 110 = 001);
however, the necklace 111 will correctly not be returned, since it is
not an unlabelled tuple.

Consider the left half of Table 1, giving the numbers of vari-
ous combinatorial objects of length n over 3 colours: column 7
counts the unlabelled tuples (sequence A124302 in [16]); column 6
counts the necklaces (fewer than the unlabelled tuples for n ≥ 7;
sequence A1867); column 5 counts the necklaces that are unla-
belled tuples, that is the number of pre-necklaces when probe al-
ways returns true; and column 2 counts the unlabelled necklaces
(sequence A2076). The difference between columns 5 and 6 (or 7)
shows the gain obtained so far for free by Algorithm 3 over Algo-
rithm 2 (or Algorithm 1), but the difference between columns 5 and 2
shows the amount of pruning that leaf probing has to do.

The least thing probe(j, i, p) should thus do is to make sure only
unlabelled necklaces are enumerated. This is at the latest done when
trying to assign the last variable (when j = n) of the CSP: at that
moment, the entire circular sequence X is known, so probe must re-
turn true if X cannot be transformed (by position rotation and col
or renaming) into an object that has already been tried in the enu-
meration. Since objects are enumerated in lexicographic order (as an
inherited feature of the two underlying algorithms), this can be done
by checking whether the minimal renaming of every (non-unit) rota-
tion of X is lexicographically larger than or equal to X . Computing
the minimal renaming Y of an n-tuple Y takes Θ(n) time, and can be
merged into the O(n)-time lexicographic comparison; at most n− 1
such renamings and comparisons are done, hence this probing takes

P. Flener and J. Pearson / Solving Necklace Constraint Problems 521



seq. probing seq. seq. necklaces unlabelled necklaces
A2076: internal + leaf leaf only A1867: A124302: Algo. 2 Cons. (3) Algo. 3 Algo. 3 Cons. (1) and (4)

n unecks n mod p = 0 leaves leaves necks utuples time time time (leaf) time (all) time fails
1 1 1 1 1 3 1 0.00 0.00 0.00 0.00 0.00 0
2 2 2 2 2 6 2 0.00 0.00 0.00 0.00 0.00 0
3 3 4 5 5 11 5 0.00 0.00 0.00 0.00 0.00 0
4 6 8 10 13 24 14 0.00 0.00 0.00 0.00 0.01 2
5 9 15 22 36 51 41 0.00 0.00 0.00 0.00 0.01 6
6 26 34 48 97 130 122 0.00 0.00 0.00 0.00 0.03 9
7 53 80 121 268 315 365 0.01 0.01 0.00 0.01 0.07 29
8 146 196 293 732 834 1094 0.01 0.02 0.02 0.02 0.18 69
9 369 490 744 2017 2195 3281 0.04 0.04 0.06 0.06 0.50 181

10 1002 1267 1920 5552 5934 9842 0.11 0.11 0.20 0.16 1.48 469
11 2685 3357 5104 15371 16107 29525 0.24 0.30 0.63 0.49 4.54 1240
12 7434 8996 13635 42624 44368 88574 0.78 0.81 1.95 1.58 13.33 3298
13 20441 24403 37030 118731 122643 265721 2.12 2.22 6.06 4.65 41.04 8919
14 57046 66886 101354 331664 341802 797162 5.91 6.24 18.82 14.50 122.46 24328
15 159451 184770 279895 929883 956635 2391485 16.54 17.25 58.56 44.89 374.12 66865

Table 1. Numbers of objects of length n over 3 colours, and their enumeration times (in seconds) via dynamic & static (constraint-based) symmetry breaking

O(n2) time at worst. Note that a successful probe incurs the highest
cost. The algorithmic details are trivial, so we just write a specifica-
tion into line 16. Lazy evaluation of the conjunction should be made,
returning false as soon as one conjunct is false. Also, experiments
have revealed that failure is detected earlier on the average if the
starting positions of the rotations recede from right to left across X .

An improvement of this leaf probing comes from observing what
happens when the lowest value, namely X[j − p], is tried for X[j]
when j = n: the recursive call (line 9) then is uneck(n + 1, p, u)
and everything hinges on whether n mod p = 0 or not. But the latter
check can already be done before probing (in O(n2) time, recall)
whether X[j − p] actually is a suitable value for X[n]. For any other
tried value i > X[j − p] for X[n], the recursive call (line 9) is
uneck(n + 1, n, max(i, u)) and we then know that n mod n = 0.
Hence the test in line 15, as well as lines 19 and 20.
Internal Probing. The leaf probing discussed so far assumes that
line 18 is replaced by return true. This is unsatisfactory, as no
pruning (other than via the p and u parameters) takes place at the
internal nodes of the search tree, so that many more leaves are gen-
erated than necessary (recall the difference between columns 5 and 2
in Table 1). In the spirit of constraint programming, we ought to per-
form more pruning when j < n. The idea is the same as for leaves
(where j = n) except that only a strict prefix X[1, . . . , j] of the
circular sequence X is known, so that we can only check whether
the minimal renaming of every suffix of X[1, . . . , j] is lexicographi-
cally larger than or equal to X[1, . . . , j]. For example, when search-
ing for a ternary 6-bead unlabelled necklace, assume we have already
constructed the pre-necklace 010 and probe(4, 2, 4) is now called to
check whether at position j = 4 < 6 = n the variable X[4] can be
assigned the (so far unused) value i = 2 = u + 1 = k − 1 under
period p = 4, so the following comparisons must be made:

2 = 0 ≥lex 0 (4)
02 = 01 ≥lex 01 (3)

102 = 012 ≥lex 010 (2)
0102 = 0102 ≥lex 0102 (1)

The first and last comparisons will always succeed and can be omit-
ted. Exactly j−2 such renamings and comparisons of tuples of length
O(j − 1) are thus to be done, hence this internal probing also takes
O(n2) time at worst, since j = O(n). The algorithmic details are
trivial, so we just write a specification into line 18. Again, lazy eval-
uation of the conjunction should be made. Also, experiments have
revealed that failure is detected earlier on the average if the starting
positions of the suffixes recede from right to left across X[1, . . . , j],
as in the top-down order of the sample comparisons above.

To assess the impact of internal probing, consider again the left
half of Table 1: column 4 gives the new numbers of pre-necklaces
(much lower than in column 5), and column 3 counts the pre-
necklaces that are accepted by the test on the period p. The difference
between columns 3 and 2 is the amount of pruning that leaf probing
now has to do, and the difference between columns 4 and 3 is the
amount of pruning done by the period test. Note that the constant-
time period test prunes much more than the quadratic-time probing.
Incremental Internal Probing. Empirically, on average, the inter-
nal probing just proposed is much more efficient than its O(n2)
worst time suggests, due to the nature of unlabelled necklaces. We
now optimise this internal probing into an algorithm taking O(n)
time at worst, leading to an enumeration that is systematically faster
by a constant factor (namely 17% faster in our implementation).
The idea is to trade time for space and make the comparisons in-
cremental. Continuing our previous example, having so far con-
structed the pre-necklace 0102 of a ternary 6-bead unlabelled neck-
lace, probe(5, 1, 5) is eventually called at the next iteration to check
whether at position j = 5 < 6 = n the variable X[5] can be assigned
the value i = 1 under period p = 5, so the following comparisons
must be made:

1 = 0 ≥lex 0 (5′)
21 = 01 ≥lex 01 (4′)

021 = 012 ≥lex 010 (3′)
1021 = 0120 ≥lex 0102 (2′)

01021 = 01021 ≥lex 01021 (1′)

Note that the last four comparisons correspond to the ones given ear-
lier, that the considered suffixes of X[1, . . . , j] got longer at the end
by the new (boldfaced) value i = 1, and that the minimal renamings
of the (non-boldfaced) prefixes remained the same. In other words,
only the scalar comparisons of the (boldfaced) last values matter,
since the lexicographic ≥lex comparisons of the (non-boldfaced) pre-
fixes have already been made until the previous iteration. If the lex-
icographic comparison until the previous iteration is =lex, as in for-
mulas (1), (3), and (4), then the scalar comparison operator is ≥ at
the current iteration; if the lexicographic comparison until the previ-
ous iteration is >lex, as in formula (2), then no scalar comparison
need be made at the current iteration. We incrementally maintain a
global k × n matrix m, where m[i, j] gives the minimal renaming
of value i if the renaming starts at position j. We also incrementally
maintain locally to every search-tree node an n-tuple c of Booleans,
where c[j] = true if the lexicographic comparison from position j
until the previous iteration is =lex, that is if the comparison from j
is to continue at the current iteration. For example, since the scalar

P. Flener and J. Pearson / Solving Necklace Constraint Problems522



comparison in formula (3′) gives 2 > 0, we set c[3] ← false for
the next iteration. Using these incremental data structures, the inter-
nal probing in line 18 can be replaced by the following specification
(the algorithmic details, including the incremental maintenance of c
and m, are omitted for space reasons):

return

q=j−1^

2

(if c[q] then m[i, q] ≥ X[j + 1 − q] else true)

At most j − 2 scalar comparisons are to be done, hence this incre-
mental internal probing takes O(n) time at worst, since j = O(n)
and the incremental maintenance of c[1 . . . j] and m[i, 1 . . . j] takes
O(n) time at worst. Lazy evaluation of the conjunction should be
made. Failure is detected earlier on the average if the starting posi-
tions of the suffixes recede from right to left across X[1, . . . , j], as
in the top-down order of the sample comparisons above.
Discussion. An analysis of the amortised complexity of Algorithm 3
is beyond the scope of this paper. Its correctness follows from line 16
capturing the essence of unlabelled necklaces and the correctness of
Algorithms 1 and 2. To assess the runtime impact of internal prob-
ing, consider the right half of Table 1: the fourth-last and third-last
columns give the enumeration times (in seconds) if there is only leaf
probing and also internal probing, respectively. (All experiments in
this paper were performed under SICStus Prolog v4.0.2 on a 2.53
GHz Pentium 4 machine with 512 MB running Linux 2.6.20.)

3 STATIC SYMMETRY BREAKING

Unlabelled Tuples. To break full value symmetry, it suffices to order
the positions of the first occurrences, if any, of each value. Letting
firstPos(i) denote the first position, if any, of value 0 ≤ i < k
in X under the current assignment, and n + 1 + i otherwise, the
following k − 1 binary constraints break full value symmetry [11]:
firstPos(0) < firstPos(1) < · · · < firstPos(k − 1). A more effi-
cient filtering algorithm can be designed for the conjunction of these
constraints, giving a new global constraint, called

orderedFirstOccurrences(X, D) (1)

A checker for this global constraint can be specified as a determin-
istic finite automaton (DFA) (omitted for space reasons), so that we
get a filtering algorithm using the automaton global constraint [1].
Necklaces. To break rotation variable symmetry, we apply the so-
called lex-leader scheme [4], which says that any variant of a wanted
solution under all the symmetries of the considered symmetry group
must be lexicographically larger than or equal to that solution. For
necklaces, this means that all the rotations of the sequence X must
be lexicographically larger than or equal to X itself:

n̂

q=2

X[q, . . . , n, 1, . . . , q − 1] ≥lex X[1, . . . , n] (2)

These n − 1 constraints over sequences of exactly n elements have
been logically minimised in [8] to the following n − 1 constraints
over sequences of at most n − 1 elements:

n̂

q=2

X[q, . . . , (2q − 3) mod n + 1] ≥lex X[1, . . . , q − 1] (3)

Reading from right to left, this constrains the first q − 1 elements
of X to be lexicographically smaller than or equal to the cyclically
next q − 1 elements of X , for 2 ≤ q ≤ n. Future work includes

designing a more efficient filtering algorithm for the conjunction of
these global lexicographic constraints.
Unlabelled Necklaces. The conjunction of the constraints (1) and (3)
accepts all necklaces that are unlabelled tuples (just like Algorithm 3
without probing). In fact, the rotation variable symmetry and full
value symmetry can be broken by the constraints (1) together with
the probing tests in line 16 of Algorithm 3 seen as constraints:

n̂

q=2

X[q, . . . , n, 1, . . . , q − 1] ≥lex X[1, . . . , n] (4)

The difference with (2) and (3) lies in the minimal renaming of the
left-hand sides. The logic minimisation of (2) into (3) does not apply
to (4). A checker for the required A ≥lex B global constraint can
be specified as a DFA (omitted for space reasons), so that we get a
filtering algorithm using the automaton global constraint [1]. The
idea is to augment the classical DFA for ≥lex [1] with variables rep-
resenting the smallest value used so far and the minimal-renaming
bijection on D (encoded by an allDifferent constraint).
Discussion. The proof of correctness and completeness of the intro-
duced symmetry-breaking constraints is omitted for space reasons.
To assess the runtimes (in seconds) of dynamic and static symmetry
breaking, consider the right half of Table 1. Unmentioned numbers
of backtracks are zero. For necklaces, columns 8 and 9 reveal a slight
advantage of Algorithm 2 over constraints (3). For unlabelled neck-
laces, the last three columns reveal a huge advantage of Algorithm 3
over constraints (1) and (4). However, these runtimes were obtained
in the absence of any problem-specific constraints, and static symme-
try breaking usually performs better than dynamic symmetry break-
ing in the presence of problem-specific constraints. We address this
issue in the next section.

4 EXPERIMENTS

We now experimentally compare the proposed dynamic and static
symmetry-breaking (SB) methods on real-life scheduling problems
containing an (unlabelled) necklace as a combinatorial sub-structure.
Example: Rotating Schedules. Many industries and services need
to function 24/7. Rotating schedules, such as the one in Figure 1 (a
real-life example taken from [10]) are a popular way of guaranteeing
a maximum of equity to the involved work teams. In our example,
there are day (d), evening (e), and night (n) shifts of work, as well
as days off (x). Each team works maximum one shift per day. The
scheduling horizon has as many weeks as there are teams. In the first
week, team i is assigned to the schedule in row i. For any next week,
each team moves down to the next row, while the team on the last
row moves up to the first row. Note how this gives almost full eq-
uity to the teams, except, for instance, that team 1 does not enjoy the
six consecutive days off that the other teams have, but rather three
consecutive days off at the beginning of week 1 and another three at
the end of week 5. We here assume that the daily workload is uni-
form. In our example, each day has exactly one team on-duty for
each work shift, and hence two teams entirely off-duty; assuming the
work shifts average 8h, each employee will work 7 · 3 · 8 = 168h
over the five-week-cycle, or 33.6h per week. Daily workload can be
enforced by global cardinality (gcc) constraints on the columns. Fur-
ther, any number of consecutive workdays must be between two and
seven, and any change in work shift can only occur after two to seven
days off. This can be enforced by stretch constraints [12] on the ta-
ble flattened row-wise into a sequence. (A filtering algorithm for the
stretch constraint, which is not a built-in of SICStus Prolog, was au-
tomatically obtained from a DFA model of a constraint checker using

P. Flener and J. Pearson / Solving Necklace Constraint Problems 523



Week Mon Tue Wed Thu Fri Sat Sun
1 x x x d d d d
2 x x e e e x x
3 d d d x x e e
4 e e x x n n n
5 n n n n x x x

Figure 1. A five-week rotating schedule with uniform workload

unique Algorithm 2 Constraints (3) no SB
instance sol’s time fails time fails time

1d, 1e, 1n, 2x 2274 7 228823 4 9140 21
2d, 1e, 1n, 2x 4115 50 959970 26 69704 158
2d, 2e, 1n, 2x 4950 199 2922846 147 408669 751
2d, 2e, 2n, 2x 3444 603 7526564 558 1587889 2581

Figure 2. Performance comparison on necklace schedules

the (built-in) automaton global constraint [1].) We assume that soft
constraints, such as full weekends off as numerous and well-spaced
as possible, are enforced by manual selection among schedules sat-
isfying the hard constraints. In our example, there are two full week-
ends off, in the optimally spaced rows 2 and 5.
Necklaces. Under the given assumption (uniform workload) and con-
straints (gcc and stretch), any rotating schedule has the symme-
tries of necklaces, when we view it flattened row-wise into a se-
quence. In addition to the classical instance in Figure 1, here de-
noted 1d, 1e, 1n, 2x, we ran experiments over other instances. For
example, instance 2d, 2e, 1n, 2x has the uniform daily workload of
2 teams each on the day and evening shifts, 1 team on the night shift,
and 2 teams off-duty. Figure 2 gives the obtained runtimes (in sec-
onds) and numbers of backtracks (fails) over all solutions. The time
ratio to all solutions between SB and no-SB is a good indicator of
that time ratio to the first optimal solution (say, with the maximum
number of full weekends off), as branch-and-bound essentially iter-
ates over many solutions in order to pick the best. On average, when
breaking the symmetries statically, the default variable ordering (try-
ing the leftmost variable) is better than first-fail (trying the leftmost
variable with the smallest domain) and most-constrained (trying the
leftmost variable with the smallest domain that has the most con-
straints suspended), with the default bottom-up value ordering, hence
the runtimes for static symmetry-breaking are given for the default
orderings. Static symmetry-breaking, in the presence of the problem-
specific constraints, is now faster than dynamic symmetry-breaking.
Partially Unlabelled Necklaces. Under the uniform workload as-
sumption, some rotating schedules even have many of the symme-
tries of unlabelled necklaces. In our instances for 5 and 8 weeks, the
constraints do not distinguish between the d, e, n work shifts, so that
those values are interchangeable. To break such partial value sym-
metry dynamically, it suffices to replace line 6 of Algorithm 3 by

try all i ∈ {X[j − p], . . . , min(u + 1, k − 2)} ∪ {k − 1}

and to make the minimal renamings Y in lines 16 and 18 respect
the subsets D� ⊆ D of interchangeable values; in our case D =
{d, e, n} ∪ {x}. We denote the resulting search procedure by Algo-
rithm 3′. To break this partial value symmetry statically, it suffices to
post one orderedFirstOccurrences(X, D�) for each subset D�:

firstPos(d) < firstPos(e) < firstPos(n) (5)

Together with an adaptation, denoted (4′), of constraints (4) where Y
respects the D�, we have a static symmetry-breaking method for such
partially unlabelled necklaces. Figure 3 gives the obtained runtimes
(in seconds) and numbers of backtracks (fails) over all solutions.
Static symmetry breaking, in the presence of the problem-specific
constraints, is still a lot slower than dynamic symmetry breaking.

unique Algorithm 3′ Cons. (5) and (4′)
instance sol’s time fails time fails

1d, 1e, 1n, 2x 402 13 35969 205 2964
2d, 2e, 2n, 2x 274 703 1380876 31193 313587

Figure 3. Comparison on partially unlabelled necklace schedules

5 CONCLUSIONS

By bringing together the fields of combinatorial enumeration and
constraint programming, we have extended existing results for dy-
namically and statically breaking the rotation variable symmetry of
necklaces into new symmetry-breaking methods dealing also with
the additional full value symmetry of unlabelled necklaces. On an
example, we have also shown how to specialise these methods when
the value symmetry of unlabelled necklaces is only partial. In the
absence of problem-specific constraints, the dynamic symmetry-
breaking methods outperform the static ones, narrowly for necklaces
but largely for unlabelled necklaces. On a real-life scheduling prob-
lem we have shown that, in the presence of problem-specific con-
straints, the static method becomes faster for necklaces, but not for
partially unlabelled necklaces.

One should be aware of existing enumeration algorithms for spe-
cial cases, such as the constant-amortised-time algorithms for unla-
belled binary necklaces [2], or for necklaces with fixed content [14].
For instance, under the given assumption (uniform workload) and
constraints, rotating schedules are necklaces with fixed content, so
the algorithm of [14] should be tried instead of Algorithm 2.

Future work includes the quest for a constant-amortised-time enu-
meration algorithm for unlabelled k-ary necklaces.
Acknowledgements. We are supported by grant IG2001-67 of the
Swedish Foundation for International Cooperation in Research and
Higher Education, and by grant 70644501 of the Swedish Research
Council. We thank J. Sawada and V. Vajnovszki for discussions.

REFERENCES
[1] N. Beldiceanu, M. Carlsson, and T. Petit, ‘Deriving filtering algorithms

from constraint checkers’, CP’04, LNCS 3258:107–122. Springer.
[2] K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. R. Miers, ‘Fast algo-

rithms to generate necklaces, unlabeled necklaces, and irreducible poly-
nomials over GF (2)’, Journal of Algorithms 37(2):267–282, (2000).

[3] W. Y. C. Chen and J. D. Louck, ‘Necklaces, MSS sequences, and DNA
sequences’, Advances in Applied Mathematics 18(1):18–32, (1997).

[4] J. M. Crawford et al., ‘Symmetry-breaking predicates for search prob-
lems’, KR’96, pp. 148–159. Morgan Kaufmann, (1996).

[5] M. C. Er, ‘A fast algorithm for generating set partitions’, The Computer
Journal 31(3):283–284, (1988).

[6] E. N. Gilbert and J. Riordan, ‘Symmetry types of periodic sequences’,
Illinois Journal of Mathematics 5:657–665, (1961).

[7] S. W. Golomb, B. Gordon, and L. R. Welch, ‘Comma-free codes’,
Canadian Journal of Mathematics 10(5):202–209, (1958).

[8] A. Grayland, I. Miguel, and C. Roney-Dougal, ‘Minimal ordering con-
straints for some families of variable symmetries’, SymCon’07, (2007).

[9] D. Gusfield, Algorithms on Strings, Trees, and Sequences, CUP, 1997.
[10] G. Laporte, ‘The art and science of designing rotating schedules’, Jour-

nal of the Operational Research Society 50(10):1011–1017, (1999).
[11] Y. C. Law and J. Lee, ‘Symmetry breaking constraints for value symme-

tries in constraint satisfaction’, Constraints 11(2–3):221–267, (2006).
[12] G. Pesant, ‘A filtering algorithm for the stretch constraint’, CP’01,

LNCS 2239:183–195. Springer, (2001).
[13] C. M. Roney-Dougal et al., ‘Tractable symmetry breaking using re-

stricted search trees’, ECAI’04, pp. 211–215. (2004).
[14] J. Sawada, ‘A fast algorithm to generate necklaces with fixed content’,

Theoretical Computer Science 301(1–3):477–489, (2003).
[15] M. Sellmann and P. Van Hentenryck, ‘Structural symmetry breaking’,

IJCAI’05, pp. 298–303. IJCAI, (2005).
[16] N. Sloane. The on-line encyclopedia of integer sequences. At http:

//www.research.att.com/∼njas/sequences/, 2008.

P. Flener and J. Pearson / Solving Necklace Constraint Problems524


