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Abstract. The problem of expressing and solving satisfiability
problems (SAT) with qualitative preferences is central in many areas
of Computer Science and Artificial Intelligence. In previous papers,
it has been shown that qualitative preferences on literals allow for
capturing qualitative/quantitative preferences on literals/formulas;
and that an optimal model for a satisfiability problems with quali-
tative preferences on literals can be computed via a simple modifi-
cation of the Davis-Logemann-Loveland procedure (DLL): Given a
SAT formula, an optimal solution is computed by simply imposing
that DLL branches according to the partial order on the preferences.
Unfortunately, it is well known that introducing an ordering on the
branching heuristic of DLL may cause an exponential degradation in
its performances. The experimental analysis reported in these papers
hightlights that such degradation can indeed show up in the presence
of a significant number of preferences.

In this paper we propose an alternative solution which does not
require any modification of the DLL heuristic: Once a solution is
computed, a constraint is added to the input formula imposing that
the new solution (if any) has to be better than the last computed. We
implemented this idea, and the resulting system can lead to signifi-
cant improvements wrt the original proposal when dealing with MIN-
ONE/MAX-SAT problems corresponding to qualitative preferences on
structured instances.

1 Introduction

The problem of expressing and solving satisfiability problems with
qualitative preferences is central in many areas of Computer Sci-
ence and Artificial Intelligence. For instance, in planning, beside the
goals that have to be achieved, it is common to have other “soft”
goals that it would be desiderable to satisfy: A plan is one solution
which achieves all the goals, and an “optimal” plan is one which
also achieves as many soft goals as possible. In planning as satisfia-
bility [16] with soft goals [13], the task of finding an optimal plan
is reduced to a satisfiability problem with qualitative preferences.
Here, for simplicity, we consider qualitative preferences on literals,
in which preferences are modeled as a set S of literals, and the rela-
tive importance of satisfying each literal in the set S is captured with
a partial order on S. In [12, 13], it has been shown that

1. qualitative preferences on formulas and quantitative preferences
on literals/formulas can be reduced to qualitative preferences on
literals; and

2. that it possible to compute an optimal solution (wrt the expressed
preferences) via a simple modification of the Davis-Logemann-
Loveland procedure (DLL): In more details, an optimal solution
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is computed by imposing that branching occurs according to the
partial order on the literals in the set of preferences.

This method for computing an optimal solution has the advantage
that it only requires a simple modification of existing state-of-the-
art SAT solvers all of which are based on DLL. However, it is well
known that introducing an ordering on the branching heuristic of
DLL may cause an exponential degradation in its performances [15].
OPTSAT is the name given to the related system built on top of MIN-
ISAT [10]. The experimental analysis reported in [12, 13] hightlights
that such degradation can show up in the presence of a significant
number of preferences.

In this paper we propose an alternative solution which does not
require any modification of DLL heuristic and thus which does not
have the above mentioned disadvantage. In a few words, once a so-
lution is computed, a blocking formula is added to the input for-
mula imposing that the new solution (if any) will be better than the
last computed wrt the qualitative preference on literals expressed.
Our approach works with any qualitative preference on literals, and
thus (via the reductions described in [12, 13]) with any qualita-
tive/quantitative preference on literals/formulas. We extended OPT-
SAT in order to incorporate this new method. In the following, we
use OPTSAT-HS to refer to OPTSAT when using the method described
in [12], and OPTSAT-BF to refer to OPTSAT when using the method
here described.

To comparatively test the effectiveness of the approach, we con-
sider MAX-SAT and MIN-ONE problems, in their non partial/partial2,
qualitative/quantitative versions, as in [12]. Our selection of bench-
marks includes problems from the last MAX-SAT evaluation3, well
known satisfiability planning problems, and does not include prob-
lems with a (pseudo)-random structure. Indeed, OPTSAT is based on
MINISAT, and MINISAT has been designed to solve large but rela-
tively easy industrial SAT problems (and not small but relatively
difficult randomly generated problems). In the qualitative case of
(partial) MIN-ONE and MAX-SAT problems, the experimental results
show that OPTSAT-BF performs better than OPTSAT-HS. The reasons
for the good performances of OPTSAT-BF are:

1. The good quality of the first computed solution, and
2. The few iterations required to get to the determined optimal solu-

tion.

In the quantitative case, OPTSAT-BF is competitive also with respect
to the other state-of-the-art systems for MAX-SAT, including the most
performing systems in the recent PB and MAX-SAT evaluations.

Summing up, the main contributions of the paper are:

2 In the partial MIN-ONE (resp. MAX-SAT) problem the optimization has to
be performed on a subset of the variables (resp. clauses) of the problem.

3 http://www.maxsat07.udl.es/
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• We define a new approach for solving satisfiability problems with
qualitative preferences.

• We formally state some properties of our algorithm.
• We extend OPTSAT in order to implement this new approach.
• On (partial) MAX-SAT and MIN-ONE non (pseudo)-random prob-

lems, we show that OPTSAT-BF performs better than OPTSAT-HS

in the qualitative case, and that is competitive wrt other state-of-
the-art systems in the quantitative case.

The paper is structured as follows. In Section 2 we review our for-
malism for expressing preferences. Section 3 is dedicated to the pre-
sentation of the algorithm behind OPTSAT-BF, and its formal prop-
erties. Section 4 presents the experimental analysis we conducted.
Section 5 ends the paper with some final remarks.

2 Satisfiability and Qualitative Preferences

Consider a finite set P of variables. A literal is a variable x or its
negation x. We assume x = x. A clause is a finite disjunction of
literals and a formula is a finite conjunction of clauses. As customary
in SAT, we also represent clauses as sets of literals and formulas as
sets of clauses, and we use � and ⊥ to denote the empty set of clauses
and the empty clause respectively. For example, given the 4 variables
Fish, Meat, RedWine, WhiteWine, the formula

{Fish, Meat}, {RedWine, WhiteWine} (1)

models the fact that we cannot have both fish (Fish) and meat (Meat),
both red (RedWine) and white (WhiteWine) wine.

An assignment is a consistent set of literals. If l ∈ μ, we say that
both l and l are assigned by μ. An assignment μ is total if each literal l
is assigned by μ. A total assignment μ satisfies a formula ϕ if for each
clause C ∈ ϕ, C∩μ �= ∅. A model μ of a formula ϕ is an assignment
satisfying ϕ. A formula ϕ entails a formula ψ if the models of ϕ are
a subset of the models of ψ. For instance, (1) has 9 models. In the
following, we abbreviate a total assignment with the set of variables
assigned to true, and we write μ |= ψ to indicate that μ is a model
of ψ. For instance, we write {Fish, WhiteWine} as an abbreviation
for the total assignment {Fish, Meat, WhiteWine, RedWine} in which
the only variables assigned to true are Fish and WhiteWine, i.e., the
situation in which we have fish and white wine.

A qualitative preference on literals is a partially ordered set of lit-
erals, i.e., a pair S,≺ where S is a set of literals (also called the set of
preferences), and ≺ is a partial order on S. Intuitively, S represents
the set of literals that we would like to have satisfied, and ≺ models
the relative importance of our preferences. For example,

{Fish, RedWine, WhiteWine}, {WhiteWine ≺ RedWine} (2)

models the case in which we prefer to have fish and both red and
white wine. In the case in which it is not possible to have both red
and white wine, we like more to have white than red wine. A qual-
itative preference S,≺ on literals can be extended to the set of total
assignments as follows: Given two total assignments μ and μ′, μ is
preferred to μ′ (μ ≺ μ′) if and only if

1. there exists a literal l ∈ S with l ∈ μ and l ∈ μ′; and
2. for each literal l′ ∈ S∩(μ′\μ), there exists a literal l ∈ S∩(μ\μ′)

such that l ≺ l′.

A model μ of a formula ϕ is optimal if it is a minimal element of
the partially ordered set of models of ϕ. For instance, considering
the qualitative preference (2), the formula (1) has only one optimal
model, i.e., {Fish, WhiteWine}.

We recall that qualitative preference on formulas can be reduced
to qualitative preferences on literals (see [13]); and that by proposi-
tional encoding of the objective function to maximize/minimize, it is
possible to reduce also quantitative preferences to qualitative ones,
see [12].

3 Solving satisfiability problems with preferences

Consider a formula ϕ and a qualitative preference on literals S,≺.
The problem of computing an optimal model of ϕ wrt S,≺ can be
solved by

1. computing a (not necessarily optimal) model μ of ϕ,
2. adding a formula which restricts the subsequent search for models

to those which are preferred to μ,
3. iterating the above two steps up to the point that the last assign-

ment found can no longer be improved.

Crucial for the above procedure is a condition which enables us to
say which are the models that are preferred (wrt S,≺) to an assign-
ment μ. The preference formula for μ wrt S,≺ is

(∨l:l∈S,l�∈μl) ∧ (∧l′:l′∈S,l′∈μ(∨l:l∈S,l�∈μ,l≺l′l ∨ l′)). (3)

An assignment μ′ is preferred to μ wrt S,≺ iff μ′ satisfies (3), as
stated by the following theorem.

Theorem 1 Let μ and μ′ be two total assignments. Let S,≺ be a
qualitative preference. μ′ is preferred to μ wrt S,≺ if and only if μ′

satisfies the preference formula for μ wrt S,≺.

As an example of the application of the theorem above consider
the following particular cases:

1. S ⊆ μ, (e.g., because there are no preferences, S = ∅): In this
case (3) is equivalent to ⊥, meaning that there is no assignment
which is preferred to μ, i.e., that μ is already optimal;

2. S,≺ = {l1, . . . , ln}, ∅: In this case (3) becomes (∨l:l∈S,l�∈μl) ∧
(∧l′:l′∈S,l′∈μl′), meaning that any assignment μ′ with μ′ ≺ μ
must be such that μ ∩ S ⊂ μ′ ∩ S;

Considering the preference (2),

1. if μ1 = {Meat, RedWine}, then (3) is

ψ1 : (Fish ∨ WhiteWine) ∧ (WhiteWine ∨ RedWine)

2. if μ2 = {Meat, WhiteWine}, then (3) is

ψ2 : (Fish ∨ RedWine) ∧ WhiteWine

3. if μ3 = {Fish, WhiteWine}, then (3) is

ψ3 : RedWine ∧ Fish ∧ WhiteWine.

Notice that μ2 ≺ μ1 and μ3 ≺ μ2: As a consequence ψ2 entails
ψ1 and ψ3 entails ψ2. Further, as the last example makes clear, it
is indeed possible that the preference formula for an assignment is
inconsistent with the given set of constraints, and this is indeed an
obvious consequence of the fact that the definition of (3) does not
take into account the input formula: In the case in which the prefer-
ence formula for an assignment μ is inconsistent with the input set
of clauses, μ is optimal.

As we have already said at the beginning of the section, Theo-
rem 1 allows us to use any complete SAT solver as a black box for
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S,≺ := a qualitative preference on literals;
ϕ := the input formula; ψ := �; μopt := ∅

function PREF-DLL(ϕ∪ ψ,μ)
1 if (⊥ ∈ (ϕ ∪ ψ)μ) return FALSE;
2 if (μ is total) μopt := μ; ψ := Reason(μ, S,≺); return FALSE;
3 if ({l} ∈ (ϕ ∪ ψ)μ) return PREF-DLL(ϕ ∪ ψ, μ ∪ {l});
4 l := ChooseLiteral(ϕ ∪ ψ, μ);
5 return PREF-DLL(ϕ ∪ ψ, μ ∪ {l}) or

PREF-DLL(ϕ ∪ ψ,μ ∪ {l}).

Figure 1. The algorithm of PREF-DLL.

computing an optimal assignment. Once a model μ of a formula ϕ is
found, the formula (3) is computed and added to ϕ and then the SAT
solver can be invoked: The returned model is ensured to be preferred
to μ. However, given that all the state-of-the-art systems are based
on DLL, it is possible, following what has been successfully done
in various areas of automated deduction (see, e.g., [2]), to add the
formula (3) as soon as μ is determined, i.e., during the search. The
resulting procedure is represented in Figure 1.

In the figure:

• ϕ is the input set of clauses, S,≺ is a qualitative preference on
literals, μopt is the (current) optimal assignment, ψ is the set
of clauses corresponding to the preference formula for μopt wrt
S,≺; μ is an assignment;

• (ϕ∪ψ)μ is the set of clauses obtained from ϕ∪ψ by (i) deleting
the clauses C ∈ ϕ ∪ ψ with μ ∩ C �= ∅, and (ii) substituting the
other clauses C ∈ ϕ ∪ ψ with C \ {l : l ∈ μ};

• Reason(μ, S,≺) returns the set of clauses corresponding to the
preference formula for μ wrt S,≺;

• ChooseLiteral(ϕ ∪ ψ, μ) returns a literal in ϕ ∪ ψ which is unas-
signed by μ.

It is easy to see that PREF-DLL is exactly the same as DLL, except
that once a model μ is determined (see line 2),

1. μ is stored in μopt;
2. the preference formula for μ wrt S,≺ is stored in ψ, and
3. FALSE is returned.

Notice that PREF-DLL generalizes DLL in the sense that if there are
no preferences (i.e., if S = ∅), PREF-DLL behaves as DLL: Indeed,
if S = ∅ then any model is optimal, and as soon as one model μ is
found, the preference formula for μ wrt S,≺ (i.e., ⊥) determines the
termination of PREF-DLL.

Theorem 2 Let ϕ be a formula and S,≺ a qualitative preference on
literals. PREF-DLL(ϕ, ∅) terminates, and then μopt is empty if ϕ is
unsatisfiable, and an optimal model of ϕ wrt S,≺ otherwise.

Beside the above, one interesting property of PREF-DLL is its
“anytime” property: The sequence of models μ1, μ2, . . . , μn com-
puted by PREF-DLL are ensured to be such that μi+1 is preferred to
μi, i.e., μi+1 ≺ μi (0 < i < n). Thus, PREF-DLL is as fast as DLL to
compute the first model of the input set of clauses, and, time permit-
ting, from that point on, it can only improve the quality of the model
found. Also notice that in Figure 1 we called Reason the procedure

for computing the preference formula (3). Indeed, most of the cur-
rent SAT solvers (at least those meant for applications) are based on
learning: As soon as a clause C becomes empty, C is returned and
then used by the learning mechanism of the solver to backjump over
irrelevant nodes while backtracking, and, with learning, to prune the
subsequent search of the solver. Such clause C is often called “rea-
son” or conflict clause, and it has the property that it is falsified by the
assignment μ which caused C to become empty (i.e., for each literal
l ∈ C, l ∈ μ). In our case, with solvers based on learning, as soon as
the assignment μ is total and no empty clause is detected, we can re-
turn the clause C corresponding to the left conjunct of (3) as conflict
clause: Indeed, ∨l∈S,l�∈μl is falsified by μ. However, we must also
add the other clauses corresponding to (3) to the input set of clauses,
since these are needed to ensure that the search will continue looking
for another model μ′ of the input formula with μ′ ≺ μ. Fortunately,
the clauses added to the input set of clauses, do not need to be indef-
initely retained (otherwise PREF-DLL can have an exponential blow
up in space): Once a new model μ′ with μ′ ≺ μ is found, we can
discard the clauses added because of μ since they are entailed by the
new clauses added because of μ′, as stated by the following theorem.

Theorem 3 Let S,≺ be a qualitative preference. Let μ1, μ2, . . . , μn

be the sequence of models computed by PREF-DLL, and
ψ1, ψ2, . . . , ψn be the corresponding preference formulas. For each
i, 0 < i < n, ψi+1 entails ψi.

In PREF-DLL (see Figure 1), the preference formula ψi for μi is
overwritten as soon as a new model μi+1 is determined (line 2).
PREF-DLL is thus guaranteed to work in polynomial space in the size
of the input formula and qualitative preference.

4 Implementation and experimental analysis

We extended OPTSAT [12] in order to incorporate these ideas. OPT-
SAT is built on top of MINISAT [10], the 2005 version, winner of the
SAT 2005 competition on the industrial benchmarks category (to-
gether with the SAT/CNF minimizer SATELITE [9]): Such choice
has been motivated by our interest in solving, in particular, large
structured problems coming from applications. The two versions of
OPTSAT —OPTSAT-HS and OPTSAT-BF— are the ones that we con-
sider in the case of qualitative preferences.

In the case on quantitative preference, OPTSAT encodes the objec-
tive function using the methods described in [23, 3]: Here we used
the one based on [23]. Table 1 shows the results for OPTSAT-HS and
OPTSAT-BF on a variety of problems detailed below. The table shows
the results also for various other state-of-the-art solvers included for
completeness. In particular we considered both dedicated solvers for

• MAX-SAT problems, like BF [6]; MAXSOLVER [24]; TOOL-
BAR [21, 17] ver. 3.0; MAXSATZ version submitted to the 2007
Evaluation [18]; MINIMAXSAT ver. 1.0 [14] and abbreviated with
MMSAT in the Table; and

• generic Pseudo-Boolean solvers, like OPBDP ver. 1.1.1 [4]; PBS
ver. 2.1 and ver. 4 [1]; MINISAT+ ver. 1.13 [11] and abbreviated
with MSAT+ in the Table; GLPPB ver. 0.2 by the same authors of
PUEBLO [22] as submitted to the 2007 Evaluation4; BSOLO ver.
3.0.17 [19].

MAXSATZ and MINIMAXSAT have been the winner of the recent
Max-SAT Evaluation 2007 in the “Max-SAT” and “Partial Max-
SAT” category, respectively. MINISAT+ was the solver able to prove

4 http://www.eecs.umich.edu/˜hsheini/pueblo/
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class #I OPTSAT-HS OPTSAT-BF OPBDP PBS4 MSAT+ BSOLO MAXSATZ MMSAT OPTSAT-HS OPTSAT-BF

1 Partial MINONE 21 77.99(19) 2.7(21) − 223.14(15) 43.32(18) 433.21(16) 391.21(12) 74.28(21) 69.89(21)
2 MINONE 26 0.69(26) 0.2(26) 85.37(7) 17.56(19) 7.33(24) 115.73(22) 87.21(24) 93.24(24) 23.99(25)
3 MAXSAT 35 26.68(34) 11.25(35) 20.89(3) 98.55(10) 130.37(31) 192.56(23) 274.38(22) 229.73(21) 218.86(31) 175.12(31)
4 MAXCUT/spinglass 5 0.01(5) 0.01(5) 0.99(1) 66.67(1) 0.86(1) 76.57(1) 33.19(3) 1.09(3) 7.56(1) 7.52(1)
5 MAXCUT/dimacs mod 62 0.01(62) 0.01(62) 230.33(5) 0.01(2) 247.54(7) 0.01(2) 59.27(52) 194.52(52) 66.86(4) 21.61(3)
6 PSEUDO/garden 7 0.02(7) 0.01(7) 2.2(4) 147.58(4) 0.25(5) 30.18(4) 4.75(5) 22.8(5) 36.66(5)
7 PSEUDO/logic-synthesis 17 0.03(17) 0.01(17) − 85.88(1) 490.36(5) − 81.93(2) 90.36(3) 338.26(3)
8 PSEUDO/primes 148 4.81(130) 0.19(131) 16.65(85) 18.08(90) 11.52 (104) 22.23 (94) 62.08 (107) 31.8(103) 60.59(109)
9 PSEUDO/routing 15 11.69(15) 3.12(15) 81.83(5) 102.75(9) 43.74(15) 373.73(8) 109.49(14) 41.49(15) 36.1(15)

10 MAXONE/structured 60 0.96(60) 0.13(60) 296.26(35) 11.48(60) 2.02(58) 40.96(60) 22.5(60) 293(56) 7.87(58)
11 MAXCLIQUE/structured 62 0.01(62) 0.06(62) 70.37(16) 23.79(13) 154.39(22) 248.26(14) 61.97(36) 54.14(19) 178.04(23)

Table 1. Results for solving satisfiability problems with qualitative (columns 4-5) and quantitative (columns 6-13) preferences. Problems are: Partial
MIN-ONE (row 1), MIN-ONE (row 2), MAX-SAT (rows 3-5), and partial MAX-SAT (rows 6-11).

unsatisfiability and optimality to a larger number of instances than
all the other solvers that entered into the Pseudo-Boolean Evaluation
2005 [20], and the best performing solver (together with BSOLO) also
in the Pseudo-Boolean Evaluation 2006, category OPT-SMALLINT-
LIN. BSOLO and GLPPB have been the best performing PB solvers
in the OPT-SMALLINT-LIN category of the recent Pseudo-Boolean
evaluation 2007. Considering the dedicated solvers for MAX-SAT, we
discarded BF, MAXSOLVER and TOOLBAR after an initial analysis
because they seem to be tailored for randomly generated problems,
and are thus not suited to deal with the problems we consider here.
About the Pseudo-Boolean solvers, we do not show the results for
PBS ver. 2.1 and GLPPB because they are almost always slower than
PBS ver. 4.0 and BSOLO, respectively, and, ultimately, they manage
to solve only a few of the instances we consider.

About the benchmarks, we considered a wide set of instances,
mainly coming for real-world applications. In particular, we used
SATPLAN 2004, release of 10 Feb. 2006 to generate the partial MIN-
ONE problems of row 1: In more details, we considered several do-
mains from previous International Planning Competitions (IPCs);
generated the first satisfiable instances with SATPLAN; and, for such
instance, we considered the partial MIN-ONE problem of minimiz-
ing the set of action variables set to true. For MIN-ONE and MAX-
SAT problems, we selected well known satisfiable and unsatisfiable
SAT instances from several domains, i.e., Formal Verification in-
stances from the Bejing’96 competition, planning problems from
SATPLAN contributed by Kautz and Selman, Data Encryption Stan-
dard (DES) instances, quasi group instances, and bounded model
checking (BMC) problems used in the original BMC paper [5],
miter-based circuit equivalence benchmarks by Joao Marques-Silva:
Each of these satisfiable instances corresponds to a MIN-ONE prob-
lem and the results are presented in row 2, while the unsatisfiable
instances correspond to the MAX-SAT problems whose results are
in row 3. Finally, we included in our analysis also (partial) MAX-
SAT problems from the recent MAX-SAT evaluation, rows 4-11: As
it emerges from the results of this evaluation5, these benchmarks are
hard; the performances of the best solvers differ only for a factor, no
solver clearly wins; and it is difficult to solve even a single instance
more than the other solvers.

Each solver has been run using its default settings. All the exper-
iments have been run on a Linux box equipped with a Pentium IV
3.2GHz processor and 1GB of RAM. CPU time is measured in sec-
onds; timeout has been set to 1800 seconds. In Table 1,

5 See the slides about the results, available at
http://www.maxsat07.udl.es/ms07-pre.pdf.

• column 2 is the class of the problems;
• column 3 is the number of instances in the class;
• columns 4-5 are dedicated to qualitative preferences;
• columns 6-14 are for the quantitative case.

Results for solvers are cumulatively presented as in the report of the
MAX-SAT Evaluations: Given a set of instances, we show the mean
CPU time of the solved instances, and the number of solved ones
(in parenthesis). MAXSATZ can only deal with MAX-SAT problems,
and this is why the corresponding results for MIN-ONE and partial
MIN-ONE/MAX-SAT are missing.

In the qualitative case we can see that OPTSAT-BF (column 5) is
consistently better than OPTSAT-HS (column 4), both in terms of
mean CPU time and solved instances: OPTSAT-BF solves the same
number of instances of OPTSAT-HS, or higher, and in less time, some-
times dramatically (see, e.g, rows 1 and 8), but for row 11 which is
nonetheless solved very easily by both solvers.

In the quantitative case, OPTSAT-BF performs also well on these
benchmarks. We have to remind that these benchmarks do not in-
clude many problems from the last evaluations because of their
(pseudo)-random structure which is not suited for our solver. For
fairness, this also implies that it is not clear whether the problem
we selected are suited for the other solver in our analysis. Indeed, we
conducted a preliminary analysis on the (pseudo)-random problems
we excluded, and we got a different picture, in which other solvers
(and in particular MMSAT) emerge.

class T1 Q1 #Sols Tf Qf

1 Partial MINONE 2.68 45.5 2.5 2.7 44.1
2 MINONE 0.19 751.6 2 0.2 751.6
3 MAXSAT 0.05 8605.2 21.2 11.25 8847.6
4 MAXCUT/spinglass 0.01 770.4 2 0.01 770.4
5 MAXCUT/dimacs mod 0.01 695.9 2.2 0.01 701.9
6 PSEUDO/garden 0.01 496 2 0.01 496
7 PSEUDO/logic-synthesis 0.01 152.2 2 0.01 152.2
8 PSEUDO/primes 0.18 368.4 2 0.19 368.4
9 PSEUDO/routing 3.12 58.7 2 3.12 58.7

10 MAXONE/structured 0.12 240.5 8.4 0.13 249.8
11 MAXCLIQUE/structured 0.06 430.4 2 0.06 430.4

Table 2. CPU time for finding first (column T1) and optimal (column Tf )
solution. 1 + number of models computed by OPTSAT-BF (column #Sols).

Quality of the first (column Q1) and optimal (column Qf ) solution.
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In order to understand the good behavior of our algorithm, Ta-
ble 2 shows, for each class, the average of the CPU times for finding
the first (even if not optimal) (column T1) and optimal (column Tf )
solution; the average quality6 of the first (column Q1) and optimal
(column Qf ) solution; and the average of 1 + the number of models
computed by OPTSAT-BF (column #Sols). Looking at the table, we
see that the good performances of OPTSAT-BF can be explained by
the following factors:

1. the relative quality of the first solution (i.e., Qf/Q1 for rows 1-2
and Q1/Qf for rows 3-11) is usually very high, greater than 0.96;
and

2. the low number of intermediate solutions generated before the op-
timal one: For 9 classes out of 11, the number in column #Sols is
lower or equal than 2.5. Considering that 2 indicates that the first
computed model is already optimal, this means that the algorithm
converges to an optimal model very quickly.

Finally note how, for the two classes in which the first solution is
of a low quality, i.e., rows 3 and 10 in Table 2, the convergence is
very different: For the MAXSAT class in row 3, T1 is negligible, and
all CPU time is spent in “filling the gap” with the optimal result;
while for the MAXONE/structured class, most of the time is spent
looking for the first solution. As a consequence, in MAX-SAT (resp.
MAXONE/structured) the optimal solution is reached by a serie of
relatively difficult (resp. easy) intermediate steps.

5 Conclusions

We have defined and implemented a new approach based on DLL for
solving satisfiability problems with preferences which does not need
any modification to DLL heuristic. The basic idea is that whenever a
solution is found, a formula is added to the input set of clauses ensur-
ing that the new model (if any) will be better than the last computed
one. The experimental analysis performed on a wide set of, mainly
structured, (partial) MAX-SAT and MIN-ONE benchmarks has shown
that it leads in most cases to significant improvements when dealing
with qualitative preferences, and that it is also competitive with other
state-of-the-art systems in the quantitative case.

There is a huge literature on expressing and reasoning with pref-
erences, see, e.g. [8], and the various events on preferences taking
place every year. If we do not take into account [12, 13], the closest
work to ours seems to be the one on CP-nets [7]: In the paper, the
authors show that exploring the search space according to the partial
order on the values of the variables, the first solution determined is
guaranteed to be optimal. CP-nets allows for non-Boolean variables,
but on the other hand they only allow to express preferences between
values of a same variable: Thus, modeling “I prefer a to b” where a
and b are distinct propositional variables cannot be directly captured.
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