
SLIDE: A Useful Special Case
of the CARDPATH Constraint

Christian Bessiere1 and Emmanuel Hebrard2 and Brahim Hnich3 and Zeynep Kiziltan4 and Toby Walsh5

Abstract. We study the CARDPATH constraint. This ensures a given
constraint holds a number of times down a sequence of variables.
We show that SLIDE, a special case of CARDPATH where the slid
constraint must hold always, can be used to encode a wide range
of sliding sequence constraints including CARDPATH itself. We con-
sider how to propagate SLIDE and provide a complete propagator for
CARDPATH. Since propagation is NP-hard in general, we identify
special cases where propagation takes polynomial time. Our experi-
ments demonstrate that using SLIDE to encode global constraints can
be as efficient and effective as specialised propagators.

1 INTRODUCTION

In many scheduling problems, we have a sequence of decision vari-
ables and a constraint which applies down the sequence. For exam-
ple, in the car sequencing problem, we need to decide the sequence
of cars on a production line. We might have a constraint on how often
a particular option is met (e.g. 1 out of 3 cars can have a sun-roof). As
a second example, in a nurse rostering problem, we need to decide
the sequence of shifts worked by nurses. We might have a constraint
on how many consecutive night shifts any nurse can work. Such con-
straints have been classified as sliding sequence constraints [7]. To
model such constraints, we can use the CARDPATH constraint. This
ensures that a given constraint holds a number of times down a se-
quence of variables [5]. We identify a special case of CARDPATH

which we call SLIDE, that is interesting for several reasons. First,
many sliding sequence constraints, including CARDPATH, can easily
be encoded using this special case. SLIDE is therefore a “general-
purpose” constraint for encoding sliding sequencing constraints. This
is an especially easy way to provide propagators for such global con-
straints within a constraint toolkit. Second, we give a propagator for
enforcing generalised arc-consistency on SLIDE. By comparison, the
previous propagator for CARDPATH given in [5] does not prune all
possible values. Third, SLIDE can be as efficient and effective as spe-
cialised propagators in solving sequencing problems.

1 LIRMM (CNRS / U. Montpellier), France, email: bessiere@lirmm.fr. Sup-
ported by the ANR project ANR-06-BLAN-0383-02.

2 4C, UCC, Ireland, email: ehebrard@4c.ucc.ie.
3 Izmir Uni. of Economics, Turkey, email: brahim.hnich@ieu.edu.tr. Sup-

ported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant No. SOBAG-108K027.

4 CS Department, Uni. of Bologna, Italy, email: zeynep@cs.unibo.it.
5 NICTA and UNSW, Sydney, Australia, email: toby.walsh@nicta.com.au.

Funded by the Australian Government’s Department of Broadband, Com-
munications and the Digital Economy, and the ARC.

2 CARDPATH AND SLIDE CONSTRAINTS

A constraint satisfaction problem consists of a set of variables, each
with a finite domain of values, and a set of constraints specifying
allowed combinations of values for given sets of variables. We use
capital letters for variables (e.g. X), and lower case for values (e.g.
d). We write D(X) for the domain of variable X. Constraint solvers
typically explore partial assignments enforcing a local consistency
property. A constraint is generalised arc consistent (GAC) iff when
a variable is assigned any value in its domain, there exist compatible
values in the domains of all the other variables of the constraint.

The CARDPATH constraint was introduced in [5]. If C is a con-
straint of arity k then CARDPATH(N, [X1, . . . , Xn], C) holds iff
C(Xi, . . . , Xi+k−1) holds N times for 1 ≤ i ≤ n − k + 1. For
example, we can count the number of changes in the type of shift
with CARDPATH(N, [X1, . . . , Xn], �=). Note that CARDPATH can
be used to encode a range of Boolean connectives since N ≥ 1
gives disjunction, N = 1 gives exclusive or, and N = 0 gives nega-
tion. We shall focus on a special case of the CARDPATH constraint
where the slid constraint holds always. SLIDE(C, [X1, . . . , Xn])
holds iff C(Xi, . . . , Xi+k−1) holds for all 1 ≤ i ≤ n − k + 1.
That is, a CARDPATH constraint in which N = n − k + 1. We
also consider a more complex form of SLIDE that applies only ev-
ery j variables. More precisely, SLIDEj(C, [X1, . . . , Xn]) holds iff
C(Xij+1, . . . , Xij+k) holds for 0 ≤ i ≤ n−k

j
. By definition

SLIDEj for j = 1 is equivalent to SLIDE.
Beldiceanu and Carlsson have shown that CARDPATH can encode

a wide range of constraints like CHANGE, SMOOTH, AMONGSEQ

and SLIDINGSUM [5]. As we discuss later, SLIDE provides a simple
way to encode such sliding sequencing constraints. It can also en-
code many other more complex sliding sequencing constraints like
REGULAR [16], STRETCH [13], and LEX [7], as well as many types
of chanelling constraints like ELEMENT [19] and optimisation con-
straints like the soft forms of REGULAR [20]. More interestingly,
CARDPATH can itself be encoded into a SLIDE constraint. In [5], a
propagator for CARDPATH is proposed that greedily constructs up-
per and lower bounds on the number of (un)satisfied constraints by
posting and retracting (the negation of) each of the constraints. This
propagator does not achieve GAC. We propose here a complete prop-
agator for enforcing GAC on SLIDE. SLIDE thus provides a GAC
propagator for CARDPATH. In addition, SLIDE provides a GAC prop-
agator for any of the other global constraints it can encode. As our
experimental results reveal, SLIDE can be as efficient and effective
as specialised propagators.

We illustrate the usefulness of SLIDE with the AMONGSEQ

constraint which ensures that values occur with some given fre-
quency. For instance, we might want that no more than 3 out
of every sequence of 7 shift variables are a “night shift”. More

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-475

475

precisely, AMONGSEQ(l, u, k, [X1, . . . , Xn], v) holds iff between
l and u variables in every sequence of k variables take value
in the ground set v [8]. We can encode this using SLIDE. More
precisely, AMONGSEQ(l, u, k, [X1, . . . , Xn], v) can be encoded
as SLIDE(Dk,v

l,u , [X1, . . . , Xn]) where Dk,v

l,u is an instance of the

AMONG constraint [8]. Dk,v

l,u (Xi, . . . , Xi+k−1) holds iff between l
and u variables take values in the set v. For example, suppose 2 of
every 3 variables along a sequence X1 . . . X5 should take the value
a, where X1 = a and X2, . . . , X5 ∈ {a, b}. This can be encoded
as SLIDE(E, [X1, X2, X3, X4, X5]) where E(Xi, Xi+1, Xi+2) en-
sures two of its three variables take a. This SLIDE constraint ensures
that E(X1, X2, X3), E(X2, X3, X4) and E(X3, X4, X5) all hold.
Note that each ternary constraint is GAC. However, enforcing GAC
on the SLIDE constraint sets X4 = a as there are only two satisfying
assignments and neither have X4 = b.

3 SLIDE WITH MULTIPLE SEQUENCES

We often wish to slide a constraint down two or more sequences of
variables at once. For example, suppose we want to ensure that two
vectors of variables, X1 to Xn and Y1 to Yn differ at every index. We
can encode such a constraint by interleaving the two sequences and
sliding a constraint down the single sequence with a suitable offset.
In our example, we simply post SLIDE2(�=, [X1, Y1, . . . , Xn, Yn]).
As a second example of sliding down multiple sequences of vari-
ables, consider the constraint REGULAR(A, [X1, . . . , Xn]). This en-
sures that the values taken by a sequence of variables form a string
accepted by a deterministic finite automaton A [16]. This global con-
straint is useful in scheduling, rostering and sequencing problems to
ensure certain patterns do (or do not) occur over time. It can be used
to encode a wide range of other global constraints including: AMONG

[8], CONTIGUITY [15], LEX and PRECEDENCE [14].
To encode the REGULAR constraint with SLIDE, we intro-

duce variables, Qi to record the state of the automaton. We
then post SLIDE2(F, [Q0, X1, Q1, . . . , Xn, Qn]) where Q0 is set
to the starting state, Qn is restricted to accepting states, and
F (Qi, Xi+1, Qi+1) holds iff Qi+1 = δ(Xi, Qi) where δ is the
transition function of the automaton. If we decompose this encoding
into the conjunction of slid constraints, we get a set of constraints
similar to [6]. Enforcing GAC on this encoding ensures GAC on
REGULAR and, by exploiting functionaliy of F , takes O(ndq) time
where d is the number of values for Xi and q is the number of states
of the automaton. This is asymptotically identical to the specialised
REGULAR propagator [16]. This encoding is highly competitive in
practice with the specialized propagator [2].

One advantage of this encoding is that it gives explicit access to the
states of the automaton. Consider, for example, a rostering problem
where workers are allowed to work for up to three consecutive shifts.
This can be specified with a simple REGULAR constraint. Suppose
now we want to minimise the number of times a worker has to work
for three consecutive shifts. To encode this, we can post an AMONG

constraint on the state variables to count the number of times we
visit the state representing three consecutive shifts, and minimise
the value taken by this variable. As we shall see later in the exper-
iments, the encoding also gives an efficient incremental propagator.
In fact, the complexity of repeatedly enforcing GAC on this encoding
of the REGULAR constraint down the whole branch of a backtracking
search tree is just O(ndq) time.

4 SLIDE WITH COUNTERS

We may want to slide a constraint on a sequence of variables comput-
ing a count. We can use SLIDE to encode such constraints by incre-
mentally computing the count in an additional sequence of variables.
Consider, for example, CARDPATH(N, [X1, . . . , Xn], C). For sim-
plicity, we consider k = 2 (i.e., C is binary). The generalisation to
other k is straightforward. We introduce a sequence of integer vari-
ables Mi in which to accumulate the count. We encode CARDPATH

as SLIDE2(G, [M1, X1, . . . , Mn, Xn]) where M1 = 0, Mn = N ,
and G(Mi, Xi, Mi+1, Xi+1) is defined as: if C(Xi, Xi+1) holds
then Mi+1 = Mi + 1, otherwise Mi+1 = Mi. GAC on SLIDE

ensures GAC on CARDPATH.
As a second example, consider the STRETCH constraint [13].

Given variables X1 to Xn taking values from a set of shift
types τ , a set π of ordered pairs from τ × τ , and functions
shortest(t) and longest(t) giving the minimum and maximum
length of a stretch of type t, STRETCH([X1, . . . , Xn]) holds iff each
stretch of type t has length between shortest(t) and longest(t);
and consecutive types of stretches are in π. We can encode
STRETCH as SLIDE2(H, [X1, Q1, . . . , Xn, Qn]) where Q1 = 1 and
H(Xi, Xi+1, Qi, Qi+1) holds iff (1) Xi = Xi+1, Qi+1 = 1 + Qi,
and Qi+1 ≤ longest(Xi); or (2) Xi �= Xi+1, 〈Xi, Xi+1〉 ∈ π,
Qi ≥ shortest(Xi) and Qi+1 = 1. GAC on SLIDE ensures GAC
on STRETCH.

5 OTHER EXAMPLES OF SLIDE

There are many other examples of global constraints which we can
encode using SLIDE. For example, we can encode LEX [7] us-
ing SLIDE. LEX holds iff a vector of variables [X1..Xn] is lexico-
graphically smaller than another vector of variables [Y1..Yn]. We
introduce a sequence of Boolean variables Bi to indicate if the
vectors have been ordered by position i − 1. Hence B1 = 0.
We then encode LEX as SLIDE3(I, [B1, X1, Y1, . . . , Bn, Xn, Yn])
where I(Bi, Xi, Yi, Bi+1) holds iff (Bi = Bi+1 = 0 ∧ Xi = Yi)
or (Bi = 0 ∧ Bi+1 = 1 ∧ Xi < Yi) or (Bi = Bi+1 = 1).
This gives us a linear time propagator as efficient and incremen-
tal as the specialised algorithm in [12]. As a second example, we
can encode many types of channelling constraints using SLIDE like
DOMAIN [17], LINKSET2BOOLEANS [7] and ELEMENT [19]. As
a final example, we can encode “optimisation” constraints like the
soft form of the REGULAR constraint which measures the Hamming
or edit distance to a regular string [20]. There are, however, con-
straints that can be encoded using SLIDE which do not give as ef-
ficient and effective propagators as specialised algorithms (e.g. the
global ALLDIFFERENT constraint [18]).

6 PROPAGATING SLIDE

A constraint like SLIDE is only really useful if we can propagate
it efficiently and effectively. The simplest possible way to propa-
gate SLIDEj(C, [X1, . . . , Xn]) is to decompose it into a sequence
of constraints, C(Xij+1, . . . , Xij+k) for 0 ≤ i ≤ n−k

j
and let the

constraint solver propagate the decomposition. Surprisingly, this is
enough to achieve GAC in many cases. For example, we can achieve
GAC in this way on the SLIDE encoding of the REGULAR constraint.
If the constraints in the decomposition overlap on just one variable
then the constraint graph is Berge acyclic [4], and enforcing GAC on
the decomposition of SLIDEj achieves GAC on SLIDEj . Similarly,
enforcing GAC on the decomposition achieves GAC on SLIDEj if

C. Bessiere et al. / SLIDE: A Useful Special Case of the CARDPATH Constraint476

the constraint being slid is monotone. A constraint C is monotone
iff there exists a total ordering ≺ of the values such that for any two
values v, w, if v ≺ w then v can replace w in any support for C. For
instance, the constraints AMONG and SUM are monotone if either no
upper bound, or no lower bound is given.

Theorem 1 Enforcing GAC over each constraint in the decomposi-
tion of SLIDEj achieves GAC on SLIDEj if the constraint being slid
is monotone.

Proof: For an arbitrary value v ∈ D(X), we show that if every
constraint is GAC, then we can build a support for X = v on SLIDEj .
For any variable other than X, we choose the smallest value in the
total order. This is the value that can be substituted for any other value
in the same domain. A tuple built this way satisfies all the constraints
being slid since we know that there exists a support for each (they are
GAC), and the values we chose can be substituted for this support. �

In the general case, when constraints overlap on more than one
variable (e.g. in the SLIDE encoding of AMONGSEQ), we need to do
more work to achieve GAC. We distinguish two cases: when the arity
of the constraint being slid is not fixed, and when the arity is fixed.
We show that enforcing GAC in the former case is NP-hard.

Theorem 2 Enforcing GAC on SLIDE(C, [X1, . . . , Xn]) is NP-
hard when the arity of C is not fixed even if enforcing GAC on C
is itself polynomial.

Proof: We give a reduction from 3-SAT in N variables and M
clauses. We introduce variables Xj

i for 1 ≤ i ≤ N + 1 and
1 ≤ j ≤ M . For each clause j, if the clause is xa ∨ ¬xb ∨ xc, then
we set Xj

1 ∈ {xa,¬xb, xc} to represent the values that make this
clause true. For each clause j, we set Xj

i+1 ∈ {0, 1} for 1 ≤ i ≤ N
to represent a truth assignment. Hence, we duplicate the truth
assignment for each clause. We now build the following constraint
SLIDE(C, [X1

1 , .., X1
N+1, .., Xj

1 , .., Xj

N+1
, .., XM

1 , .., XM
N+1])

where C has arity N + 1. We construct C(Y1, . . . , YN+1) to hold
iff Y1 = xd and Y1+d = 1, or Y1 = ¬xd and Y1+d = 0. (in
these two cases, the value assigned to Y1 represents the literal that
makes clause j true), or Yi ∈ {0, 1} and Yi = Yi+N+1 (in this
case, the truth assignment is passed down the sequence). Enforcing
GAC on C is polynomial and an assignment satisfying the SLIDE

constraint corresponds to a satisfying assignment for the original
3-SAT problem. �

When the arity of the constraint being slid is not great, we can en-
force GAC on SLIDE using dynamic programming (DP) in a similar
way to the DP-based propagators for the REGULAR and STRETCH

constraints [16, 13]. A much simpler method, however, which is just
as efficient and effective as dynamic programming is to exploit a
variation of the dual encoding into binary constraints [10] based on
tuples of support. Such an encoding was proposed in [1] for a par-
ticular sliding constraint. Here we show that this method is more
general and can be used for arbitrary SLIDE constraints. Using such
an encoding, SLIDE can be easily added to any constraint solver. We
illustrate the intersection encoding by means of an example.

Consider again the AMONGSEQ example in which 2 of ev-
ery 3 variables of X1 . . . X5 should take the value a, where
X1 = a and X2, . . . , X5 ∈ {a, b}. We can encode this as
SLIDE(E, [X1, X2, X3, X4, X5]) where E(Xi, Xi+1, Xi+2) is an
instance of the AMONG constraint that ensures two of its three vari-
ables take a. If the sliding constraint has arity k, we introduce an
intersection variable for each subsequence of k − 1 variables of
SLIDE. The first intersection variable V1 has a domain containing

: intersection variable

ab
aa

ba
bb

ab
aa

ba
bb

aX1
b
aX2

b
aX4

b
aX5

b
aX3

ab
aa

bb
ba

ab
aa

V2 V3 V4V1

compatibility constraint

: channelling constraint

: allowed tuple in

Vi

Figure 1. Intersection encoding

all tuples from D(X1) × . . . ×D(Xk−1). The jth intersection vari-
able Vj has domain containing D(Xj) × . . . × D(Xj+k−2). And
so on until Vn−k+2. In our example in Fig 1, this gives D(V1) =
D(X1)×D(X2), . . . , D(V4) = D(X4)×D(X5). We then post bi-
nary compatibility constraints between consecutive intersection vari-
ables. These constraints ensure that the two intersection variables
assign (k − 1)-tuples that agree on the values of their k − 2 com-
mon original variables (like constraints in the dual encoding). They
also ensure that the k-tuple formed by the two (k − 1)-tuples sat-
isfies the corresponding instance of the slid constraint. For instance,
in Fig 1, the binary constraint between V1 and V2 does not allow
the pair 〈ab, aa〉 because the second argument of ab for V1 (value b
for X2) is in conflict with the first argument of aa for V2 (value a for
X2). That same constraint between V1 and V2 does not allow the pair
〈ab, bb〉 because the tuple abb is not allowed by E(X1, X2, X3).

Enforcing AC on such compatibility constraints prunes aa and bb
from V2, ab and bb from V3, and ba and bb from V4. Finally, we
post binary channelling constraints to link the tuples to the original
variables. One such constraint for each original variable is sufficient.
For example, we can have a channelling constraint between V4 and
X4 which ensures that the first argument of the tuple assigned to V4

equals the value assigned to X4. Enforcing AC on this channelling
constraint prunes b from the domain of X4. We could instead post a
channelling constraint between V3 and X4 ensuring that the second
argument in V3 equals X4. The AMONGSEQ constraint is now GAC.

Theorem 3 Enforcing AC on the intersection encoding of SLIDE

achieves GAC in O(ndk) time and O(ndk−1) space where k is the
arity of the constraint to slide and d is the maximum domain size.

Proof: The constraint graph associated with the intersection
encoding is a tree. Enforcing AC on this therefore achieves GAC.
Enforcing AC on the channelling constraints then ensures that
the domains of the original variables are pruned appropriately. As
we introduce O(n) intersection variables, and each can contain
O(dk−1) tuples, the intersection encoding requires O(ndk−1)
space. Enforcing AC on a compatibility constraint between two
intersection variables Vi and Vi+1 takes O(dk) time as each tuple
in the intersection variable Vi has at most d supports which are the
tuples of Vi+1 that are equal to Vi on their k−2 common arguments.
Enforcing AC on O(n) such constraints therefore takes O(ndk)
time. Finally, enforcing AC on each of the O(n) channelling
constraints takes O(dk−1) time as they are functional. Hence, the
total time complexity is O(ndk). �

Arc consistency on the intersection encoding simulates pairwise
consistency on the decomposition. It does this efficiently as inter-
section variables represent in extension ’only’ the intersections. This
is sufficient because the constraint graph is acyclic. This encoding
is also very easy to implement in any constraint solver. It has good

C. Bessiere et al. / SLIDE: A Useful Special Case of the CARDPATH Constraint 477

incremental properties. Only those constraints associated with a vari-
able which changes need to wake up.

The intersection encoding of SLIDEj for j > 1 is less expensive
to build than for j = 1 as we need intersection variables for subse-
quences of less than k− 1 variables. For 1 ≤ j ≤ k/2, we introduce
intersection variables for subsequences of variables of length k − j
starting at indices 1, j +1, 2j +1... whose domains contain (k− j)-
tuples of assignments. Compatibility and channelling constraints are
defined as with j = 1. If j > k/2, two consecutive intersection vari-
ables (for two subsequences of k − j variables) involve less than k
variables of the SLIDEj . The compatibility constraint between them
cannot thus ensure the satisfaction of the slid constraint. We therefore
introduce intersection variables for subsequences of length �k/2�
starting at indices 1, j + 1, 2j + 1... and for subsequences of length
�k/2� finishing at indices k, j + k, 2j + k... The compatibility con-
straint between two consecutive intersection variables representing
the subsequence starting at index pj + 1 and the subsequence fin-
ishing at index pj + k ensures satisfaction of the (p + 1)th instance
of the slid constraint. The compatibility constraint between two con-
secutive intersection variables representing subsequence finishing at
index pj + k and the subsequence starting at index (p + 1)j + 1
ensures the consistency of the arguments in the intersection of two
instances of the slid constraint.

7 EXPERIMENTS

We now demonstrate the practical value of SLIDE. Due to space
limits, we only report detailed results on a nurse scheduling prob-
lem, and summarise the results on balanced incomplete block design
generation and car sequencing problems. Experiments are performed
with ILOG Solver 6.2 on a 2.8GHz Intel computer running Linux.

We consider a Nurse Scheduling Problem [9] in which we gener-
ate a schedule of shift duties for a short-term planning period. There
are three types of shifts (day, evening, and night). We ensure that
(1) each nurse takes a day off or is assigned to an available shift;
(2) each shift has a minimum required number of nurses; (3) each
nurse’s work load is between specific lower and upper bounds; (4)
each nurse works at most 5 consecutive days; (5) each nurse has at
least 12 hours of break between two shifts; (6) the shift assigned to
a nurse does not change more than once every three days. We con-
struct four different models, all with variables indicating what type
of shift, if any, each nurse is working on each day. We break symme-
try between the nurses with lex concstraints. The constraints (1)-(3)
are enforced using global cardinality constraints. Constraints (4), (5)
and (6) form sequences of respectively 6-ary, binary and ternary con-
straints. Since (4) is monotone, we simply post the decomposition in
the first three models. This achieves GAC by Theorem 1. The mod-
els differ in how (5) and (6) are propagated. In decomp, they are
decomposed into conjunction of slid constraints. In amongseq, (5)
is decomposed and (6) is enforced using the AMONGSEQ constraint
of ILOG Solver (called IloSequence). The combination of (5)
and (6) are enforced by SLIDE in slide. Finally, in slidec, we
use SLIDE for the combination of (4), (5), and (6).

We test the models using the instances available at
http://www.projectmanagement.ugent.be/nsp.php in which nurses
have no maximum workload, but a set of preferences to optimise.
We ignore these preferences and post a constraint bounding the
maximum workload to at most 5 day shifts, 4 evening shifts and 2
night shifts per nurse and per week. Similarly, each nurse must have
at least 2 rest days per week. We solve three samples of instances
involving 25, 30 and 60 nurses to schedule over 28 days.

We use the same variable ordering for all models so that heuristic
choices do not affect results. We schedule the days in chronological
order and within each day we allocate a shift to every nurse in lexi-
cographical order. Initial experiments show that this is more efficient
than the minimum domain heuristic. However, it restricts the variety
of domains passed to the propagators, and thus hinders any demon-
stration of differences in pruning. We therefore also use a more ran-
dom heuristic. We allocate within each day a shift to every nurse
randomly with 20% frequency and lexicographically otherwise.

#solved bts1 time1 bts2 time2
25 nurses, 28 days (99 instances)

decomp 99 301 0.13 301 0.13
amongseq 99 301 0.19 301 0.19
slide 99 301 0.19 301 0.19
slidec 99 295 0.68 295 0.68

30 nurses, 28 days (99 instances)
decomp 68 7101 2.80 15185 5.29
amongseq 67 7101 4.31 7150 4.33
slide 70 3303 1.99 4319 2.53
slidec 75 1047 2.13 11014 10.02

60 nurses, 28 days (100 instances)
decomp 51 5999 4.38 5999 4.38
amongseq 51 5999 7.10 5999 7.10
slide 52 5300 5.61 8479 7.21
slidec 58 2157 7.52 4501 12.07

Table 1. Nurse scheduling with lexicographical variable ordering (1 on
instances solved by all methods, 2 on instances solved by the method).

#solved bts1 time1 bts2 time2
25 nurses, 28 days (99 instances)

decomp 86 35084 7.69 41892 10.06
amongseq 85 35401 14.43 35401 14.43
slide 97 1699 1.00 1547 0.92
slidec 97 457 0.58 438 0.56

30 nurses, 28 days (99 instances)
decomp 20 68834 11.94 69550 12.75
amongseq 20 68834 18.89 69550 19.83
slide 42 378 0.18 8770 7.29
slidec 43 365 0.95 12857 6.76

60 nurses, 28 days (100 instances)
decomp 3 122406 71.06 250427 142.90
amongseq 2 122406 119.40 122406 119.40
slide 27 562 0.65 2367 2.19
slidec 34 542 3.96 1368 6.38

Table 2. Nurse scheduling with random variable ordering (1 on instances
solved by all methods, 2 on instances solved by the method).

Tables 1 and 2 report the mean runtime and fails to solve the in-
stances with 5 minutes cutoff. Between the first three models, the best
results are due to slide. We solve more instances with slide,
as well as explore a smaller tree. By developing a propagator for
a generic constraint like SLIDE, we can increase pruning without
hurting efficiency. Note that slide always performs better than
amongseq. A possible reason is that AMONGSEQ cannot encode
constraint (6) as directly as SLIDE. As in previous models, we need
to channel into Boolean variables and post AMONGSEQ on them.
This may not give as effective and efficient pruning. SLIDE thus of-
fers both modelling and solving advantages over existing sequencing
constraints. Note also that slidec solves additional instances in the
time limit. This is not suprising as the model slides the combination
of the constraints (4), (5), and (6). Recall that the sliding constraint
of (4) is 6-ary. It is pleasing to note that the intersection encoding
performs well even in the presence of such a high arity constraint.

We also ran experiments on Balanced Incomplete Block Designs
(BIBDs) and car sequencing. For BIBD, we use the model in [12]
which contains LEX constraints. We propagate these either using
the specialised algorithm of [12] or the SLIDE encoding. As both
propagators maintain GAC, we only compare runtimes. Results on
large instances show that the SLIDE model is as efficient as the LEX

C. Bessiere et al. / SLIDE: A Useful Special Case of the CARDPATH Constraint478

model. For car sequencing, we test the scalability of SLIDE on large
arity constraints and large domains using 80 instances from CSPLib.
Unlike a model using IloSequence, our SLIDE model does not
combine reasoning about overall cardinality of a configuration with
the sequence of AMONG constraints. Hence, it is not as efficient: 26
instances were solved with SLIDE within the five minute cutoff, com-
pared to 39 with IloSequence. However, 9 of the instances solved
with SLIDE were not solved by IloSequence. The memory over-
head of the SLIDE propagator was not excessive despite the slid con-
straints having arity 5 and domains of size 30. The SLIDE model used
on average 22Mb of space, compared to 5Mb for IloSequence.

8 RELATED WORK

Pesant introduced the REGULAR constraint, and gave a propagator
based on dynamic programming to enforce GAC [16]. As we saw,
the REGULAR constraint can be encoded using a simple SLIDE con-
straint. In this simple case, the dynamic programming machinery of
Pesant’s propagator is unnecessary as the decomposition into ternary
constraints does not hinder propagation. We have found that SLIDE

is as efficient as REGULAR in practice [2]. Furthermore, our encod-
ing introduces variables for representing the states. Access to the
state variables may be useful (e.g. for expressing objective func-
tions). Although an objective function can be represented with the
COSTREGULAR constraint [11], this is limited to the sum of the
variable-value assignment costs. Our encoding is more flexible, al-
lowing different objective functions like the min function used in the
example in Section 3.

Beldiceanu, Carlsson, Debruyne and Petit have proposed specify-
ing global constraints by means of deterministic finite automata aug-
mented with counters [6]. They automatically construct propagators
for such automata by decomposing the specification into a sequence
of signature and transition constraints. This gives an encoding sim-
ilar to our SLIDE encoding of the REGULAR constraint. There are,
however, a number of advantages of SLIDE over using an automaton.
If the automaton uses counters, pairwise consistency is needed to
guarantee GAC (and most constraint toolkits do not support pairwise
consistency). We can encode such automata using a SLIDE where we
introduce an additional sequence of variables for each counter. SLIDE

thus provides a GAC propagator for such automata. Moreover, SLIDE

has a better complexity than a brute-force pairwise consistency algo-
rithm based on the dual encoding as it considers only the intersection
variables, reducing the space complexity by a factor of d.

Hellsten, Pesant and van Beek developed a GAC propagator for
the STRETCH constraint based on dynamic programming similar to
that for the REGULAR constraint [13]. As we have shown, we can en-
code the STRETCH constraint and maintain GAC using SLIDE. Sev-
eral propagators for the AMONGSEQ are proposed and compared in
[21, 3]. Among these propagators, those based on the REGULAR con-
straint do the most pruning and are often fastest. Finally, Bartak has
proposed a similar intersection encoding for propagating a sliding
scheduling constraint [1] We have shown that this method is more
general and can be used for arbitrary SLIDE constraints.

9 CONCLUSIONS

We have studied the CARDPATH constraint. This slides a constraint
down a sequence of variables. We considered SLIDE a special case of
CARDPATH in which the slid constraint holds at every position. We
demonstrated that this special case can encode many global sequenc-
ing constraints including AMONGSEQ, CARDPATH, REGULAR in a

simple way. SLIDE can therefore serve as a “general-purpose” con-
straint for decomposing a wide range of global constraints, facilitat-
ing their integration into constraint toolkits. We proved that enforc-
ing GAC on SLIDE is NP-hard in general. Nevertheless, we identi-
fied several useful and common cases where it is polynomial. For
instance, when the constraint being slid overlaps on just one vari-
able or is monotone, decomposition does not hinder propagation.
Dynamic programming or a variation of the dual encoding can be
used to propagate SLIDE when the constraint being slid overlaps on
more than one variable and is not monotone. Unlike the previous
proposed propagator for CARDPATH, this achieves GAC. Our exper-
iments demonstrated that using SLIDE to encode constraints can be
as efficient and effective as specialised propagators. There are many
directions for future work. One promising direction is to use binary
decision diagrams to store the supports for the constraints being slid
when they have many satisfying tuples. We believe this could im-
prove the efficiency of our propagator in many cases.

REFERENCES
[1] R. Bartak, ‘Modelling resource transitions in constraint-based schedul-

ing’, in Proc. of SOFSEM 2002: Theory and Practice of Informatics.
(2002).

[2] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper and
T. Walsh, ‘Reformulating global constraints: the SLIDE and REGU-
LAR constraints’, in Proc. of SARA’07. (2007).

[3] S. Brand, N. Narodytska, C.-G. Quimper, P. Stuckey and T. Walsh, ‘En-
codings of the SEQUENCE Constraint’, in Proc. of CP’07. (2007).

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, ‘On the desirability of
acyclic database schemes’, Journal of the ACM, 30, 479–513, (1983).

[5] N. Beldiceanu and M. Carlsson, ‘Revisiting the cardinality operator and
introducing cardinality-path constraint family’, in Proc. of ICLP’01.
(2001).

[6] N. Beldiceanu, M. Carlsson, R. Debruyne, and T. Petit, ‘Reformulation
of global constraints based on constraints checkers’, Constraints, 10(4),
339–362, (2005).

[7] N. Beldiceanu, M. Carlsson, and J-X. Rampon, ‘Global constraints cat-
alog’, Technical report, SICS, (2005).

[8] N. Beldiceanu and E. Contejean, ‘Introducing global constraints in
CHIP’, Mathl. Comput. Modelling, 20(12), 97–123, (1994).

[9] E.K. Burke, P.D. Causmaecker, G.V. Berghe and H.V. Landeghem, ‘The
state of the art of nurse rostering’, Mathl. Journal of Scheduling, 7(6),
441–499, (2004).

[10] R. Dechter and J. Pearl, ‘Tree clustering for constraint networks’, Arti-
ficial Intelligence, 38, 353–366, (1989).

[11] S. Demassey, G. Pesant, and L.-M. Rousseau, ‘A cost-regular based
hybrid column generation approach’, Constraints, 11(4), 315–333,
(2006).

[12] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh, ‘Global con-
straints for lexicographic orderings’, in Proc. of CP’02. (2002).

[13] L. Hellsten, G. Pesant, and P. van Beek, ‘A domain consistency algo-
rithm for the stretch constraint’, in Proc. of CP’04. (2004).

[14] Y.C. Law and J.H.M. Lee, ‘Global constraints for integer and set value
precedence’, in Proc. of CP’04. (2004).

[15] M. Maher, ‘Analysis of a global contiguity constraint’, in Proc. of the
CP’02 Workshop on Rule Based Constraint Reasoning and Program-
ming, (2002).

[16] G. Pesant, ‘A regular language membership constraint for finite se-
quences of variables’, in Proc. of CP’04. (2004).

[17] P. Refalo, ‘Linear formulation of constraint programming models and
hybrid solvers’, in Proc. of CP’00. (2000).

[18] J-C. Régin, ‘A filtering algorithm for constraints of difference in CSPs’,
in Proc. of AAAI’94. (1994).

[19] P. Van Hentenryck and J.-P. Carillon, ‘Generality versus specificity: An
experience with AI and OR techniques’, in Proc. of AAAI’88. (1988).

[20] W-J. van Hoeve, G. Pesant, and L-M. Rousseau, ‘On global warming :
Flow-based soft global constaints’, Journal of Heuristics, 12(4-5), 347–
373, (2006).

[21] W-J. van Hoeve, G. Pesant, L-M. Rousseau, and A. Sabharwal, ’Revis-
iting the sequence constraint’ in Proc. of CP’06. (2006).

C. Bessiere et al. / SLIDE: A Useful Special Case of the CARDPATH Constraint 479

