
As Safe As It Gets: Near-Optimal Learning in
Multi-Stage Games with Imperfect Monitoring

Danny Kuminov1 and Moshe Tennenholtz2

Keywords: DMA::Game Theoretic Foundations; PS::Planning with
Incomplete Information

Abstract. We introduce the first near-optimal polynomial algorithm
for obtaining the mixed safety level value of an initially unknown
multi-stage game, played in a hostile environment, under imperfect
monitoring. In an imperfect monitoring setting all that an agent can
observe is the current state and its own actions and payoffs, but it
can not observe other agents’ actions. Our result holds for any multi-
stage generic game with a “reset” action.

1 Introduction

Decision making in adversarial settings is a central topic in both AI
and game theory. Assuming a purely adversarial setting, playing the
(mixed) safety-level strategy is the best one can hope for. Such a
strategy maximizes the expected worst case payoff of the player, and
it can also be computed efficiently. This leaves us with two comple-
mentary central problems. One problem is the need to deal with set-
tings which are not purely adversarial. Another challenging issue is
the need to deal with incomplete information about the environment.
In particular, the game played might be unknown, and therefore guar-
anteeing the safety level value may be problematic. This paper deals
with the latter issue.

Consider a multi-stage game. A multi-stage game consists of
finitely many states, each of which is associated with a strategic form
game. The actions selected by the agents in a given state determine
the payoffs of the agents according to the payoff matrix of the cor-
responding game. Moreover, as a function of the current state and
the selected actions we reach a new state. We will consider the sit-
uation where we have two agents, and we care about the payoffs
that can be guaranteed by player 1 (which we refer to as the agent),
when playing against player 2 (which we refer to as the opponent).
If the multi-stage game starts from a given initial state, and is played
along T stages then the agent can guarantee itself a particular, opti-
mal safety-level value. This is common and highly natural solution
for this general class of games. However, when the multi-stage game
is unknown it is no longer clear what will be the best possibility for
the agent. A clever algorithm should attempt to learn the structure
of the game, in order to attempt to obtain a value which is close to
the safety level value. A central issue in this regard is the type of
information available to the agent. In particular, the literature distin-
guishes between perfect monitoring and imperfect monitoring. In the

1 Technion – Israel Institute of Technology, Haifa, Israel 32000. Email:
dannykv@tx.technion.ac.il

2 Technion – Israel Institute of Technology, Haifa, Israel 32000. Email:
moshet@ie.technion.ac.il

perfect monitoring setting the agent can recognize the state, and ob-
serve both its payoff and the opponent action after the state-game is
played. In the imperfect monitoring setting the agent can only rec-
ognize the state and observe its own payoff; it can not observe the
opponent actions. In both settings the idea is to come up with an al-
gorithm that will guarantee that the average payoff will be close to
the safety level value of the underlying game. Moreover, an impor-
tant objective is that convergence to this value will be obtained in a
polynomial number of iterations.

The above challenge fits into the so-called agent-centric approach
to learning in games (see e.g. [10, 6]). We consider multi-stage games
with incomplete information, where there is strict initial uncertainty
about the game being played [8, 1]. In the context of repeated games
with incomplete information [3], where the multi-stage game con-
sists of only a single state, Banos [5] and Megiddo [9] proved the
existence of an algorithm that converges to the safety-level value in
any repeated game, even under imperfect monitoring. The algorithm
they present, however, is highly inefficient; an efficient algorithm ad-
dressing this problem in repeated games can be found in [2]. These
results, however, do not apply to general multi-stage games.3 On the
other hand, if we allow perfect monitoring, then the R-max algo-
rithm, introduced in [7], provides a near-optimal polynomial algo-
rithm. However, the problem of obtaining the (mixed) safety-level
value in multi-stage games with imperfect monitoring was left open.

In this paper4 we address the above challenge, by presenting the
first near-optimal polynomial algorithm for obtaining the safety-level
value in generic multi-stage games, with strict initial uncertainty
about the game. In a generic multi-stage game, for any given state s,
action a of the agent, and actions b1, b2 of the opponent, the agent’s
payoff for (a, b1) in s is different from its payoff for (a, b2) in s. Al-
though somewhat limiting, this assumption captures many interesting
situations, and is quite common in the literature. Namely, given an
initially unknown generic multi-stage game, we show an efficient al-
gorithm that after polynomially many iterations (in the game size and
accuracy parameters) guarantees (almost) the safety level value with
overwhelming probability. A major challenge that this algorithm ad-
dresses is that given imperfect monitoring the agent can not know
whether two payoffs he obtains in a given state, when playing ac-
tions a1 and a2 respectively, are associated with the same action by
the opponent.

3 We have considered several ways to reduce a multi-stage game to a repre-
sentation acceptable by the algorithm in [2], but all of them result in learn-
ing time that is exponential in the number of states.

4 We omitted many proofs in this version of the paper, due to lack of space.
A full version, with all the proofs and additional discussion, can be found
at http://www.technion.ac.il/∼dannykv/ecai08.pdf.

ECAI 2008
M. Ghallab et al. (Eds.)

IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-891-5-438

438

2 The setting

In a multi-stage game (MSG) the players play a (possibly infinite)
sequence of games from some given set of finite games (in strategic
form). After playing each game, the players receive the appropriate
payoff, as dictated by that game’s matrix, and move to a new game. In
the model we consider here, the identity of this new game is uniquely
determined by the previous game and by the players’ actions in it.5

Formally:

Definition 1. A fixed-sum, two player, multi-stage game (MSG) M
on finite set of states S and finite sets of actions X1, X2 consists of:

• Stage Games: each state s ∈ S is associated with a two-player,
fixed-sum game in strategic form, where the action set of each
player is X1, X2 accordingly, and the utility function of player 1
is Us : X1 × X2 → �. For brevity, we denote X = X1 × X2.

• Transition Function ftr : S × X1 × X2 → S:
ftr(s, x1, x2) is the state to which the game transfers from state
s given that the first player (the agent) plays x1 and the second
player (the opponent) plays x2.

• Designated initial state. W.l.o.g let us denote it by start.

In this work, we assume that player 1 (the row player of the stage
games) does not know a priori what the payoff matrices are, neither
he is informed after each stage about the action taken by player 2 (but
he observes what his payoff at that stage was, and he knows what
the current state is before playing the respective game). Player 2 (the
column player), however, is fully informed about both the payoff ma-
trices and the history of the game. We use the following definitions:

• The set of histories of length t of M is Ht =
∏t

i=1 (S × X).
• The set of all finite histories is H =

⋃∞
k=0 Hk (here we use the

simplifying notation that H0 = {e}, where e denotes the empty
history).

• H∞ =
∏∞

i=1 (S × X) is the set of all infinite histories.
• Given a history h, we will slightly abuse notation and denote by

Ui(h
t) the payoff to player i in round t of the history h.

• A behavioral policy of the informed player (player 2) in the multi-
stage game is a function p2 : H × S → Δ(X2).

• The set of histories of the game which is available to the unin-
formed player (player 1) at stage t is H ′t =

∏t
l=1 (S × X1 ×�).

• We denote H ′ =
⋃∞

k=0 H ′k.
• A behavioral policy of the uninformed player in the multi-stage

game is a function p1 : H ′ × S → Δ(X1). The S in the function
parameters represents the current state of the game.

• We denote the set of possible behavioral policies of player i by Pi.

A utility function in this setting is a function Ũi : H∞ →
� . There are several possible definitions of this function based
on the utilities in the one-shot game; we will use the func-
tion Ũi(h) = lim inft→∞ 1

t

∑t
k=1 Ui(h

k). The true game M
together with the players’ behavioral policies generate a proba-
bility measure over H∞, which can be described uniquely by
its values for finite cylinder sets. Given this measure, the ex-
pected utility of player i given policies p1, p2 is defined as
Ũi(p1, p2) = lim inft→∞

∑
h∈Ht Pr〈h|(p1, p2)〉 1

t

∑t
k=1 Ui(h

k),
where Pr〈h|(p1, p2)〉 denotes the probability that a finite history
h ∈ Ht occurs in the first t stages of the game.

In this work, we will assume that all payoffs in the stage games are
positive and bounded from above by Umax, that the stage games are

5 This model is a special case of the well known stochastic game model.

generic and that there is a designated action (w.l.o.g let us denote it by
reset) that from any state and given any opponent action, transfers
the game to the initial state and gives payoff 0 to the agent.6 In a
generic game, for any given action a of the agent, and actions b1, b2

of the opponent, the agent’s payoff for (a, b1) is different from its
payoff for (a, b2). We also assume that the above is the only prior
information available to the agent. He does not know a priori the
exact payoff matrices of the stage games, neither does he know a
priori what the transition function is for actions that are not reset.

In this work we assume that we are given a time limit T , and
we limit ourselves only to policies that play for T steps and al-
ways do reset on step T + 1 (and then repeat themselves ad in-
finitum), both in our learning algorithm and in the optimal policy to
which we compare.7 Let Vp1,p2(T) = Ep1,p2

[
1

T+1

∑T
t=1 U1(h

t)
]

denote the expected average payoff guaranteed by such policy p1

against opponent policy p2, and V (T) = maxp1 minp2 Vp1,p2(T)
denote the maximal expected average payoff that can be guaranteed
by such policy. Given this definition, our goal is to develop a pol-
icy p1 for player 1 which, given confidence δ, accuracy ε and finite
time horizon T , guarantees after l̂ = poly(|X1|, |X2|, |S|, 1

δ
, 1

ε
, T)

rounds an expected average payoff of at least (1 − ε)V (T) with
probability at least 1 − δ. 8 Formally, for any game for which the
above assumptions hold and for any policy p2 of the opponent:
Prp1,p2

[
∀l ≥ l̂ : 1

l

∑l
t=1 U1(h

t) ≥ (1 − ε)V (T)
]
≥ 1 − δ.

Note that the optimal policy under this criterion can be described
as a mapping S × {1 . . . T} → Δ(X1). Informally, the policy only
has to take into account the current state and the number of steps re-
maining in the current T -step sequence, when determining the next
action – the specific previous history does not matter. This means
that the T -step min-max policy can be described concisely (i.e., the
size of its representation is polynomial in T and the problem parame-
ters) and that it can be computed efficiently, by combining backward
induction with the usual techniques for computing mixed min-max
strategy in strategic form games. In fact, this observation holds for
any stochastic game, which is a more general model.

3 The algorithm

The basic idea of the algorithm can be summarized as follows:

• In each iteration, the algorithm constructs an approximate (opti-
mistic) model of the multi-stage game, computes the T -step opti-
mal strategy for it and executes it.

• The agent represents its knowledge about the game matrix of each
stage game by a partition of the set of opponent’s actions. For
each element of the partition and each action of the agent, it keeps
the set of payoffs associated with that subset of the opponent’s
actions.

• With some small probability the algorithm will explore in the cur-
rent iteration - that it, it will draw a number i ∈ [1, 2, . . . , T]
(distributed uniformly and independently) and in round i of the
iteration, it will play a random action (distributed uniformly and
independently) and count the number of times each distinct payoff

6 The reset action ensures that there are no irreversible actions. It can be
easily verified that learning is impossible otherwise, since, by trying an un-
known action, the agent might trap himself in an inferior subgame, without
any possibility for going back.

7 This choice is justified in the full version of the paper.
8 Note that the average is taken over all stages of the game, including the

initial learning period l̂.

D. Kuminov and M. Tennenholtz / As Safe as It Gets: Near-Optimal Learning in Multi-Stage Games with Imperfect Monitoring 439

was encountered for each action in each state during the sampling.
After sampling, it will play reset and start the next iteration.

• When updating its model, for each stage game, the algorithm tries
to find a refinement of the partition of the opponent’s actions
so that payoffs with sufficiently different counts9 are in different
groups, and payoffs with similar counts are in the same group (and
the new partition is the same for all rows).

• We prove that, with high probability, if there are two groups of ac-
tions that the opponent used sufficiently different number of times,
we will be able to separate the respective payoffs correctly in all
rows - we will learn something about the game matrix.

• Otherwise, the difference between the number of times that the op-
ponent used actions that are in a given element of the partition is
small. Note that when constructing the tentative model, the algo-
rithm treats each element as a single meta-action, takes the payoff
for the agent when the opponent plays this meta-action to be the
average of the distinct payoffs associated with it, and takes the
transition function for this meta-action to be uniformly distributed
over the successive states for the payoff values that are associated
with it.10 Given that the above difference is small, the algorithm
obtains a sufficiently high payoff when using this model.

We assume that the agent knows a priori the following parameters
of the problem:

• |S| - the number of the states in the multi-stage game.
• |X1|, |X2| - the sizes of the strategy sets (of the agent and the

opponent respectively).
• Umax - the largest possible payoff for the agent in the game.
• ε, δ - accuracy parameters.

We will also use the following notation:

• β, γ - two parameters that control the behavior of the algorithm
(to be determined later).

• S′ = (S × {1, . . . , T}) ⋃{0} is the extended set of states. Note
that we add a fictitious state 0 to the model, and we treat being in
the same state at different times of the T -step sequence as being
in different states.11

• Let Cs be a variable that holds the counters that the algorithm
maintains, for a stage game s ∈ S′. Specifically, Cs : X1 ×
[0, Umax] → N is a function that maps the distinct payoff values
for each row to the number of times they were encountered while
sampling that row. We denote by C the set of all such variables.

• Let Ωs and φs, for s ∈ S′, be two variables that represent the
partial knowledge that the algorithm has regarding the game ma-
trix (of stage game s). Specifically, Ωs is a partition over the op-
ponent’s action set and φs : X1 × Ωs → 2[0,Umax] is a func-
tion that maps (for each row) elements of the partition to asso-
ciated groups of payoff values. Note that the initial state of “no
knowledge” is represented by ∀s ∈ S′ : Ωs = {X2} and
∀s ∈ S′, i ∈ X1 : φs(i, X2) = ∅, and a state of complete and
accurate knowledge is represented by Ωs = {{j}|j ∈ X2} and
φs(i, {j}) = {Uij}.

• Let ftr : S′×X1×[0, Umax] → S′ be the transition function that
the algorithm maintains (since the game is generic, utility values
can be used in place of opponent actions).

9 We use the word “count” to denote the number of times the algorithm en-
countered a specific payoff value while sampling, as opposed to the actual
number of times the respective action was used by the opponent.

10 Note that although the real transition function is deterministic, the algo-
rithm uses a stochastic game as a tentative model.

11 This distinction is required, since the optimal policy must be able to treat
these states differently.

• Let ls(ω), for ω ∈ Ωs, be a variable that holds the number of
times a stage game s ∈ S′ has been played and the opponent used
an action in ω since the last time the partition Ωs was refined. We
denote by l the set of all such variables.

Now we define the algorithm:

Procedure RecordAndReset(s, s′, x, u, Ωs, φs, ftr, C, l)
Let ω′ ∈ arg minω∈Ωs minu∈φs(x,ω) Cs(x, u)
Let φs(x, ω′) := φs(x, ω′) ∪ {u}
Let ftr(s, x, u) = s′

For all s ∈ S′

∀x ∈ X1, u ∈ [0, Umax] : Cs(x, u) := 0
∀ω ∈ Ωs : ls(ω) := 0

End for
End procedure

// Initialization
For all s ∈ S′

For all x1 ∈ X1 \ {reset}
Let ftr(s, x1, Umax) = 0

For all s ∈ S′

Let ftr(s, reset, Umax) = (start, 1)
For all s ∈ S′

Ωs := {X2}; ls(X2) = 0
For all x ∈ X1

φs(x, X2) := ∅
For all x ∈ X1, u ∈ [0, Umax]

Cs(x, u) := 0
End For
While true // Endless loop

// Model update
For all s ∈ S′

For each ω ∈ Ωs:
For each row i ∈ X1

Let (ui1, . . . , ui|ω|) be the elements of
φs(i, ω), ordered in non-decreasing order
of Cs(i, u).

If |φs(i, ω)| < |ω| then
// the number of observed payoffs for ω
// is less than the number of actions in ω
Add (|ω| − |φs(i, ω)|) entries of Umax + 1

to φs(i, ω) (with count 0). 12

End if
End for
If there exists 1 < k ≤ |ω| such that ∀i ∈ X1:

Cs(i, uik) − Cs(i, ui(k−1)) > 2γls(ω)
3
4 ,

// Here we refine the partition
split ω = {y1, . . . , y|ω|} into

ω1 = {y1, . . . , yk−1}
and ω2 = {yk, . . . , y|ω|}.

Replace ω with ω1, ω2 in Ωs.
Modify φs so that ∀i ∈ X1:

φs(i, ω1) = {ui1, . . . , ui(k−1)} \ {Umax + 1}
and φs(i, ω2) = {uik, . . . , ui|ω|} \ {Umax + 1}

End if
End for
Repeat the previous loop until no more splits are made.
If any split was made

∀x ∈ X1, u ∈ [0, Umax] : Cs(x, u) := 0
∀ω ∈ Ωs : ls(ω) := 0

End for

D. Kuminov and M. Tennenholtz / As Safe as It Gets: Near-Optimal Learning in Multi-Stage Games with Imperfect Monitoring440

Build a stochastic game in which:
S′ is the set of states
The game matrix Us ∈ �|X1|×|Ωs| for each state s ∈ S′ is:
For each i ∈ X1

For each ω ∈ Ωs

Let Uik = 1
|ω|

(∑
ui∈φ(i,ω) ui+

+(|ω| − |φ(i, ω)|)Umax) // See 13

The game matrix Us ∈ �|X1|×|X2| for the state 0 is:
For all x1 ∈ X1, x2 ∈ X2 : Ux1,x2 = Umax

For all states s ∈ S′, t ∈ S′ \ {0}, agent action x ∈ X1

and opponent meta-action ω ∈ Ωs, the transition
probability is: Pr(s, x, ω, t) =
= 1

|ω| |{u ∈ φs(x, ω) : ftr(s, x, u) = t}|
For s ∈ S′, x ∈ X1, ω ∈ Ωs, the probability of

transition to state 0 is:
Pr(s, x, ω, 0) = |ω|−|φ(x,ω)|

|ω| // See 14

For the state 0, the transition function is
∀x1 ∈ X1, ω ∈ Ω0 : Pr(0, x1, ω, 0) = 1
∀x1 ∈ X1, ω ∈ Ω0, s ∈ S′ : Pr(0, x1, ω, s) = 0

Compute the T -step mixed safety level
strategy for this stochastic game.

Let explore be a random boolean value with
P (explore = true) = β

Let i be an integer selected from [1, T] with
uniform probability

Repeat for t from 1 to T
Let s denote the current state.
If explore = true and t = i:

Let x ∈ X1 be an action selected at random with
uniform probability

Execute action x →
let u be the observed payoff and s′ - the new state.

Let Cs(x, u) := Cs(x, u) + 1
If � ∃ω ∈ Ωs : u ∈ φs(x, ω)

Call RecordAndReset(s, s′, x, u, Ωs, φs, ftr, C, l)
Break // T -step Repeat

End if
Let x be the action prescribed by the safety level strategy

for the current state and step.
Execute action x →

let u be the observed payoff and s′ - the new state.
If � ∃ω ∈ Ωs : u ∈ φs(x, ω) then

Call RecordAndReset(s, s′, x, u, Ωs, φs, ftr, C, l)
Break // T -step Repeat

End if
End // T -step Repeat
Play reset

End while

4 The analysis

Let H̃∞ = (X × {true, false} × X1)
N be the set of all infinite

histories of the game that includes information about the realization

12 Those values are just placeholders for unknown values - we could use any
impossible value here.

13 Here we again make an optimistic assumption that payoffs yet unobserved
are equal to Umax.

14 Here we make an optimistic assumption that transitions yet unobserved
lead to the “heaven” state 0.

of the random decision variables used by the algorithm (whether an
exploration has been done in a specific round and the row chosen for
exploration). The true multi-stage game M together with both play-
ers’ policies generate a probability measure over H̃∞, which can be
described uniquely by its values for finite cylinder sets. All random
variables that we use in this analysis are derived from this probability
measure.

We show:

Theorem 1. Given a multi-stage game that conforms to the re-
quirements set in Section 2, ε > 0, δ > 0, there exists l̂ =
poly(|X1|, |X2|, T, |S|, Umax, 1

δ
, 1

ε
) such that for any policy of the

opponent, the above algorithm achieves in every round l ≥ l̂ an ex-
pected average (over all rounds since the start of the game) payoff
of at least (1 − ε) V (T) with probability at least 1− δ, where V (T)
is the maximal expected average payoff that can be guaranteed after
playing T steps.

To prove the theorem, we need the following notation:

1. Let (l1, l2 . . .) be the indices of the rounds of the multi-stage game
at which the algorithm updates the partition and/or records a new
payoff value for one of the states (note that there can be at most
|X2||S|T + |X1||X2||S|T such rounds), and let us divide the
rounds of the game into epochs ((0, . . . , l1 − 1), (l1, . . . , l2 −
1), (l2, . . . , l3 − 1), . . .).

2. For brevity, we will denote by Q1, Q2, . . . constant values that
are polynomial with respect to the problem parameters and are
constant throughout the execution of the algorithm. In particular,
we will denote by Q1 = (|X1| + 1)|X2||S|T + 1 the maximal
number of epochs.

3. For a given stage game s ∈ S′ and epoch e = (li, . . . , li+1 − 1),
let Cl

s,e be the counter function that the algorithm maintains at
round l of the epoch (i.e., at round li + l of the game) for the stage
game s.

4. For an epoch e and for each j ∈ X2, let F l
s,e(j) be the number

of times that the stage game s was played in the first l rounds of
the epoch and the opponent played j. Note that, by definition, the
value of ls(ω) at round l of the epoch equals to

∑
j∈ω F l

s(j).
5. When the epoch under consideration is clear from context, we will

omit the subscript e.
6. Note that all of the above are random variables.
7. Note that the probability that sampling occurs in a given round of

the multi-stage game is β
T

and the probability that a specific action
is sampled is β

T |X1| , independent of any other random variables or
the actions of the opponent.

8. Therefore, for any stage game s and actions i ∈ X1, j ∈ X2,
the expected value of the counter maintained by the algorithm

(Cl
s(xi, Uij)) given the value of F l

s(j) is βF l
s(j)

T |X1| .

The following Lemma shows that the counters maintained by our
algorithm represents in an adequate manner the frequency in which
actions are used by the opponent.

Lemma 1 (Counter accuracy). Let us examine a specific epoch e =
(lk, . . . , lk+1 − 1). There exists γ = poly(|S|, T, 1

δ
, |X1|, |X2|) so

that for any policy of the opponent and any 0 < β < 1:

Pr

⎡
⎢⎢⎣

∃l ∈ N

∃i ∈ X1

∃s ∈ S′

∃j ∈ ω ∈ Ωs

:

∣∣∣∣Cl
s(i, Uij) − βF l

s(j)

T |X1|
∣∣∣∣ ≥ γls(ω)

3
4

⎤
⎥⎥⎦ ≤ δ

Q1

D. Kuminov and M. Tennenholtz / As Safe as It Gets: Near-Optimal Learning in Multi-Stage Games with Imperfect Monitoring 441

The intuition here is that, since the sampling is independent of
any action of the adversary and any other action of the algorithm,
the counters collected by the algorithm result from a representative
sample of the opponent’s actions, and therefore result in a reliable
estimate of the number of times the opponent used the respective
action. Technically, it is proved using the Azuma bound ([4]). The
proof is omitted due to lack of space, and appears in the full version.

Given the above, from now on, we will assume as given that for
all epochs in which the game is not yet fully known:

∀l ∈ N, ∀i ∈ X1

∀s ∈ S,∀j ∈ ω ∈ Ωs
:

∣∣∣∣Cl
s(i, Uij) − βF l

s(j)

T |X1|
∣∣∣∣ < γls(ω)

3
4 (1)

(that is, the negation of the inequality in the above lemma holds for
all states and rounds of play in the epoch). Using this assumption
we show that the algorithm achieves the required expected average
payoff against any policy of the opponent with probability 1.

The following pair of Lemmas, show that (under the above as-
sumption) the algorithm refines the information structure appropri-
ately.

Lemma 2 (Sufficient condition for split). Given Eq. (1), if at any
round l ∈ N in a given epoch there exist stage game s and two actions
y, y′ ∈ ω ∈ Ωs of the opponent such that

∣∣F l
s(y) − F l

s(y
′)

∣∣ >

4γls(ω)
3
4

|X1||X2|
β

, then the algorithm must split ω in this round.

The intuition here is that since the sampling process is represen-
tative, the counters collected in different rows for payoffs that result
from the same (hidden) action by the adversary must have similar
values. In particular, if the frequency with which the opponent used
two of his actions is sufficiently different, the counters for the re-
spective payoff values will have significantly different values – in all
rows. Therefore, the algorithm can safely conclude that those pay-
off values result from distinct actions by the opponent. The proof is
omitted due to lack of space, and appears in the full version.

Lemma 3 (Split correctness). Given Eq. (1), the algorithm never
makes a mistake in assigning the payoffs in the “split” phase. For-
mally, a mistake would mean that in partitioning ω into ω1 and
ω2 at round l, there are two payoff values u1 ∈ φl

s(i1, ω) and
u2 ∈ φl

s(i2, ω) that belong to the same column in the true game
matrix (i.e. ∃j ∈ X2 : u1 = Us

i1j , u2 = Us
i2j) and the algorithm

assigns u1 to φl
s(i1, ω1) and u2 to φl

s(i2, ω2).

The intuition here is that given the error margin asserted by Eq.
1, the algorithm cannot, while refining the partition, mistakenly as-
sign a payoff value to a partition element that does not contain the
respective opponent action. This is so, since the algorithm relies on
the counter values when assigning the payoffs, and the counter val-
ues are representative of the actual opponent actions so far. The proof
is omitted due to lack of space, and appears in the full version.

Lemma 4. Suppose that in a given epoch of length l, in all stage
games, for any two opponent strategies j1, j2 ∈ ω ∈ Ωs (which are
in the same part of the partition Ωs) in a given stage game s ∈ S′ it
holds that |F l

s(j1) − F l
s(j2)| ≤ ε

4T |X2| ls(ω). Then the expected av-
erage payoff of the algorithm in this epoch is at least

(
1 − ε

4

)
V (T).

The intuition here is that as long as the opponent uses some of his
actions the same (roughly) amount of times, the fact that the algo-
rithm cannot distinguish which payoff belongs to which action (in
this set of actions) does not decrease its payoff – the assumption that
the payoff for each of those actions is the numerical average of the

set of payoffs works well enough. The proof is omitted due to lack
of space, and appears in the full version.

The following Lemmas deal with the situation where nothing is
learned for a “long time”, and show that in this case the agent will
get high payoff. The proofs of these Lemmas are omitted due to lack
of space, and appear in the full paper.

Let us denote Q2 =
(
4γ 4T |X1||X2|2

βε

)4

.

Lemma 5. If, during some epoch, there is a stage game s ∈ S′

and two strategies j1, j2 ∈ ω ∈ Ωs (which are in the same part of
the partition Ωs) such that ls(ω) > Q2 and |F l

s(j1) − F l
s(j2)| >

ε
4T |X2| ls(ω), then a split will occur (and the epoch will end).

Lemma 6. Let l denote the length (in rounds) of an epoch. Suppose
that l ≥ 1

1−β
4Umax

ε
Q2|S|T 2|X2| rounds, then the expected average

payoff in this epoch is at least (1 − β)
(
1 − ε

2

)
V (T).

The intuition here is that, if the algorithm did not refine any of the
partitions for a long time, then, for each partition element, the op-
ponent must have used the different actions in this partition element
a similar amount of times. The key observation is that the bound on
the difference in frequency of use of the actions that is implied by
Lemma (2) is O(ls(ω)

3
4) < O(ls(ω)), and therefore, if an epoch

is longer than some polynomial, the relative difference in frequency
of use (relative to the overall length of epoch) will become small
enough for Lemma (4) to hold. The proof is omitted due to lack of
space, and appears in the full version.

Let us denote Q3 = 1
1−β

4Umax
ε

Q2|S|T 2|X2|. Combining the
above, we can now prove our main theorem:

Proof. Let us select β = ε/4 – it follows that from the previous
lemma that the expected average payoff of any epoch that is longer
than Q3 is at least

(
1 − 3ε

4

)
V (T). Recall that there are at most Q1

epochs and therefore the maximal total length of epochs that con-
tain less than Q3 rounds is Q1Q3. This means that if the algorithm
runs for at least l̂ = 4

ε
Q1Q3 rounds the expected average payoff

is at least l̂−Q1Q3
l̂

(
1 − 3ε

4

)
V (T) =

(
1 − ε

4

) (
1 − 3ε

4

)
V (T) ≥

(1 − ε) V (T)

REFERENCES

[1] I. Ashlagi, D. Monderer, and M. Tennenholtz, ‘Robust learning equilib-
rium’, in Proceedings of the 22nd Conference on Uncertainty in Artifi-
cial Intelligence (UAI 2006)., (2006).

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire,
‘The non-stochastic multi-armed bandit problem’, SIAM J. Comput.,
32, 48–77, (2002).

[3] R. Aumann and M. Maschler, Repeated Games with Incomplete Infor-
mation, MIT Press, 1995.

[4] K. Azuma, ‘Weighted sums of certain dependent random variables’,
Tôhoku Math. Journal, 19, 357–367, (1967).

[5] A. Banos, ‘On pseudo games’, The Annals of Mathematical Statistics,
39, 1932–1945, (1968).

[6] M. Bowling and M. Veloso, ‘Rational and covergent learning in
stochastic games’, in Proc. 17th IJCAI, pp. 1021–1026, (2001).

[7] R. I. Brafman and M. Tennenholtz, ‘R-max – a general polynomial time
algorithm for near-optimal reinforcement learning’, Journal of Machine
Learning Research, 3, 213–231, (2002).

[8] N. Hyafil and C. Boutilier, ‘Regret minimizing equilibria and mecha-
nisms for games with strict type uncertainty’, in Proceedings of the 20th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-04),
pp. 268–277, Arlington, Virginia, (2004). AUAI Press.

[9] N. Megiddo, ‘On repeated games with incomplete information played
by non-bayesian players’, Int. J. of Game Theory, 9, 157–167, (1980).

[10] R. Powers and Y. Shoham, ‘New Criteria and a New Algorithm for
Learning in Multi-Agent Systems’, in NIPS 2004, (2004).

D. Kuminov and M. Tennenholtz / As Safe as It Gets: Near-Optimal Learning in Multi-Stage Games with Imperfect Monitoring442

