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Abstract. In the aftermath of a large-scale disaster, agents’ deci-
sions derive from self-interested (e.g. survival), common-good (e.g.
victims’ rescue) and teamwork (e.g. fire extinction) motivations.
However, current decision-theoretic models are either purely indi-
vidual or purely collective and find it difficult to deal with motiva-
tional attitudes; on the other hand, mental-state based models find it
difficult to deal with uncertainty. We propose a hybrid, CvI-JI, ap-
proach that combines: i) collective ‘versus’ individual (CvI) deci-
sions, founded on the Markov decision process (MDP) quantitative
evaluation of joint-actions, and ii) joint-intentions (JI) formulation of
teamwork, founded on the belief-desire-intention (BDI) architecture
of general mental-state based reasoning. The CvI-JI evaluation ex-
plores the performance’s improvement during the process of learning
a coordination policy in a partially observable stochastic domain.

1 INTRODUCTION

The agents that cooperate to mitigate the effects of a large-scale di-
saster, e.g. an earthquake or a terrorist incident, take decisions that
follow two large behavioral classes: the individual (ground) activ-
ity and the collective (institutional) coordination of such activity.
Additionally, agents are motivated to form teams and jointly com-
mit to goals that supersede their individual capabilities [8]. Despite
such motivation, communication is usually insufficient to ensure that
decision-making is supported by a single and coherent world per-
spective. The communication constraint causes the decision-making
process to evolve simultaneously, both at the collective (common-
-good) and at the individual (self-interested) strata, sometimes in a
conflicting manner. For instance, an ambulance searches for a policy
to rescue a perceived civilian, while the ambulance command center,
when faced with a global view of multiple injured civilians, searches
for a policy to decide which ambulance should rescue which civilian.

However, despite the intuition on a 2-strata decision process, re-
search on multi-agent coordination often proposes a single model
that amalgamates both strata and searches for optimality within that
model. The approaches based on the multi-agent Markov decision
process (MMDP) [1] are purely collective and centralized, thus too
complex to coordinate while requiring unconstrained communica-
tion. The multi-agent semi-Markov decision process (MSMDP) [7],
although decentralized, requires each individual agent to represent
the whole decision space (states and actions) which may become
very large, thus causing the individual policy learning to be slow and
highly dependent on up-to-date information about the decisions of all
other agents. The game-theoretic approach requires an agent to com-
pute the utility of all combinations of actions executed by all other
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agents (payoff matrix), which is then used to search for Nash equili-
bria (where no agent increases his payoff by unilaterally changing his
policy); thus, if several equilibria exist, agents may adhere to purely
individual policies never being pulled by a collective perspective.

The multi-agent collective ‘versus’ individual (CvI) decision mo-
del [15], which is founded on the semi-Markov decision process
(SMDP) framework, is neither purely collective nor purely indivi-
dual and explores the explicit separation of concerns between both
(collective and individual) decision strata while aiming to conciliate
their reciprocal influence. Despite that, the CvI misses the agents’
intentional stance toward team activity. On the other hand, the joint-
-intentions (JI) formulation of teamwork [5], based on the belief-
-desire-intention (BDI) mental-state architecture [9, 16], captures the
agents’ intentional stance, but misses the MDP domain-independent
support for sequential decision-making in stochastic environments.
Research on single-agent MDP-BDI hybrids formulates the corres-
pondence between the BDI plan and the MDP policy concepts [11]
and empirically compares each model’s performance [10]. Multi-
-agent MDP-BDI hybrid models often exploit BDI plans to improve
MDP tractability, and use MDP to improve BDI plan selection [13].

In this paper, instead of exploring the MDP-BDI policy-plan rela-
tion, we focus on the link between the BDI intention concept and the
MDP temporally abstract action concept [12]. We see an intention
as an action that executes for time variable periods and, when termi-
nated, yields a reward to the agent. We extend this view to the joint-
-intentions concept and integrate the resulting formulation in the 2-
-strata multilevel hierarchical CvI decision model. Thus, the CvI-JI is
a hybrid approach that combines the MDP temporally abstract action
concept and the BDI mental-state architecture. The motivation for the
hybrid CvI-JI model is to use the JI as a heuristic constraint that re-
duces the space of admissible MDP joint-actions, thus enabling to
escalate the problems’ dimension. The experiments show the CvI-JI
learning improvement in a partially observable environment.

2 THE CvI DECISION MODEL

The premise of the CvI decision model is that the individual choice
coexists with the collective choice and that coordinated behavior hap-
pens (is learned) from the prolonged relation (in time) of the choices
exercised at both of those strata (individual and collective). Coordi-
nation is exercised on high level, hierarchically organized coopera-
tion tasks, founded on the framework of Options [12], which extends
the MDP theory to include temporally abstract actions (variable time
duration tasks, whose execution resorts to primitive actions).

2.1 The framework of Options

Formally, an MDP is a 4-tuple M ≡ 〈S,A, Ψ, P, R 〉 model of
stochastic sequential decision problems, where S is a set of states, A
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is a set of actions, Ψ ⊆ S × A is the set of admissible state-action
pairs, R( s, a ) is the expected reward when action a is executed at
s, and P ( s ′ | s, a ) is the probability of being at state s ′ after exe-
cuting a at state s. Given an MDP, an option o ≡ 〈I , π, β 〉, consists
of a set of states, I ⊆ S , from which the option can be initiated, a
policy, π, for the choice of actions and a termination condition, β,
which, for each state, gives the probability that the option terminates
when that state is reached. The computation of optimal value func-
tions and optimal policies, π�, resorts to the relation between options
and actions in a semi-Markov decision process (SMDP): “any MDP
with a fixed set of options is a SMDP” [12]. Thus, all the SMDP
learning methods can be applied to the case where temporally ex-
tended options are used in an MDP. The options define a multilevel
hierarchy where the policy of an option chooses among other lower
level options. At each time, the agent’s decision is entirely among
options; some persist for a single time step (primitive action or one-
-step option), others are temporarily extended (multi-step option).

2.2 The CvI collective and individual strata

The individual stratum is simply a set of agents, Υ, each agent,
j ∈ Υ, with its capabilities described as a hierarchy of options. The
collective stratum is an agent (e.g. institutional) that cannot act on
its own (its actions are executed by the individual stratum agents)
and its purpose is to coordinate the individual stratum. Formally, at
the collective stratum, each action is defined as a collective option,
o�o = 〈 I�o, π�o, β�o 〉, where �o = 〈 o1, . . . , o|Υ| 〉 represents the simul-
taneous execution of option oj ≡ 〈Ij , πj , βj 〉 by each agent j ∈ Υ.
The set of agents, Υ, defines an option space, �O ⊆ O1× . . .×O|Υ|,
where Oj is the set of agent j options and each o�o ∈ �O is a
collective option. The �O decomposes into �Od disjoint subsets, each
with the collective options available at the, d, hierarchical level,
where 0 < d ≤ D − 1 and level-0 is the root and level-D is the
hierarchy depth. A level d policy, πd, is implicitly defined by the
SMDP Md with state set S and action set �Od. The Md solution is
the optimal way to choose the level d individual policies which, in
the long run, gathers the highest collective reward.

The CvI structure. Figure 1 illustrates the CvI structure, where
the individual stratum (each agentj) is a 3-level hierarchy and thus
the collective stratum (the two, �o1 and �o2, collective option instances)
is a 2-level hierarchy; at each level, the set of diamond ended arcs,
links the collective option to each of its individual policies.

agent 1

o2 = 〈o1
p-2.1 , o2

p-3.2〉

π1
2 π2

2

o

op-1 op-2 op-3

op-2.1 op-2.2

o1 = 〈o1
p-2 , o2

p-3〉

π1
1

agent 2

π2
1

op-3

o

op-1 op-2

op-3.1 op-3.2

op-4

op-3.3

collective stratum
individual stratum

Figure 1. The CvI structure and inter-strata links (superscript j refers to
agentj ; subscripts k and p-k refer to k hierarchical level and k tree path).

The CvI dynamics. At each decision epoch, agentj gets the par-
tial perception, ωj , and decide-who-decides (d-w-d), i.e., the agentj

either: i) chooses an option oj ∈ Oj , or ii) requests, the collective

stratum, which replies with an option, oj , decision. The d-w-d pro-
cess represents the importance, that an agent credits to each stra-
tum, defined as the ratio between, the maximum expected benefit in
choosing a collective and an individual decision. The expected bene-
fit is given, at each hierarchical level-d, by the value functions of the
corresponding SMDP Md. A threshold, κ ∈ [ 0, 1 ], focus-grades
between collective and individual strata, thus enabling the (human)
designer to specify diverse social attitudes: ranging from common-
-good (κ = 0) to self-interested (κ = 1) motivated agents. The CvI
is a decentralized model as each agent decides whether to make a
decision by itself or to ask the collective layer for a decision. The
comprehensive description of the CvI model refers to [15].

2.3 The design of CvI agents

Given the individual stratum set of agents, Υ, and a collective stratum
agent, υ, the design of a CvI instance is a 3-step process:

i. For each j ∈ Υ, specify Oj — the set of options and its hierar-
chical organization.

ii. For each j ∈ Υ, and from the agent υ perspective, identify
the subset of cooperation tasks, Cj ⊆ Oj — the most effec-
tive options to achieve coordination skills; the remaining options,
J j = Oj − Cj , represent purely individual tasks.

iii. For each j ∈ Υ, assign κ its regulatory value — where κ = 0 is a
common-good motivated agent, κ = 1 is a self-interested attitude,
and κ ∈ ] 0, 1 [ embraces the whole spectrum between those two
extreme decision motivations.

A simple, domain-independent design defines Cj (item ii above)
as the multi-step options; hence J j as the one-step options. Also,
the highest hierarchical level(s) are usually effective to achieve coor-
dination skills as they escape from getting lost in lower level details.

3 THE JOINT-INTENTIONS (JI) MODEL

The precise semantics for the intention concept varies across the lit-
erature. An intention is often taken to represent an agent’s internal
commitment to perform an action, where a commitment is specified
as a goal that persists over time, and a goal (often named as desire)
is a proposition that the agent wants to get satisfied; an intention can
also represent a plan that an agent has adopted to reach or a state that
the agent is committed to bring about [3, 4, 9, 16].

The framework of joint-intentions (JI) adopts the semantics of the
“intention as a commitment to perform an action” and extends it to
describe the concept of teamwork. A team is described as a set, of
two or more agents, collectively committed to achieve a certain goal
[5]. The teamwork agents (those acting within a team) are expected
to first form future-directed joint-intentions to act, keep those joint-
-intentions over time, and then jointly act. Formally, given a set of
agents, Υ, a team is described as a 2-tuple T ≡ 〈α, g 〉, where the
team members are represented by α ⊆ Υ, and the team goal is g. In
a team all members, α, are jointly committed to achieve the goal, g,
while mutually believing that they are all acting towards that same
goal. The teamwork terminates as soon as all members mutually be-
lieve that there exists at least one member that considers g as finished
(achieved, impossible to achieve or irrelevant).

4 THE HYBRID CvI-JI DECISION MODEL

Given the CvI (cf. section 2) decision-theoretic model we regard
the JI approach as a way to reduce the collective option space ex-
ponentially in the number of team members. For example, given Υ
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agents, all with the same cooperation tasks, C, there are at most |C||Υ|

admissible options to choose; during 〈α, g 〉 teamwork, that number
reduces to |C||Υ|−|α| and such reduction motivates the formulation
of the hybrid CvI-JI decision model. The next sections address two
questions: i) how to specify, at design time, the JI using the CvI com-
ponents, and ii) how to integrate, at execution time, the JI specifica-
tion in the CvI decision process.

4.1 Specify JI using the CvI components

The teamwork goal. The JI describes teamwork in terms of goals
which, in general, take multiple time periods until satisfaction. The
CvI specifies decisions in terms of options which are temporally
abstract actions. Therefore, a (team) goal corresponds to a (team)
option. Given a goal, g, described as a proposition, ϕ, we formulate
the corresponding option as 〈 I , π, β 〉, where, I is the set of states
where ¬ ϕ is satisfied, β( s ) = 1 if s ∈ (S−I ) or β( s ) = 0 other-
wise, and π is any policy to satisfy ϕ (i.e., to terminate the option).

The teamwork commitment. The JI only requires agents to “keep
the joint-intentions commitment over time, and then jointly act”. It
is up to the agent to decide when to terminate executing an ongoing
task and effectively start acting to achieve the team goal. Thus, be-
ing jointly committed to a goal, g, does not imply immediate action
toward that same goal, g. For example, two ambulances may jointly
commit to the same disaster while one of them is executing an action
(e.g., delivering an injured civilian); as soon as the ongoing task is
terminated, the ambulance starts acting towards the team goal. There-
fore, our CvI-JI formulation assumes that, at each decision epoch, an
agent may establish a JI while still acting to satisfy another intention
(either individual or JI). Thus, at each instant, an agent may have
an ongoing activity and also one (at most) established JI. Our ap-
proach enables teamwork decisions to be asynchronous; agents do
not need to wait, for each others’ option termination, before com-
mitting to a JI. Our hybrid CvI-JI option selection function distin-
guishes two teamwork stages: i) the “ongoing task continue” when
an agent decides to establish a JI (becomes a team member) even
though the agent still executes some other task, and ii) the “team
option startup” when a team member decides to start executing the
team option. Given a team member, j, a team option, o, and its ini-
tiation set, I, we define the ongoing states, I ongo: j ⊂ I, where j is
allowed to continue executing an ongoing task while jointly commit-
ted to achieve the team option, o.

The teamwork reconsideration. The JI assumes that once an
agent commits to a team goal he will fulfil that commitment. The CvI
is a stochastic model so we assume the possibility that an agent drops
a previous commitment before actually starting to act as a team mem-
ber. Given agent j we define the commitment probability, p commit: j ,
that j meets his engagement.

The teamwork design component. The CvI-JI combines all the
above (team option, ongoing set and commitment probability) into
a “teamwork design component” tdcj ≡ 〈 oj , I ongo: j , p commit: j 〉,
which describes, for agent, j ∈ Υ, and team option, oj ∈ Oj , the
set of states, I ongo: j , where the agent may continue an ongoing task
before start executing oj , and the probability, p commit: j , of effectively
committing to oj . The design of the tdc structure assumes that: i)
a team option is always represented in more than one agent, ii) a
tdcj is specified for each team option that j may get committed, and
iii) theI ongo: j specification considers the j’s environment local view.
The CvI-JI model describes, via tdc, the domain-dependent team-
work knowledge which contributes to reduce the collective option
space. Thus, CvI integrates JI as an heuristic filter (at collective stra-

tum) that reifies the (human) designer domain knowledge. The next
section integrates the heuristic filter in the decision process.

4.2 Integrate JI in the CvI decision process

The integration of the JI in the CvI decision process is designed, at
the collective stratum, by modifying the CvI option selection process,
which chooses, at each decision epoch, a level d collective option, �od

given perceived state, s, and a set of agents, B, that request for a
collective stratum decision. The algorithm 1 shows the option selec-
tion function, CHOOSEOPTION, and the inclusion of the two subrou-
tines, APPLYFILTER-JI (cf. line 3) and UPDATEFILTER-JI (cf. line
5), that implement the CvI-JI integration.

Algorithm 1 Choose option at level d of CvI collective stratum.

1 function CHOOSEOPTION( s, �Od, πd, B )
2 �Od

′ ← getAdmissibleOptionSet( s, �Od, B )
3 �Od

′′ ← APPLYFILTER-JI( s, �Od
′, B )

4 �od ← applyPolicy( s, �Od
′, �Od

′′, πd )
5 UPDATEFILTER-JI(�od, B )
6 return �od

7 end function

The getAdmissibleOptionSet function (cf. algorithm 1, line 2) is
the same as in CvI; evaluates I�o of each collective option, o�o, and re-
turns the set, �Od

′, of admissible options (given the perceived s and
the set of agents, B, that requested a level d collective stratum deci-
sion). The applyPolicy function (cf. algorithm 1, line 4) chooses the
next collective option to execute; the policy, πd, is either predefined
or follows some explore-and-exploit reinforcement learning method.
We followed the learning approach and implemented a ε-greedy po-
licy, which picks: i) a random admissible collective option, o�o ∈
�Od

′, with probability ε, and ii) otherwise, picks the highest estimated
action value collective option, at the current state, s, already consid-
ering the JI commitments (i.e., picks the maxo�o ∈ �Od

′′ Q ( s, o�o ) ).
The algorithm 2, APPLYFILTER-JI function, shows the integration

of JI commitments throughout the manipulation of the tdc instances.
The set of goals that call for teamwork effort are represented by the
global TDC set (cf. line 3) which is initially empty. The first part
(cf. lines 2 to 10, algorithm 2) determines the TDC ′ set of admis-
sible tdc from agents that requested for a level d collective stratum
decision. The teamwork reconsideration concept (cf. section 4.1) is
represented by the possibility of discarding a previously established
and currently admissible JI (cf. algorithm 2, line 5). The second part
(cf. lines 11 to 16, algorithm 2) restricts the collective options to those
that are compatible (all o�o components match) with the team options
of all tdc ∈ TDC ′; the remaining collective options are discarded.

The algorithm 3, UPDATEFILTER-JI function, describes the stra-
tegy used, at each decision epoch, to select a team goal and to find
the set of agents that are available to commit to that team goal (i.e.,
select a goal, g, and find the set, α ⊆ Υ, of agents available to form
a team T ≡ 〈α, g 〉). The implemented strategy simply selects the
first admissible team goal and assumes that each agent “is available
to commit to a team goal as long as he is not already a team member”.
The TDC set is updated (cf. algorithm 3) according to that strategy,
for all agents, at each decision epoch.

5 EXPERIMENTS AND RESULTS

We propose the teamwork taxi coordination problem that extends the
previous taxi coordination problem [6, 15] and enforces the team-
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Algorithm 2 Apply JI to reduce collective options’ admissible set.

1 function APPLYFILTER-JI( s, �Od
′, B )

2 TDC ′ ← ∅
3 for each tdc ∈ TDC do

4 if ( s[ j ] /∈ tdc.I ongo: j ) ∧ ( tdc.j ∈ B ) then

5 if random ≤ tdc.p commit: j then

6 TDC ′ ← TDC ′ ∪ { tdc }
7 end if

8 TDC ← TDC − { tdc }
9 end if

10 end for

11 �Od
′′ ← ∅

12 for each o�o ∈ �Od
′ do

13 if o�o is compatible with TDC ′ then

14 �Od
′′ ← �Od

′′ ∪ { o�o }
15 end if

16 end for

17 return �Od
′′ � �Od

′′ = �Od
′ when TDC ′ = ∅

18 end function

Algorithm 3 Strategy to update the set, TDC, containing the selected
team goal and the agents available for a JI.

1 function UPDATEFILTER-JI( �od, B )
2 teamOption ← false
3 for each tdc ∈ DTDC do � DTDC ≡ designed tdc elements
4 if ¬ teamOption then

5 o ← tdc.o � o ≡ a team option
6 end if

7 for each ag ∈ Υ do

8 if (�od[ ag ] 
= o ) ∧ (�od[ tdc.j ] = o ) ∧
9 ( ag ∈ B ) ∧ ( ag 
= tdc.j ) then

10 TDC ← TDC ∪ { tdc }
11 if ¬ teamOption then

12 teamOption ← true
13 end if

14 end if

15 end for

16 end for

17 end function

work behavior, as follows: “passengers appears at an origin site and
wants to get transported to a destination site; there are some pre-
defined sites where passengers only accept to get transported all to-
gether (as in a family)”; those sites are named teamwork sites as taxis
must work as a team to transport all passengers at the same time.

The experimental setup is given by: i) a 5 × 5 grid, ii) 4 sites,
Sb = { b1, b2, b3, b4 }, iii) 2 taxis, St = { t1, t2 }, iv) 3 passengers,
Spsg = { psg1, psg2, psg3 }, and v) a single, btw ∈ Sb, teamwork
site. The primitive actions, available to each taxi, are pick, put,
move(m ), where m ∈ {N, E, S, W } are the cardinal directions, and
the wait action supports the agent’s synchronization (at teamwork
sites). The problem is partially observable as a taxi does not perceive
the other taxis’ locations; it is collectively observable as the combi-
nation of all individual observations determines a sole world state.

We defined 3 different CvI-JI configurations, each assigning all
j ∈ Υ the same p commit: j ∈ { 0, 1

2
, 1 } value. Therefore, we define:

i) never JI, when p commit: j = 0, ii) sometimes JI, when p commit: j = 1
2

,
and iii) always JI, when p commit: j = 1.

The goal of the individual stratum is to learn how to execute tasks
(e.g. how to navigate to a site and when to pick up a passenger). The

goal of the collective stratum is to learn to coordinate the individual
tasks to minimize the resources (time) to satisfy passengers’ needs.

The learning of the policy at the collective stratum occurs simulta-
neously with the learning of each agent’s policy at the individual stra-
tum. The results of the experiments (cf. section 5.4) show the hybrid
CvI-JI performance improvement of the collective stratum learning
process, when compared with the pure CvI (i.e., never JI) approach.

5.1 JI specification

The JI is specified as a set of predefined tdc instances. The
tdc instance is defined, for each taxi (agent) tj ∈ St as
〈 btw, I ongo: tj , p commit: tj 〉. The btw is the teamwork site. The I ongo: tj

specifies the following ongoing state set: i) the taxi, tj , already trans-
ports a passenger, or ii) there is a passenger to pick up at tj current
location. The p commit: tj is assigned the value 0, 1

2
or 1, respectively

for the never JI, sometimes JI or always JI experiment configuration.

5.2 Individual stratum specification

Each taxi’s observation, ω = 〈x, y, psg1, psg2, psg3 〉, is its
( x, y )-position and passenger, psgi = 〈 loci, desti, origi 〉, sta-
tus where loci ∈ Sb ∪ St ∪ { t1acc, t2acc } (t1acc means that taxi
j accomplished delivery), desti ∈ Sb, and origi ∈ Sb. There-
fore, the state space, perceived by each taxi, is describe by a total
of 5 × 5 × (8 × 4 × 4)3 = 52,428,800 states.

The taxi capability is a 3-level hierarchy, where root is the
multi-step level-zero option, navigate(b ) is the multi-step level-
-one option, pick, put and wait are the one-step level-one
options and move(m ) are the level-two one-step options (for each
navigate(b )); a total of 5 multi-step options and 7 one-step ac-
tions. The taxi is not equipped with any explicit definition of its goal;
also, it does not hold any internal representation of the maze grid.
The taxi j decision is based solely on the information available at
each decision epoch: i) its perception, ωj , and ii) the immediate re-
ward provided by the last executed one-step action.

The immediate taxi rewards are: i) 20 for delivering a passenger,
ii) −10 for illegal pick or put, iii) −12 for any illegal move action
in a teamwork site, and iv) −1 for any other action, including moving
into walls and picking more than one passenger in a teamwork site.

5.3 Collective stratum specification

The collective stratum perceives s = 〈 t1, t2, psg1, psg2, psg3 〉
which combines all the individual stratum partial observations, where
tj is the ( x, y )-position of agent j. Therefore, the collective stratum
state space is describe by (5× 5)2 × (8× 4× 4)3 = 1,310,720,000
states. The collective stratum chooses mainly among multi-step
options, so we specify: i) C = {navigate(b ) for all b ∈ Sb } ∪
{wait } ∪ { indOp }, and J = {pick, put }, where indOp is an
implicit option representing J at the collective stratum. The indOp
option gives place to a ping-pong decision scenario between strata,
whenever an agent chooses to “request for a collective stratum deci-
sion” and the collective stratum replies: “decide yourself but consi-
der only your purely individual tasks”. Hence, the decision forwards
back to the agent (via indOp) raising a second opportunity for the
agent “to choose an option in J ”. The ping-pong effect, while giving
a second decision opportunity, does not increase the communication
between strata and reduces, to |J |, the individual decision space.

We assume that agents equitably contribute to the current state.
Thus, the collective reward is the sum of rewards provided to each
agent; our purpose is to maximize the long run collective reward.
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5.4 The CvI-JI experimental evaluation

Our experiments evaluate the influence of the JI integration in the CvI
model, by measuring the learning process performance (quantified as
the collective stratum cumulative reward). An episode starts with 2
passengers in the teamwork site and the third passenger in another
site; the episode terminates as soon as all passengers reach their des-
tination; each experiment executes for 700 episodes. Policy learning
follows the SMDP Q-learning [2, 12] approach with the ε-greedy
strategy (cf. section 4.2). Each experiment starts with ε = 0.15 and,
after the first 100 episodes, ε decays 0.004 every each 50 episodes.

We ran 3 experiments, one for each CvI-JI configuration. Figure 2
shows that the never JI configuration exhibits the worst performance;
about 6.5% worse than always JI and about 12% worse than some-
times JI; the difference remains almost uniform throughout the whole
experiment. The sometimes JI reveals an unexpected behavior while,
around episode 300, it starts to outperforms always JI.
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Figure 2. The influence of JI in the performance of the learning process.

An insight on these results is that the JI teamwork heuristic is ex-
ploited by the collective stratum, without compromising the explo-
ration (search for novelty) that is required by the learning process.
Somehow unexpected was that, being able not to fulfill a previous
teamwork commitment (cf. sometimes JI), enables to find improve-
ments over the fully reliable commitment attitude (cf. always JI).

The CvI-JI enables continuous (non interrupted) flow of decision-
-making and task execution activities. Such asynchronous process
opens a time space between the instant the agent establishes a JI
and the instant the agente actually begins acting to achieve the JI.
The possibility to reconsider a commitment, just before actually start
acting, explores alternatives to teamwork. The ability to drop a pre-
-established JI enables to find individual activity in state points where
the heuristic approach (JI) would suggest a teamwork approach. Re-
sults (cf. figure 2) show that the exploration of individual policies
combined with the heuristic teamwork approach enables to improve
the process of learning a coordination policy.

The experiment’s dimension. In this experiment, an agent
perceives 52,428,800 states, and the collective stratum contains
1,310,720,000 states. Each decision considers 6 individual options
and 36 collective options. Hence, this experimental world captures
some of the complexity of the decision-making process that aims to
achieve coordinated behavior in a disaster response environment.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we identified a series of relations between the 2-strata
decision-theoretic CvI approach and the joint-intentions (JI) mental-
-state based reasoning. We extended CvI by exploring the algorith-
mic aspects of the CvI-JI integration. Such integration represents our
novel contribution to a multi-agent hybrid decision model within a

reinforcement learning framework. The initial experimental results,
of the CvI-JI model, sustain the hypothesis that the JI heuristic re-
duction of the action space improves the process of learning a policy
to coordinate multiple agents. An interesting conclusion is that, tak-
ing into account our preliminary results, the teamwork reconsidera-
tion concept suggests investigating the hypothesis that not fulfilling
a commitment (at a specific state) is an opportunity to find an alter-
native path that, in the long run, is globally better than teamwork.

This work describes the ongoing research steps to construct agents
that participate in the decision-making process that occurs in the res-
ponse to a large-scale disaster. Future work will apply the CvI-JI in a
a simulated disaster response environment [8] and will explore team-
work (re)formation strategies [14] at the collective stratum.
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