
Monitoring the Execution of a Multi-Agent Plan:
Dealing with Partial Observability

Roberto Micalizio and Pietro Torasso1

Abstract. The paper addresses the task of monitoring and diag-
nosing the execution of a multi-agent plan (MAP) which involves
actions concurrently executed by a team of cooperating agents. The
paper describes a weak commitment strategy to deal with cases where
observability is only partial and it is not sufficient for inferring the
outcome of all the actions executed so far. The paper discusses the
role of target actions in providing sufficient conditions for inferring
the pending outcomes in a finite time window. The action outcome
provides the basis for computing plan diagnosis and for singling out
the goals which will not be achieved because of an action failure.

1 Introduction
The problem of diagnosing the execution of a single-agent plan has
been investigated long time ago (see the pioneering work by Birn-
baum et al. [1], where the concept of plan threat is introduced).
However, only recently a number of Model-Based approaches (see
[4, 8, 5]) have started to address the complex problem of diagnos-
ing the execution of a multi-agent plan (MAP), i.e. a plan involving
a team of cooperating agents, which execute actions concurrently.
These works are essentially based on a distributed approach where
each agent is responsible for supervising (monitoring and diagnosis)
the actions it executes. Typically these approaches assume that ac-
tion failures are not consequences of plan flaws, but failures are due
to the occurrence of unexpected events (such as discrepancies in the
shared assumptions or occurrence of faults in some agents function-
alities). Thus, the plan execution needs to be supervised in order to
detect and explain an action failure as soon as possible. As discussed
in [8], the plan diagnosis consists in a subset of actions whose failure
is consistent with the anomalous observed behavior of the system.
However, this notion of plan diagnosis can be complemented with a
notion of threatened actions, which estimates the impact of the fail-
ure since the harmful effects of an action failure may propagate to
the whole MAP. In this paper, similarly to the previous approaches, a
distributed approach for supervising the MAP execution is adopted.
However, we address the problem of diagnosing plans characterized
by the presence of joint actions, which introduce further dependen-
cies among the agents as they need to synchronize and to commu-
nicate among themselves. Moreover, we have to deal with actions
whose faulty behavior may be non deterministic. In the paper we
show that the nominal plan execution imposes some requirement on
observability (we will call minimal observability requirement) in or-
der to guarantee the inter-agent communication and we introduce a
weak commitment strategy to deal with cases where observability is
only partial and it is not sufficient for inferring the outcome of all the
actions executed so far. We will show how the minimal observability

1 Dipartimento di Informatica - Università di Torino, Italy, email: {micalizio,
torasso}@di.unito.it

requirement combined with the weak commitment strategy guaran-
tees that the outcome of each action can be inferred within a finite
time window.

The paper is organized as follows. In the following sections we
introduce the basic notions of global and local plans, then we for-
malize the processes of monitoring and diagnosis of a MAP and dis-
cuss the role of minimal observability requirement and weak com-
mitment strategy in inferring the actions outcomes which cannot be
directly observed; finally we discuss some computational issues and
conclude.

2 Distributed Plan Execution and Supervision
In this paper we consider a specific class of MAS where a team T of
agents cooperate to reach a common complex goal G. In particular,
the global goal G is decomposed into a set of (easier) sub-goals, each
of which is assigned to an agent in the team. In most cases, however,
the sub-goals are not independent of one another as the agents have to
cooperate by exchanging services or by executing joint actions; this
cooperative behavior introduces causal dependencies among activi-
ties, hence when an unexpected event causes the failure of an agent
activity, this failure may propagate in the whole system affecting the
activities of the other agents in the team.
Global plan. The notion of multi-agent plan (MAP), as formalized
by Cox et al. in [2], is well suited for modeling both the agents
activities and the causal dependencies existing among them. Ac-
cording to [2], given a team T of agents, the MAP is the tuple
〈A,E, CL, CC, NC〉 such that: A is the set of the action instances
the agents have to execute; each action a is assigned to a specific
agent i of the team T and it is modeled in terms of preconditions
and direct effects. Within the set A there are two special actions: a0

and a∞; a0 is the starting action, it has no preconditions and its ef-
fects specify which propositions are true in the initial state; a∞ is
the ending action, it has no effects and its preconditions specify the
propositions which must hold in the final state i.e., the preconditions
of a∞ specify the MAP’s goal G.
While E is a set of precedence links between actions, CL is a set of
causal links of the form l : a

q
→ a′; the link l states that the action a

provides the action a′ with the service q, where q is an atom occur-
ring in the preconditions of a′; finally, CC and NC are respectively
the concurrency and non-concurrency symmetric relations over the
action instances in A; in particular, the pair 〈a, a′〉 in CC models a
joint action whereas constraints in NC prevent the conflicts for ac-
cessing the resources; this is equivalent to the concurrency require-
ment introduced in [8].
Plan Distribution The execution of the MAP P is a critical step as
the agents have to concurrently execute the actions assigned to them
without violating the constraints introduced in the planning phase. It

ECAI 2008
M. Ghallab et al. (Eds.)

IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-891-5-408

408

2
Move(A1,P2,P4)

3
Push(A1,O1,P4,T)

4
PutOn(A1,O1,O2,T)

1
Move(A1,P0,P2)

AT(A1,P2) AT(A1,P4) AT(A1,T)
AT(O1,T)

7
Push(A2,O2,P4,T)

5
Move(A2,P3,P2)

6
Push(A2,O2,P2,P4)

8
Move(A2,T,P4)

AT(A2,P2) AT(A2,P4)
AT(O2,P4)

AT(A2,T)

AT(O2,T)

9
Move(A3,P0,P1)

10
Move(A3,P1,P2)

11
Push(A3,O2,P2,P4)

12
Push(A3,O2,P4,T)

13
Move(A3,T,P4)

AT(A3,P2) AT(A3,P4)
AT(O2,P2)

AT(A3,T)AT(A3,P1)

CC CC

NC

NC

AT(O2,T)

ON(O1,O2)

AT(O2,T)

AT(A3,P4)

AT(A2,P4)

AT(A1,P0)
AT(A2,P3)

AT(A3,P0)

AT(O1,P4)

AT(O2,P2)
a0 a∞

Figure 1. The MAP P to be monitored.

is therefore quite natural to conceive a distributed approach to the su-
pervision of the plan execution. In this paper we adopt a distributed
approach to the supervision (similar to the ones discussed in [8, 5])
where each agent performs a (local) control loop over the actions it
executes.
Local Plans. The MAP P under consideration is decomposed into
as many sub-plans Pi as the agents in T and each sub-plan Pi is as-
signed to agent i. The decomposition can be easily done by selecting
from P all the actions an agent i has to execute. Formally, the sub-
plan for agent i is the tuple Pi=〈 Ai, Ei, CLi, CCi, NCi 〉 where:
Ai, Ei, CLi, CCi and NCi are the same as in P restricted to the
actions agent i has to execute (i.e., at least one action belongs to Ai).

We consider the time as a discrete sequence of instants; the actions
are executed synchronously by the agents in the team and each ac-
tion in P takes a time unit to be executed (this common assumption
is also made in [8, 6]). At a given time t, an agent i can execute just
one action a (in the following the notation ai

t will denote the action
executed by agent i at time t). After the execution of action ai

t the
agent i may receive a set of observations, denoted as obsi

t+1, rele-
vant for the status of i itself.
Minimal Observability Requirement and Agent Communication.
Since the agents need to communicate for achieving coordination
during the plan execution, a minimal observability requirement must
be satisfied.
To figure out what events are included in the minimal observability
requirement consider that coordination is required in three cases dur-
ing the nominal plan execution. First, when an agent i has to provide
a service q to another agent j; technically, this case is encoded by a
causal link l : a

q
→ a′ in the MAP P (where a ∈ Ai and a′ ∈ Aj).

After the execution of a, the agent i must be able to observe the
achievement (or the absence) of service q and must notify agent j

whether the service has been provided or not; in fact, because of par-
tial observability, the agent j can not directly observe the service q

and has to wait for a message from i.
The second situation which requires explicit coordination during the
execution regards the joint actions. Every pair of actions 〈a, a′〉, in-
cluded in the set of concurrency constraints CC, models a joint ac-
tion; where a and a′ are actions assigned to agents i and j, respec-
tively. In order to execute the joint action 〈a, a′〉 in a synchronized
way, the two agents i and j need to observe whether the precondi-
tions of the actions a and a′ are satisfied; in fact the joint action can
be performed only when the preconditions of both actions are satis-
fied and both agents have to be aware of this.

Explicit coordination is also required for executing actions
bounded by non-concurrency constraints: in this case coordination
is ruled by the set of non-concurrency constraints NC in P and pre-
vents the simultaneous execution of the constrained actions. Given

the pair of actions 〈a, a′〉 ∈ NC (where a ∈ Ai and a′ ∈ Aj re-
spectively), when agent i intends to execute action a must inform
agent j and in case of conflict the two agents have to negotiate.

As we will see in section 4, agents communicate even in case of
action failures: an agent must notify other agents when a service will
not be provided as a consequence of a failure.
Running Example. In the paper we will use a simple example from
the blocks world for illustrating the concepts and the techniques we
propose. Let us consider three agents that cooperate to achieve a
global goal G where two blocks O1 and O2 are moved in a target
position T and O1 is put on the top of block O2; initially, the blocks
are located in position P4. In its nominal behavior an agent can move
a block by pushing it; however, in some cases a block may be too
heavy and two agents need to join their efforts to push it. Figure 1
shows a possible MAP which achieves the goal G, in particular, the
agents A2 and A3 cooperate to move the (heavy) block O2 in posi-
tion T (see the joint actions 〈6,11〉, 〈7,12〉); the agent A1 move
the block O1 in position T than it puts O1 on the top of O2 (see ac-
tion PutOn).
The MAP is a DAG where nodes are actions, solid and dashed arrows
are causal and precedence links respectively, while concurrent and
non-concurrent constraints are solid, bidirectional arrows labeled as
CC and NC respectively. The dashed rectangles specify which ac-
tions are included in the sub-plans assigned to the three agents.
The operations within the target position are constrained: at each time
instant only one block can be moved in, so there are non-concurrency
constraints between the joint action 〈7,12〉 and the simple action 3;
moreover, since the block O2 must be positioned in T earlier than
O1, precedence links exist between the actions 〈7,12〉 and 3.

3 Monitoring with uncertain action outcomes
The monitoring performed by agent i over the execution of its sub-
plan provides two important services:

1) Estimate the state of agent i after the execution of an action a

2) Detect the outcome of the action a

However, before describing the monitoring process we need to intro-
duce some important concepts.
Agent state. Intuitively, the system status can be expressed in terms
of the status variables of the agents in the team T and of the status of
the system resources RES . However, the distributed approach to the
supervision prevents the adoption of a global notion of status while
it allows a local view based on a single agent.
The status of agent i is expressed in terms of a set of status variables
VARi, which is partitioned into three subsets END i, ENV i and
HLT i. END i and ENV i denote the set of endogenous (e.g., the
agent’s position) and environment (e.g., the resources state) status
variables, respectively. Note that, because of the partitioning, each

R. Micalizio and P. Torasso / Monitoring the Execution of a Multi-Agent Plan: Dealing with Partial Observability 409

agent i has to maintain a private copy of the resource status variables;
more precisely, for each resource resk ∈ RES (k : 1..|RES |) the
private variable resk,i is included in the set ENV i.
Since we are interested in monitoring the plan execution even when
action failures occur, we introduce a further set of variables in or-
der to model the agent faults, which may cause action failures.
HLT i denotes the set of variables concerning the health status
of an agent functionalities (e.g., mobility and power); in particu-
lar, for each agent functionality f , a variable vf ∈ HLT i repre-
sents the health status of f , the domain of variable vf is the set
{ok, abn1, . . . , abnn} where ok denotes the nominal mode while
abn1, . . . , abnn denote non nominal modes.
It is worth noting that the observations obsi

t agent i may receive,
convey information about just a subset of variables in VARi. First
of all, an agent can directly observe just the status of the resources
it is actively exploiting: the status of other resources is not directly
observable but an agent can communicate with other agents to deter-
mine it. Moreover, the observations obsi

t provide in general the value
of just a subset of variables in END i; whereas the variables in HLT i

are not directly observable and their actual value can be just inferred.
Given this partial observability, at each time t the agent i can just
estimate a set of alternative states which are consistent with the re-
ceived observations obsi

t; in literature this set is known as belief state
and will be denoted as Bi

t.
Action models. The model of a simple action ai

t (assigned to agent
i at time t) is the tuple 〈var(ai

t), pre(ai
t), eff(ai

t), event(ai
t), Δ(ai

t)〉;
where var(ai

t) ⊆ VARi is the subset of status variables over which
the set pre(ai

t) of preconditions and the set eff(ai
t) of effects are de-

fined; event(ai
t) is the set of exogenous events (e.g., faults) which

may occur during the execution of action ai
t and which possibly

may affect its outcome; finally, Δ(ai
t) is a transition relation where

every tuple d ∈ Δ(ai
t) models a possible state transition, which

may occur while i is executing ai
t. Each tuple d has the form d =

〈st, event , st+1〉; where st and st+1 represent two agent states at
time t and t + 1 respectively (each state is a complete assignment of
values to the status variables in var(ai

t)) and event (possibly empty)
represents the occurrence of an unexpected event in event(ai

t).
Since Δ(ai

t) is a relation, the action model can represent non deter-
ministic, anomalous action effects. The healthy formula healthy(ai

t)
of action ai

t is computed by restricting each variable vf ∈
healthVar(ai

t) to the nominal behavioral mode ok and represents the
nominal health status of agent i required to successfully complete
the action itself. Therefore, the (expected) nominal effects of ai

t are
nominalEff(ai

t)={q ∈ eff(ai
t) | pre(ai

t)∪ healthy(ai
t) � q}.

On the contrary, when the healthy formula does not hold, the behav-
ior of the action may be non deterministic and some (even all) of the
expected effects may be missing.
Joint actions. The notion of simple action can be extended to cover
the notion of joint action, which as discussed in [3], can be seen as the
simultaneous execution of a subset of simple actions. In this paper we
consider a stronger notion of joint action: two simple actions ai

t and
a

j
t are part of a joint action a

i,j
t not only because they are executed

at the same time, but also because the agents i and j actively coop-
erate to reach an effect. The notion of dependency set, introduced
in [5], is exploited to homogenously represent both simple and joint
actions. Intuitively, a dependency set I(t) highlights the subset of
agents whose strict cooperation is required in a specific time instant
t and can be easily determined from the concurrency constraints de-
fined in the MAP. The agents within the same dependency set I(t)
synchronize in order to build a joint belief state BI

t (resulting from
the conjunction of their local belief states) and the joint model of the

action a
I(t)
t (see details in [5]). Thus, given the dependency set I(t),

a
I(t)
t may denote a simple or a joint action.

The prediction process. In [5] Micalizio et al. have proposed a dis-
tributed strategy for monitoring the execution of a MAP. Their ap-
proach can be summarized as follows: let a

I(t)
t denote the (joint)

action executed by the agent(s) in the dependency set I(t) at time t

(for the sake of readability we will write aI
t whenever the time of the

dependency set is obvious from the context), let BI
t be the (joint) be-

lief state of the agents in I , let Δ(aI
t) the model of the (joint) action

the agents in I have to execute at time t, the joint belief state at time
t + 1 (i.e., after the action execution) can be inferred as:

BI
t+1 = π

VARI

t+1
(σobsI

t+1
(BI

t � Δ(aI
t))).

The join operation BI
t � Δ(aI

t) represents the prediction step as it
estimates the set of possible states of the agents in I at time t + 1.
However, the set of predictions resulting from the join operation is in
general spurious as it predicts all possible evolutions. The selection
operation σobsI

t+1
has the effect of pruning off all those predictions

which are inconsistent with the observations received by the agents
in I at time t+1 where obsI

t+1 =
⋃

i∈I
obsi

t+1. Of course, the pre-
cision of the estimated joint belief strongly depends on the amount
of available observations: in the worst case obsI

t+1 is empty and the
selection operator can not discard any of the predicted states; in the
best (unrealistic) case obsI

t+1 is so complete to reduce the estimated
states to the actual agent state. Finally, the (joint) belief state BI

t+1

is inferred by projecting the set of refined predictions over the agent
status variables at time t+1.
Strong Commitment. Intuitively, the outcome of action aI

t is suc-
ceeded when all the nominal, expected effects are achieved after its
execution, the action outcome is failed otherwise. However, since the
belief state BI

t+1 may be highly ambiguous, in [5] the authors adopt
a strong commitment policy by considering aI

t as successfully com-
pleted iff all its nominal effects nominalEff(aI

t) have been achieved
in every possible state s included in BI

t+1, formally:

a
I
t succeeded ↔ ∀q ∈ nominalEff (aI

t),∀s ∈ BI
t+1, s |= q (1)

Moreover, [5] requires that the outcome of action aI
t must be im-

mediately assessed after the execution of the action at time t+1.
Therefore, when nominalEff(aI

t) are not satisfied in at least one state
included in the joint belief BI

t+1, the outcome of action aI
t is as-

sumed to be failed. This strong commitment policy is based on the as-
sumption that, whenever the action aI

t is successfully completed, the
amount of observations available at time t+1 is sufficient for pruning
off from BI

t+1 any state s where the nominal effects do not hold. Un-
der this assumption it is sufficient that each agent maintains just the
last belief state BI

t+1, as it represents a synthesis of the past history
till time t+1.
Unfortunately this assumption may not hold in many domains and,
as a consequence of the partial observability, it may happen that even
when an action is successfully completed an agent concludes a fail-
ure because it can not univocally assert a success.
Weak Commitment. In order to avoid this problem we propose a
more flexible strategy where the outcome of an action aI

t can be
inferred within a time window rather than at the precise time in-
stant t+1. In particular we assume that the system observability sat-
isfies just the minimal observability requirement, and we propose a
methodology for monitoring the plan execution which is able to cope
with this constraint. This means that, when an agent is unable to de-
termine the outcome of action aI

t , the agent does not conclude the
failure of aI

t , but postpones the assessment of the action outcome.
In fact, although the outcome of aI

t can not be precisely determined

R. Micalizio and P. Torasso / Monitoring the Execution of a Multi-Agent Plan: Dealing with Partial Observability410

at the current time t+1, it may be determined in a future time in-
stant by exploiting observations that each agent i in I will receive.
For this reason, each agent i has to maintain a list pOi(t) of actions
whose outcome has not been determined yet at time t; i.e., a list of
pending outcomes. Moreover, the agent i has to maintain a trajectory
Tri[0, t + 1], which relates all the belief states agent i has inferred
so far. In particular, since the belief states are ambiguous and, in gen-
eral, include a number of alternative states, Tri[0, t + 1] is a set of
trajectories.
Refining the agent trajectory. Given the action aI

t , such that the
agent i ∈ I , the process for estimating the belief state of agent i at
time t+1 consists in the process for extending the agent trajectory
Tri[0..t] to cover the time instant t+1. Also in this case we adopt the
Relational Algebra operators to formalize this process:

Tri[0, t + 1]= σobsI

t+1

(Tri[0, t] � Δ(aI
t))

The join operator represents the step which extends the agent trajec-
tory, in fact any of the transitions modeled in Δ(aI

t) are appended
at the end of one (or more) traces in Tri[0..t]. Observe that the join
operator implicitly refines also the agent trajectory: all the traces in
Tri[0..t] which do not participate to the join are discarded.
The selection operator further refines the agent trajectory as it fil-
ters out all those traces which are inconsistent with the observations
available at time t+1.
Therefore, Tri[0..t + 1] maintains all the possible agent trajectories
which are consistent with the observations received so far, given a
sequence of actions executed by agent i in the interval [0..t + 1].
Inferring action outcome. Since the extension of the agent trajec-
tory refines the trajectory itself, it may reduce the ambiguity in some
of the previous belief states. Thus, agent i can try to infer the out-
come of some of the actions in pOi(t + 1); in fact, for each action
a

I(k)
k ∈ pOi(t + 1) (where I(k) represents the dependency set in-

cluding i at time k ∈ [0, t + 1]), it is possible to determine the belief
state inferred by the agent at time k + 1 from the agent trajectory
Tri[0, t + 1] as follows:

BI
k+1=πk+1(Tri[0, t + 1]).

Observe that BI
k+1 is potentially different from the belief state in-

ferred by the agent i at time k, in fact BI
k+1 results from the pro-

gressive extension of the agent trajectory from time k to time t+1
and at each step BI

k+1 may have been refined. The nominal outcome
of action aI

k is therefore inferred similarly to the definition in for-
mula 1; i.e., if the nominal effects of the action aI

k hold in every state
s ∈ BI

k+1 the action outcome is succeeded. However, the achieve-
ment of the nominal effects of action aI

k is a consequence not only of
the nominal execution of this action but also of the previous actions
which are causally related to aI

k. The relation between the nominal
outcome of aI

k and the previous actions is formalized in the following
property:
Property 1 Given the agent i and its dependency set I at time k, let
aI

k be an action with outcome succeeded, then all the actions ah in
pO i(k) ∩ dependsOn(aI

k) have outcome succeeded too
where dependsOn(aI

k) denotes the subset of actions {a1, . . . , an}
in Ai, which directly or indirectly provide aI

k with a service (i.e.,
through a sequence of causal links).
It is also possible that the extension of the trajectory does not suffi-
ciently refine the belief state BI

k+1 in such a way the nominal effects
of the action aI

k hold just in a subset of the states included in BI
k+1;

in this case the outcome of aI
k remains pending.

Finally, if the nominal effects do not hold in any state included in
BI

k+1 we conclude that the outcome of aI
k is non nominal. This

does not necessarily imply that the action aI
k is failed since the not

achievement of the nominal effects may depend on the failure of pre-
vious actions causally related to aI

k.

4 Plan Diagnosis.

As soon as the outcome of an action aI
t is determined to be non nom-

inal , a diagnostic process is activated in order to provide a possible
explanation for such a non nominal outcome. In this paper we adopt
the same notion of plan diagnosis introduced by Roos et al. in [8]:
once observed a non nominal outcome of action aI

t , the plan diagno-
sis PD(aI

t) singles out a subset of actions executed by the agents in
I , whose failure is consistent with the anomalous, observed behavior
of the system.
Given an agent i ∈ I , every action a in EXP i(aI

t)= (pOi(t) ∩
dependsOn(aI

t)) ∪ aI
t is a minimal explanation of the non nom-

inal outcome of aI
t . Therefore, the plan diagnosis for agent i is

PDi(aI
t) =

∨
a∈EXP i(aI

t
)
a; in fact, due to the causal depen-

dencies, it is sufficient to assume the failure of at least one of
these actions to explain the observed non nominal outcome of aI

t .
It is east extending the plan diagnosis to the dependency set I as
PD(aI

t)=
∨

i∈I
PDi(aI

t).
Essentially, the plan diagnosis explains the observed, non nominal
outcome of aI

t by singling out a subset of actions whose failure may
be the root cause of that observation.
Missing Goals. The plan diagnosis can be refined by determining
the set of missing goals. A missing goal is a service which can not
be provided by agent i as a consequence of the failure of action aI

t

(where i belongs to the dependency set I). To formally characterize
the concept of missing goal we introduce the notion of primary ef-
fect: given an action aI the nominal effect q in nominalEff(aI) is a
primary effect if at least one of the following conditions hold:

1. q ∈ pre(a∞) i.e., q belongs to the global goal.
2. q is a service that aI provides to a subset J of agents; i.e., there

exists a causal link l : aI q
→ aJ where I �= J . Observe that aI and

aJ can be joint or simple actions.
In general, given an action aI , primary(aI) denotes the (possibly
empty) set of primary effects provided by aI .
To determine the set of missing goals we adopt a conservative policy
and we assume that all actions included in plan diagnosis are actually
failed. Therefore, the subset of missing goals that the agents in I can
no longer achieve is: missingGoals(aI

t)=
⋃

a∈PD(aI

t
)
primary(a).

In principle, it is sufficient to achieve all the missing goals in an al-
ternative way in order to reach the MAP’s global goal G despite the
occurrence of the failure. Therefore the missing goals may be the
starting point for any plan recovery strategy.
Propagating the Plan diagnosis. As said above, the failure of aI

t

may propagate in the plan preventing the execution of actions as-
signed to different agents in the team (not limited to the dependency
set I), possibly causing the stop of the whole system. For this rea-
son, we complement the notion of plan diagnosis with the set threat-
ened actions ThrActs(aI

t) which could be indirectly affected by the
failure of aI

t (through a sequence of causal links). Intuitively, an ac-
tion is threatened through a causal link l : a′ q

→ a when it is no
longer guaranteed that the action a′ provides the service q; this may
happen either because a′ is failed (i.e., included in the plan diagno-
sis PD(aI

t)) or because a′ is in turn threatened. Formally the set
ThrActs(aI

t) is defined as:
ThrActs(aI

t)={a ∈ A| aI
t ≺ a and ∃ a causal link l : a′ q

→ a,
l ∈ CL, a′ ∈ PD(aI

t) or a′ ∈ ThrActs }
Observe that, the propagation is a form of communication among
agents, which conveys negative information; hence an agent does not
wait indefinitely for services which will never be provided.
Running Example. Let us consider the blocks world example
and assume that at time 4 the failure of the joint action 〈7,12〉

R. Micalizio and P. Torasso / Monitoring the Execution of a Multi-Agent Plan: Dealing with Partial Observability 411

(whose dependency set is {A2,A3}) is detected. To determine
whether this failure may be consequence of a previous failure,
one has to single out which actions in pOA2(4) (pOA3(4)) di-
rectly or indirectly provide 〈7,12〉 with a service. According to
the definition of primary service, the outcome of actions 5 and
10 must be observable, whereas the outcome of action 〈6,11〉
may be not. Let us suppose that the observations available at time
3 are not sufficient for inferring the outcome of action 〈6,11〉;
thereby both the agents A2 and A3 include the joint action 〈6,11〉
in the set pending outcomes; i.e., pOA2(4)=pOA3(4)={〈6,11〉}.
Since 〈6,11〉 directly provides a service to action 〈7,12〉, the
failure of the second action may be a consequence of the fail-
ure of the first one, thus the plan diagnosis includes both ac-
tions: PD(〈7,12〉)={〈6,11〉, 〈7,12 〉}. Given the plan diagnosis,
the set of missing goals is missingGoals(〈7,12〉)={AT(O2,T)};
moreover the propagation of the plan diagnosis highlights that the
failure of action 〈7,12〉 affects not only the actions 8 and 13 of
the agents A2 and A3 respectively, but also the action 4 of the agent
A1. Note that providing the missing service AT(O2,T) the agent
A1 would be able to accomplish its task without any adjustment to
its sub-plan.

5 Computational Issues
So far we have discussed in a declarative way a methodology for
supervising a MAP, in this section we analyze some computational
issues which may arise while implementing the approach.
Agents Trajectories. Since maintaining a set of trajectories from the
initial time instant may be computationally expensive, we can limit
the length of the agent trajectories by considering that the primary
effects of an action aI

t must always be observable at time t+1 (ac-
cording to the minimal observability requirement). In order to make
evident in the MAP which actions provide primary effects we intro-
duce the notion of target action; in particular, an action aI

t is said to
be a target action iff primary(aI

t) is not empty. Since the outcome
of a target action is always observable, target actions can be consid-
ered as milestones in the plan and exploited for determining temporal
windows the agent trajectories must cover. In particular, under some
requirements on the causal dependencies in the MAP, the following
property holds.

Property 2 Given the agent i, the target action aI
t , where i ∈ I ,

and the set pOi(t), if each action in pOi(t) provides (directly or in-
directly) aI

t with a service, the detection of the outcome of aI
t allows

to infer the outcome of each action included in pOi(t).

Property 2 states that, after the execution of a target action aI
t , every

agent i ∈ I can determine the outcome of all the actions in the set
of pending outcomes pOi(t). Moreover, in case no failure has been
detected, every agent i can replace the trajectory with the belief state
BI

t+1 as it represents a synthesis of the past history till time t+1.
For example, in the MAP of Figure 1, the simple actions 4,5,8,13
are target actions as well as the joint action 〈7,12〉.
Implementation and preliminary results From a computational
point of view, managing relations such as belief states and action
models which possibly have a huge dimension may be very expen-
sive. In order to implement both the monitoring and diagnostic pro-
cesses in an effective way, we have encoded the relation by means
of the symbolic formalism of the Ordered Binary Decision Diagrams
(OBDDs); the relational operations have been mapped into standard
operations on OBDDs.
A prototype has been implemented in Java JDK 1.6 and exploits the
JavaBDD(http://sourceforge.net/projects/javabdd) package for ma-
nipulating OBDDs. The approach has been tested in a office domain

and the robotic agents, simulated in a software environment, are im-
plemented as threads running on the same Intel Pentium (1.86 GHz,
RAM 1 GB, Windows XP OS). The preliminary results collected so
far are encouraging: given MAPs involving up to 6 agents and 60 ac-
tions on average, the plan supervision (monitoring, agent diagnosis
and failure propagation) performed by each agent requires on aver-
age 5 msec. per instant (being the maximum absolute CPU time per
instant 30 msec); exploiting the target actions, an agent maintains a
trajectory whose length is 5 instants in the worst case (3 on average).

6 Discussion and Conclusion
The problem of diagnosing a multiagent plan has been recently ad-
dressed by exploiting methods and techniques developed within the
MBD community, in particular for the diagnosis of distributed sys-
tem (see e.g., [7]). In [4] the authors consider multi-agent systems
where, at each time instant, every agent chooses the more appropri-
ate behavior to assume according to its beliefs. The authors introduce
the notion of social diagnosis to explain the disagreements among
cooperating agents.

The approach presented in this paper has some resemblance with
[8], where a distributed approach to monitoring and diagnosing the
execution of a MAP is proposed. It assumes that each agent moni-
tors and diagnoses the actions it is responsible for where actions are
atomic and are modeled as functions of their nominal behavior only.
Since the anomalous behavior of the actions is not explicitly mod-
eled, the monitoring can not estimate faulty system states.

In this paper, we propose a distributed approach for monitoring
and diagnosing the execution of a multi-agent plan in a system which
is only partially observable. Differently from the approach in [8], we
adopt extended action models for capturing both nominal and anoma-
lous execution. Thereby the monitoring process we propose is able to
estimate system states even after the occurrence of faults. Moreover,
by exploiting the notion of dependency set introduced in [5], the ap-
proach uniformly deals with simple as well as joint actions.
Finally the paper has discussed a methodology based on the weak
commitment strategy which is able to infer a plan diagnosis and to
determine two important pieces of knowledge over the system sta-
tus: the set of missing goals and the set of actions threatened by the
plan diagnosis. These two sets play a critical role in any plan recov-
ery strategy since one has to find (if possible) an alternative way for
reaching the global goal which is not achievable because of the ac-
tion failure. In general such a recovery step requires a re-planning
phase where the set of missing goals contribute to reduce the search
space since they clearly point out what must be achieved.

REFERENCES
[1] L. Birnbaum, G. Collins, M. Freed, and B. Krulwich, ‘Model-based di-

agnosis of planning failures’, in Proc. AAAI’90, pp. 318–323, (1990).
[2] J. S. Cox, E. H. Durfee, and T. Bartold, ‘A distributed framework for

solving the multiagent plan coordination problem’, in Proc. AAMAS05,
pp. 821–827, (2005).

[3] R. M. Jensen and M. M. Veloso, ‘Obdd-based universal planning for
synchronized agents in non-deterministic domains’, JAIR, 13, 189–226,
(2000).

[4] M. Kalech and G.A. Kaminka, ‘Towards model-based diagnosis of coor-
dination failures’, in Proc. AAAI05, pp. 102–107, (2005).

[5] R. Micalizio and P. Torasso, ‘On-line monitoring of plan execution: a dis-
tributed approach’, Knowledge-Based Systems, 20(2), 134–142, (2007).

[6] Roberto Micalizio and Pietro Torasso, ‘Plan diagnosis and agent diagno-
sis in multi-agent systems’, volume 4733 of LNCS, pp. 434–446, (2007).

[7] Y. Pencolé and M.O. Cordier, ‘A formal framework for the decentralised
diagnosis of large scale discrete event systems and its application to
telecommunication networks’, AI, 164, 121–170, (2005).

[8] C. Witteveen, N. Roos, R. van der Krogt, and M. de Weerdt, ‘Diagno-
sis of single and multi-agent plans’, in Proc. AAMAS05, pp. 805–812,
(2005).

R. Micalizio and P. Torasso / Monitoring the Execution of a Multi-Agent Plan: Dealing with Partial Observability412

