
Game Theoretical Insights in Strategic Patrolling: Model
and Algorithm in Normal-Form

Nicola Gatti
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

ngatti@elet.polimi.it

Abstract. In artificial intelligence literature there is a rising inter-
est in studying strategic interaction situations. In these situations a
number of rational agents act strategically, being in competition, and
their analysis is carried out by employing game theoretical tools. One
of the most challenging strategic interaction situation is the strategic
patrolling: a guard patrols a number of houses in the attempt to catch
a rob, which, in its turn, chooses a house to rob in the attempt to be
not catched by the guard. Our contribution in this paper is twofold.
Firstly, we provide a critique concerning the models presented in lit-
erature and we propose a model that is game theoretical satisfactory.
Secondly, by exploit the game theoretical analysis to design a solving
algorithm more efficient than state-of-the-art’s ones.

1 Introduction

The study of strategic interaction situations, commonly named non-
cooperative games, has been receiving more and more attention
in artificial intelligence literature [7]. For instance, the problem of
automating agents in negotiations [4] and in auctions [7] is usu-
ally modeled as a strategic interaction problem. Commonly, strate-
gic interaction situations are tackled by employing game theoretical
tools [3], in which one distinguishes the mechanism (i.e., the rules
according which agents interact) from the strategies (i.e., the behav-
iors of the agents in the game). Given a mechanism, rational agents
should behave in order to maximize their revenue.

An interesting open strategic interaction problem is the strategic
patrolling [8, 9]. This problem is characterized by a guard that de-
cides what houses to patrol and how often and by a robber that de-
cides what house to strike. Obviously, the guard will not know in
advance exactly where the robber will choose to strike. Moreover,
the guard does not known with certainty what adversary it is facing.
A common approach for choosing a strategy for agents in such a sce-
nario is to model the scenario as a Bayesian game [3]. A Bayesian
game is a game in which agents may belong to one or more types; the
type of an agent determines its payoffs. The probability distribution
over agents’ types is common knowledge. The appropriate solution
concept for these games is the Bayes-Nash equilibrium [3].

In [8] the authors propose a model for the strategic patrolling
and an algorithm to solve it. Exactly they model the situation as a
Bayesian game. The guard’s actions are all the possible routes of
houses, while the robber’s action is the choice of a single house to
rob. The robber can be of several types with a given probability dis-
tribution. Moreover, the rob can observe the actions undertaken by
the guard and choose its optimal action on the basis of this observa-
tion. We show in this paper that the model proposed in [8] is not game

theoretically satisfactory. Indeed, we show that such model does not
effectively capture the possibility available to the rob to observe the
actions undertaken by the guard. A further issue risen by [8] concerns
time required to compute solutions. Although the algorithm proposed
by the authors finds solutions that are computationally less hard than
Bayes-Nash, the computation of a solution does not result affordable
even in very simple settings.

This paper provides two original contributions. The first contri-
bution concerns the design of a strategic interaction model for the
strategic patrolling that is game theoretically satisfactory. Precisely,
we provide a critique to the model presented in [8], showing why
it is not satisfactory in real-word settings. Subsequently, we provide
a satisfactory Bayesian game model. The second contribution con-
cerns the design of an efficient solving algorithm. Algorithmic game
theory literature provides a number of on-the-shelf algorithms able
to solve a large class of games [7]. However, these algorithms have
exponential complexity in the worst-case and cannot address real-
world settings. The exploitation of game theoretical analysis can lead
to improve the efficiency of the solving algorithms and therefore to
address real-world problems. This approach, although it is very pre-
liminary, has been successfully followed in [2, 4], where the authors
provide efficient algorithms for bargaining situations. The contribu-
tion of game theoretical analysis in the design of efficient algorithms
can be twofold. Firstly, game theoretical analysis can be employed to
reduce the space of search, e.g. by excluding all the strategy profiles
that can be assured to be not of equilibrium independently of the pa-
rameters of the game. Secondly, it can be employed to “guide” the
searching algorithm, e.g. by choosing specific orders over the strat-
egy profiles according which the algorithm searches for the equilib-
rium [10]. In this paper we exploit game theoretical analysis to the
limited extent of the first issue: the reduction of the space of search.
We propose an algorithm much more efficient then on-the-shelf ones,
its space of search being dramatically reduced with respect to the one
considered by these algorithms. However, the space of search of the
proposed algorithm raises exponentially in the size of the problem
and therefore the algorithm needs to be improved by considering also
the second issue concerning game theoretical analysis: the exploita-
tion of information to efficiently guide the search. This second issue
will be considered in future works.

This paper is structured as follows. The next section reviews the
strategic patrolling model presented in [8] and provides a critique to
it. Section 3 proposes a satisfactory game model for the considered
situation. Section 4 provides some game theoretical insights concern-
ing the proposed model and Section 5 exploits these to design a solv-
ing algorithm. Section 6 closes the paper.

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-403

403



2 Basic Strategic Patrolling Model and Critique

We briefly review the model proposed in [8]. The strategic situation
to be considered is constituted by m houses, denoted by 1, . . . , m,
and two agents: a guard, denoted by g, and a robber, denoted by r.
Essentially, g chooses a patrolling strategy, i.e. a route of houses, in
the attempt to catch r, which, in its turn, chooses the house to rob
in the attempt to be not caught by g. For the sake of simplicity, the
following assumptions are commonly made:

• time is discretized in turns;
• g takes one turn to patrol one house independently of the patrolled

house;
• r takes d turns to rob one house independently of the robbed

house;
• the time needed by g to move between two houses is negligible.

Agents act simultaneously and their available actions are:

g : it can choose a route of d houses to patrol, e.g. 〈1, 2, 3, . . .〉;
r : it can choose one house to rob, e.g. 1.

Possible outcomes are the following: if the house chosen by r is
within the route chosen by g, then g catches r; otherwise r robs
the house. Players’ preferences over the outcomes are expressed by
the following payoffs:

g : it assigns the outcome wherein r is caught an evaluation x0 and
assigns each outcome wherein house i is robbed an evaluation xi.
If g catches r, then g’s payoff is x0, otherwise its payoff is xi

where i is the robbed house. Customarily, it is assumed that x0 >
max{xi} with i > 0;

r : it assigns each house i an evaluation yi and assigns its catch an
evaluation y0. If r is caught by g, then r’s payoff is y0, otherwise
its payoff is yi where i is the robbed house. Customarily, it is
assumed that y0 < min{yi} with i > 0.

Finally, it is assumed that g’s preferences are common knowledge,
while r’s ones not. Precisely, it is assumed that r can be of n types
with a given probability distribution. We denote type i of r by ri.
According to Harsanyi such a game is casted into an imperfect in-
formation game wherein nature, denoted by N, chooses initially the
type of r and g does not perfectly know which game is playing [3].
An example with m = 2, n = 2, and d = 1 is depicted in Fig. 1

�������

������

N

ωr1 ωr2

�

�
�

�

�
�

�

1 2

�

�
�

��

�
�
��

1 2

�

x0, y0
r1

�

x2, y2
r1

�

�
�

��

�
�
��

1 2

�

x1, y1
r1

�

x0, y0
r1

� � � � � � � � � �
r1

�

�
�

�

�
�

�

1 2

�

�
�

��

�
�
��

1 2

�

x0, y0
r2

�

x2, y2
r2

�

�
�

��

�
�
��

1 2

�

x1, y1
r2

�

x0, y0
r2

� � � � � � � � � �
r2

� � � � � � � � � � � � � � � � � � � �
g

Figure 1. Game tree with two houses, denoted by 1 and 2, and with d = 1.

The appropriate solution concept for a game such the one we are
dealing with is the Bayes-Nash equilibrium [3]. It prescribes one
strategy σ∗

g for g and one, generally different, strategy σ∗
ri

for each
ri. The peculiarity of this solution concept is that g maximizes its

expected payoff according to its beliefs, i.e. the probability distribu-
tion over r’s types. It can be showed – we omit the pertinent proof for
reason of space – that agents’ equilibrium strategies prescribe that g
randomizes over all the possible routes wherein houses are patrolled
only one time, e.g. with d = 2 all routes 〈i, j〉 such that i �= j. It can
be also showed that, in order for a strategy profile to be an equilib-
rium, at least one r’s type must randomize.

The above model is satisfactory when g and r act simultaneously.
However, in real-world applications it is unreasonable to assume that
r always acts at the turn where g starts to patrol. This is essentially
due to two reasons. Firstly, g cannot synchronize the beginning of its
patrolling route with r’s action, since g cannot observe r. Secondly,
r could wait for one or more turns before choosing the house to rob
in order to observe g’s strategy and take advantage from this obser-
vation. Thus, there is a discrepancy between the situation captured by
the above model, i.e. r cannot make anything but choosing the house
to rob, and the real-world situation, i.e. r can wait for some turns
observing g’s strategy. This discrepancy must be carefully studied in
order to evaluate the effectiveness of the above model. Exactly, we
need to verify whether in real-world situations r violates the proto-
col prescribed by the above model. Technically speaking, we need to
verify whether r can improve its revenue by waiting. In the affirma-
tive case, r will wait, violating thus the protocol, and then the above
model will be not satisfactory. In what follows we show that on the
equilibrium path r waits.

At first, if r waits for one or more turns, the game could close
after d turns. However, the above model captures a strategic situation
d turns long and does not prescribe how g behaves after t = d. Since
we are limiting our analysis to the above model, we can only assume
that g repeats its equilibrium strategies at every d turns. With this
extended model it can be showed that r can improve its expected
utility by waiting for one or more turns in order to partially observe
the route of g and exploiting this information to choose its strategy.
(This is essentially because the model does not perfectly captures the
situation we are considering: it implicitly assumes that r can enter
the house to rob only at every d turns, meanwhile r could enter it
at every turn.) We report an example. Consider a setting with three
houses, d = 2, one r’s type, and yi = yj = yH for all i, j > 0.
Call αij the probability prescribed by σ∗

g to make the route 〈i, j〉. It
can be easily showed that αij = 1

6
for all i �= j with i, j > 0. If

r immediately enters the house to rob, playing at the initial turn, its
optimal strategy is to randomize with probability 1

3
among the three

houses and its expected utility is 2
6
yH+ 4

6
y0. If r waits for one turn to

observe g’s action, it can improve its expected utility. Precisely, if r
has observed that g has patrolled the house i in the first turn, then r’s
expected utility of choosing house i in the second turn is 4

6
yH + 2

6
y0

that, being yH > y0, is strictly greater than r’s expected utility of
robbing at the initial turn. Therefore, r will wait for one turn rather
than to rob a house immediately.

3 The Proposed Normal-Form Model

The failure of the model previously described is due to the neglecting
of the possibility that r can wait: since in real-world situations r can
improve its revenue by waiting, then it will violate the protocol. To
overcome the drawbacks of this model, we must take into account
the real-world possibility that r can wait for one or more turns. Two
routes can be followed:

1. we cast the game into an extensive-form game and we explicitly
take into account the action wait for r by introducing it at every
decision node of r;

N. Gatti / Game Theoretical Insights in Strategic Patrolling: Model and Algorithm in Normal-Form404



2. we develop a normal-form game wherein the action wait is not
explicitly taken into account, but, when the game is played in real-
world situations, r cannot improve its expected utility by waiting.

In this paper we limit our study to normal-form models for patrolling
and therefore we follow the second route. The development of an
appropriate extensive-form game will be explored in future works.

The model we propose is simple. We initially describe it and sub-
sequently we discuss why it is satisfactory. The model prescribes
that g and r act simultaneously. The actions available to r are the
same ones in the model presented in the previous section. The ac-
tions available to g are the following:

g: it chooses a house to patrol among all the possible ones.

The strategy of g will be repeated at every turn. For instance, if the
strategy chosen by g is to patrol house 1, then g will always patrol it.
Practically, on the equilibrium path g’s strategy will be fully mixed
and therefore g will randomize over all the houses at every turn with
the same probability distribution.

Agents’ payoffs are exactly the same ones we defined in the previ-
ous section. We provide agents’ expected utilities since they will be
fundamental in the analysis we carried out in the next section. The
expected utility of r can be easily calculated. Precisely, called αi the
probability prescribed by σ∗

g to patrol house i, the expected utility
for rj of robbing house i is EUrj (i) = (1− αi)d · yi

rj
+ (1− (1−

αi)d) · y0
rj

. Essentially, it is the convex combination between yi
rj

,
i.e. the rj’s evaluation of house i, and y0

rj
, i.e. the evaluation of rj’s

caught, where the parameter of the convex combination is (1−αi)d,
i.e. the probability that g will never patrol house i for d turns.

The calculation of g’s expected utility is more complicated. We
give it by degrees. Suppose initially that r can be only of one type.
Called βi the probability prescribed by σ∗

r to rob house i and sup-
posed that g will follow a mixed strategy based on probabilities αls
for the next d− 1 turns, the expected utility for g of patrolling house
j at the current turn is:

EUg(j) =

mX
i=1,i�=j

h
x

i · β
i · (1 − α

i
)
d−1
i
+

+ x
0 ·
0
@β

j
+

mX
i=j,i �=j

»
β

i ·
„

1 −
“
1 − α

i
”d−1

«–1A

Essentially, EUg(j) gives the expected utility to choose house j at
the current turn given that g will employ a mixed strategy from turn
t = 1 to turn t = d. Suppose now that r can be of different types.
The formula of EUg(j) is defined as a weighted sum of a number of
terms. The weights are the types’ probabilities. The terms to sum are
defined exactly as in the previous formula of EUg(j) and refer to the
single types. The formula of EUg(j) is:

EUg(j) =

nX
k=1

"
ωrk

·
 

mX
i=1,i�=j

h
x

i · β
i
rk

· (1 − α
i
)
d−1
i

+

+ x
0 ·
 

β
j
rk

+

mX
i=1,i�=j

»
β

i
rk

·
„

1 −
“
1 − α

i
”d−1

«–!!#

Now we produce some considerations concerning the proposed
model. Precisely, we need to verify whether in real-world situations
agents will violate the protocol prescribed by the proposed model.
Consider r. The proposed model does not take into account the pos-
sibility that r can wait for some turns, but in real-world setting it can.

Anyway, if r waits for one or more turns, it can be easily observed
that r’s expected utility and g’s one do not change. Then this pos-
sibility does not affect the employment of the model in real-world
situations. Consider g. The proposed model requires that g employs
the same strategy at every turn, but in real-world situations it can em-
ploy different strategies at different turns. Anyway, g cannot make
anything better than employing the same strategy at every turn, since
it has not any information concerning when r acts. It can be showed
– we omit the pertinent proof for reason of space – that g’s optimal
strategy in the proposed model is consistent to g’s optimal strategy
in the extensive-form game wherein the r’s action wait is explicitly
taken into account.

4 Game Theoretical Insights

A game such as the one we are dealing with can be solved by em-
ploying on-the-shelf algorithms. Specifically, such a problem can be
casted into a linear-complementarity problem and then solved by em-
ploying the Lemke-Howson’s algorithm [6]. However, the computa-
tional complexity of the Lemke-Howson’s algorithm is exponential
in the size of the problem, i.e. the number m of houses and the num-
ber n of r’s types. Practically, the production of exact solutions in
real-world situations is not affordable and the computation of ap-
proximate solutions for very simple problems requires long time, e.g.
more than 30 minutes with m = 3 and n = 7 [8]. The drawbacks re-
lated to on-the-shelf algorithms are due to the principle on which they
are based: they search for an equilibrium strategy profile among all
the possible ones neglecting any information concerning the specific
problem to solve. Since the space composed of all the possible strat-
egy profiles raises exponentially in the size of the problem, the search
is inefficient also with very simple problems. This makes the study
of real-world strategic situations by employing on-shelf-algorithm
unaffordable. A route to follow to solve more efficiently strategic sit-
uations is to exploit game theoretical analysis. Precisely, the game
theoretical analysis allows one to derive insights concerning regular-
ities and singularities of the problem that can be employed to reduce
the space of strategy profiles among which the algorithm searches for
the equilibrium. Examples of similar works can be found in [1, 2, 4].
In what follows we game theoretically analyze the proposed game in
the attempt to produce several insights to employ in the design of a
solving algorithm more efficient than the state-of-the-art.

Considering g’s strategies, we can state the following lemma.

Lemma 4.1 On the equilibrium path g’s strategy cannot be pure.

Proof. The proof is by contradiction. Assume σ∗ to be an equilibrium
strategy profile wherein g’s strategy is pure. On the equilibrium path
every r’s types believes that g employs a pure strategies choosing a
specific house to patrol (say house i). On the basis of these beliefs,
since any r’s type strictly prefers not to be caught rather than to be
caught, no r’s type will choose house i. On the basis of this fact, g
can improve its expected utility by patrolling a house different from
i. We reach a contradiction and then σ∗ is not an equilibrium. �

We can state the following lemma, whose proof is omitted being
similar to the proof of Lemma 3.1 but much longer.

Lemma 4.2 On the equilibrium path g’s strategy prescribes that ev-
ery house can be patrolled with a strictly positive probability.

Considering strategies of r’s types, we can state the following
lemma.

Lemma 4.3 On the equilibrium path at least one r’s type employs a
mixed strategy.

N. Gatti / Game Theoretical Insights in Strategic Patrolling: Model and Algorithm in Normal-Form 405



Proof. The proof is by contradiction. Assume σ∗ to be an equilibrium
strategy profile wherein the strategy of all r’s types is pure. It can be
easily showed that g’s optimal strategy is a unique action, expect for
a null-measure subset [5] of the space of the parameters. However, by
Lemma 3.1, there is not any equilibrium wherein g’s strategy is pure.
We reach a contradiction and therefore σ∗ is not an equilibrium. �

5 Improving Solving Algorithm Efficiency

In this section we show how the previous three lemmas can be em-
ployed to reduce the space of the strategy profiles among which one
can search for an equilibrium. Precisely, we can exclude a large num-
ber of strategy profiles that we can assure to be not of equilibrium in-
dependently of the values of the agents’ parameters, e.g. x0 and x1.
Although the proposed algorithm searches within a space of strat-
egy profiles dramatically reduced with respect the state-of-the-art’s
one, this space raises exponentially in the size of the problem. There-
fore, in order to tackle real-world problems, the proposed algorithm
must be improved by introducing heuristics that efficiently guide the
search. We will discuss this topic in future works.

On the basis of Lemma 3.2 every equilibrium strategy profile for
the game we are dealing with is characterized by αi ∈ (0, 1) for
any i ∈ {1, . . . , m}. Since these variables are bound by the equationPm

i=1 αi = 1, the number of free variables related to g’s strategy is
m − 1. Furthermore, on the basis of Lemma 3.3 we know that ev-
ery equilibrium strategy profile is characterized by at least one r’s
type that randomizes. The exact number of r’s types that randomize
and the number of actions over which each specific randomizing type
randomizes in an equilibrium strategy profile can be determined by
studying the pertinent solving equation sets and by excluding singu-
larities of these. For the sake of clarity, we study the possible ran-
domizations of r’s types by degrees: at first when the number of r’s
types is one and subsequently when r’s types are more than one.

5.1 The Base Case: One Robber’s Type

We consider the situation in which the number of r’s types is one. As
customarily in game theory, in a two-player game, the randomization
probabilities related to each player are computed in such a way the
other player can effectively randomize, i.e. every action over which
a player randomizes gives it the same expected utility and no other
action gives it more than randomizing. In the game we are study-
ing, the randomization probabilities of g will be computed in such a
way the actions over which r randomizes give r the same expected
utility and vice versa. Technically speaking, we have two equation
sets: the first one, say Φg, wherein the variables are the randomiza-
tion probabilities of g, i.e. αis, and the equations are of the form
EUr(i) = EUr(j) for all actions i, j over which r randomizes,
the second one, say Φr, wherein the variables are the randomiza-
tion probabilities of r, i.e. βis, and the equations are of the form
EUg(i) = EUg(j) for all actions i, j over which g randomizes. On
the basis of Lemma 3.2, we know that equation set Φg is character-
ized by m − 1 variables and that equation set Φr is characterized by
m− 1 independent equations. We need to find the number of actions
over which r randomizes in order to have two well-defined equation
sets. Since, when r randomizes over m actions, m − 1 variables are
introduced in equation set Φr and m− 1 equations are introduced in
equation set Φg, the appropriate number of actions over which r ran-
domizes on the equilibrium path is m. Notice that, if r randomizes
over a number of actions lower than m, then equation set Φr would

present a number of variables lower than the number of equations
and therefore it does not admit any solution.

Easily, since at the equilibrium both g and r randomize over all
the possible actions and since Φg and Φr, being linear equation sets,
admit a unique solution, then the game admits a unique equilibrium
strategy. In this equilibrium αis, βjs∈ (0, 1). Since agents’ equilib-
rium strategies can be provided in closed form, no search is needed.

By imposing EUr(i) = EUr(j) for any i, j ∈ {1, . . . , m}, we

can calculate the values of αi. Exactly, called γ(i, j) = d

q
yi−y0

yj−y0 ,

by trivial mathematics we obtain: αi =
1 +

Pm
j=1 [γ(i, j) − 1]Pm
j=1 [γ(i, j)]

.

By imposing EUg(i) = EUg(j) for any i, j ∈ {1, . . . , m},
we can calculate the values of βi. Exactly, called ε(i, j) =
(x0−xi)·(1−αi)d−1

(x0−xj)·(1−αj)d−1 , by trivial mathematics we obtain: βi =

1Pm
j=1 [ε(i, j)]

.

5.2 The General Case: More Robber’s Types

We consider the situation in which the number of r’s types can be
any. The analysis is similar to the basic case, but it is more compli-
cated. Meanwhile with a unique r’s type there is a unique possible set
of actions over which r can randomize that makes the above equation
sets well-defined, i.e. all the m houses, with more r’s types it does
not, e.g. r1 could randomize over m−3 houses and r2 over 3 houses.
Furthermore, among all the possible ways with which r’s types can
randomize that makes the pertinent equation sets well-defined, only
one leads to an equilibrium. We need therefore to search for this.

At first, we characterize the strategy profiles with respect to the
actions over which r’s randomizing types randomize (we exclude all
r’s types that do not randomize). We use a n × m binary matrix
Rr where the rows denote the r’s types and the columns denote the
houses, i.e.

m housesz }| {
Rr =

2
41 1 . . . 0 0

0 0 . . . 1 1
0 0 . . . 0 0
0 0 . . . 0 0

3
5
9=
; n types

Precisely, the meaning of Rr is the following: Rr(i, j) = 1 means
that ri randomizes over house j, while Rr(i, j) = 0 means that ri

does not randomize over house j. Notice that, in order for Rr to be
well-defined, the following constraint must hold:

Pm
j=1 Rr(i, j) �= 1

for any i ∈ {1, . . . , n} (i.e., a randomizing agent must randomize
over two actions at least). We call this constraint C1.

Given a matrix Rr we can build equation set Φg for the calcu-
lation of g’s randomization probabilities. Trivially, in order for Φg

to be well-defined, two properties must hold: Φg must be composed
of m − 1 independent equations and all αis must be present in Φg.
These two properties can be translated into the following two con-
straints over Rr:

C2: for any j ∈ {1, . . . , m} it holds
Pm

i=1 Rr(i, j) > 0 (i.e., each
variable αj must be present in Φg),

C3:
Pn

i=1[max{Pm
j=1[Rr(i, j)]−1, 0}] = m−1 (i.e., the number

of independent equations must be m − 1).

Similarly, given a matrix Rr we can also build equation set Φr for
the calculation of the randomization probabilities of r’s types. It can
showed that, in order for Φr to be well-defined, no further constraint
over Rr is needed.

N. Gatti / Game Theoretical Insights in Strategic Patrolling: Model and Algorithm in Normal-Form406



With m = 3 and n = 2, all the feasible Rrs, i.e. all ones that
satisfy C1, C2, C3, are:

nh
1 1 1
0 0 0

i
,
h
0 0 0
1 1 1

i
,
h
1 1 0
1 0 1

i
,
h
1 1 0
0 1 1

i
,

h
1 0 1
1 1 0

i
,
h
1 0 1
0 1 1

i
,
h
0 1 1
1 1 0

i
,
h
0 1 1
1 0 1

io

Given a matrix Rr, it can be possible to find univocally the values
of αis and βj

ri
s by employing equations similar to the ones em-

ployed in the previous section and, subsequently, it is possible to
verify whether agents’ strategies computed on the basis of Rr lead
or not to an equilibrium. Precisely, we need to verify that:

• all αi ∈ (0, 1);
• all the βj

ri
s prescribed by Rr belong to (0, 1);

• all the randomizing r’s types cannot make anything better than
randomizing.

Therefore, we can limit the search for an equilibrium to the search
for a feasible Rr that leads to an equilibrium. This allows one to dra-
matically reduce the space of search and reduce thus the time needed
to compute a solution. Consider for instance the setting with m = 3,
n = 2, and d = 2. The space over which on-the-shelf algorithms
search is the set of vertices of a complex 9-polytope, while the space
of all the feasible Rrs is composed of eight elements. We report our
algorithm in Algorithm 1. Currently, all the feasible Rrs are statically
ordered in lexicographic order.

Algorithm 1: EQUILIBRIUM FINDER

for all feasible Rr do1
solve Φg2

if all αi ∈ (0, 1) then3
calculate optimal strategies of randomizing r’s types on the basis of4

αis
if no randomizing type deviates from actions in Rr then5

calculate optimal strategies of non-randomizing r’s types on the6

basis of αis
solve Φr7

if all βi
rj

∈ (0, 1) then8

return Rr, αis, and βj
ri9

5.3 Experimental Considerations

We provide a preliminary experimental evaluation of the proposed
algorithm. In order to evaluate it, we compare the average time it
requires for the computation of an equilibrium with respect the one
required by the algorithm proposed in [8]. Since our algorithm is not
directly comparable with the algorithm presented in [8], considering
a different model, we have modified our algorithm to solve the model
present in [8]. The experimental results reported below refer to this
modified version of the algorithm. No significant difference in terms
of computational time (< 5%) has been found between the applica-
tion of our algorithm to the model proposed in [8] and the one we
present in Section 3. The algorithm proposed in [8], implemented in
CPLEX, requires more than 30 minutes to compute approximate so-
lutions for settings with m = 3, n = 7 and settings with m = 4,
n = 6. We have implemented our algorithm in C and we have con-
sidered all the settings with m = 3, 4 and n ∈ {6, . . . , 13}. For each
setting we have considered 103 different agents’ payoffs calculated
at random in (0, 1). We have used a 1.4GHz CPU with 500MBytes

RAM. Experimental results are reported in Tab. 5.3. Although the
proposed algorithm is a prominent step ahead with respect to the
state-of-the-art, it cannot address real-world settings. For instance,
it requires more than one day computation for settings with m = 20
and n = 10. The efficiency of the algorithm can be improved by
employing heuristics to order dynamically the feasible Rrs.

types
houses 6 7 8 9 10 11 12

3 0.007 0.011 0.017 0.024 0.033 0.043 0.055
4 0.190 0.352 0.720 1.015 1.532 1.852 2.231

Table 1. Average time (in seconds) required by Algorithm 1 for the
computation of the equilibrium.

6 Conclusions and Future Works

The strategic patrolling is a challenging problem that has found a lot
of attention in artificial intelligence literature. In this paper we con-
sider the principal strategic patrolling model presented in literature.
We provide two prominent contributions. At first, we show that the
model proposed in the state-of-the-art presents some unsatisfactory
issues concerning game theory and subsequently we provide a model
that is game theoretically satisfactory. Then, we have analyzed the
considered game in order to produce some insights concerning regu-
larities and singularities of the corresponding solving equation sets.
These insights have been subsequently employed in the design of a
solving algorithm. This algorithm has been showed to be much more
efficient than state-of-the-arts’s ones.

Our intention is to develop the proposed work along two main
directions. The first one concerns the provision of an appropriate
extensive-form model for the considered strategic interaction situ-
ation. We will study furthermore leadership with commitment to
mixed strategies in our model. The second one is more general and
concerns the development of a general approach to exploit game
theoretical analysis to enable algorithms to afford real-world setting
game situations, e.g. by employing genetic algorithms.

REFERENCES

[1] F. Di Giunta and N. Gatti, ‘Alternating-offers bargaining under one-
sided uncertainty on deadlines’, in Proceedings of ECAI, pp. 225–229,
Riva del Garda, Italy, (2006).

[2] F. Di Giunta and N. Gatti, ‘Bargaining over multiple issues in finite
horizon alternating-offers protocol’, Annals of Mathematics in Artificial
Intelligence, 47(3-4), 251–271, (2006).

[3] D. Fudenberg and J. Tirole, Game Theory, The MIT Press, Cambridge,
MA, USA, 1991.

[4] N. Gatti, F. Di Giunta, and S. Marino, ‘Alternating-offers bargaining
with one-sided uncertain deadlines: an efficient algorithm’, Artificial
Intelligence, 172(8-9), 1119–1157, (2008).

[5] P. R. Halmos, Measure Theory, Springer, Berlin, Germany, 1974.
[6] C. Lemke, ‘Some pivot schemes for the linear complementarity prob-

lem’, Mathematical Programming Study, 7, 15–35, (1978).
[7] N. Nisam, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic

Game Theory, Cambridge University Press, New York, USA, 2007.
[8] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus, ‘An

efficient heuristic approach for security against multiple adversaries’,
in Proceedings of AAMAS, pp. 311–318, Honolulu, USA, (2007).

[9] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus, ‘Security in multia-
gent systems by policy randomization’, in Proceedings of AAMAS, pp.
273–280, Hakodate, Japan, (2006).

[10] R. Porter, E. Nudelman, and Y. Shoham, ‘Simple search methods for
finding a nash equilibrium’, in Proceedings of AAAI, p. 664669, San
Jose, USA, (2004).

N. Gatti / Game Theoretical Insights in Strategic Patrolling: Model and Algorithm in Normal-Form 407


