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Abstract. We study privacy guarantees for the owner of an informa-
tion system who wants to share some of the information in the sys-
tem with clients while keeping some other information secret. The
privacy guarantees ensure that publishing the new information will
not compromise the secret one. We present a framework for describ-
ing privacy guarantees that generalises existing probabilistic frame-
works in relational databases. We also formulate different flavors
of privacy-preserving query answering as novel, purely logic-based
reasoning problems and establish general connections between these
reasoning problems and the probabilistic privacy guarantees.

1 Motivation
Privacy protection is an important issue in modern information sys-
tems. The digitalization of data on the Web has dramatically in-
creased the risks of private information being either accidentally or
maliciously disclosed. These risks have been witnessed by numer-
ous cases of personal data theft from systems that were believed to
be secure. The design of information systems that provide provable
privacy guarantees is, however, still an open problem—in fact, the
notion of privacy is itself still open to many interpretations [2].

This paper addresses the problem of privacy-preserving query an-
swering. In this setting it is assumed that the information itself is
kept secret, but that the owner of the information wants to allow
some query access to it while at the same time preventing private
information from being revealed. For example, a hospital may want
to allow researchers studying prescribing practices to query the pa-
tients’ records database for information about medicines dispensed in
the hospital, but they want to ensure that no information is revealed
about the medical conditions of individual patients.

To make this more precise, the hospital wants to check whether
answering specified legal queries could augment knowledge (from
whatever source) that an attacker may have about the answer to a
query for patient names and their medical conditions (the so-called
sensitive query). Taking into account that an attacker may have pre-
vious knowledge about the system is of crucial importance, as such
knowledge may connect the answers to legal and sensitive queries,
and lead to the (partial) revelation of the latter. For example, allowing
a query for drugs and the dates on which they were prescribed may
seem harmless, but if the attacker knows the dates on which patients
have been in hospital and drugs that are used to treat AIDS, then he
may deduce that there must be an AIDS patient amongst the group
known to be in hospital on a date when AIDS drugs were dispensed.

This problem has been recently investigated in the context of re-
lational databases (DBs) [9, 10, 6]. In these privacy frameworks, the
knowledge and/or beliefs about the system of a potential attacker are
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modeled as a probability distribution over possible states of the infor-
mation system. Privacy checking then amounts to verifying whether
publishing new information, such as the answer to a legal query,
could change the probability (from an attacker’s perspective) of any
particular answer to the sensitive query.

In the first part of this paper, we extend the probabilistic notions
of privacy explored in the DB literature to cover a very general class
of logic-based languages which includes, for example, ontology lan-
guages [12]. Furthermore, since these notions are too strict in prac-
tice, we propose ways to weaken them. In the second part, we for-
mulate privacy-preserving query answering in terms of novel, purely
logic-based reasoning problems. We show that our logic-based no-
tions have natural probabilistic counterparts. Finally, we argue that
these reasoning problems are related to existing ones; to illustrate
this fact, we point out a connection with the notion of a conservative
extension, an important concept in modular ontology design [8, 7].

Given the generality of our notion of an information system, we
do not make claims concerning computational properties. Our re-
sults, however, provide an excellent formal base for studying such
properties for particular languages.

2 Logic-based Information Systems

We adopt a general framework for describing logic-based informa-
tion systems that captures any language whose formal semantics is
based on First Order (FO) models; the framework is open toward
different mechanisms for selecting admissible models and thus com-
prises a wide range of languages. We distinguish between intensional
knowledge (background knowledge about the application domain)
and extensional knowledge (data involving specific objects of the do-
main). This allows us to make the usual distinction in KR between
schema knowledge and data. The framework here has been adapted
from existing general frameworks in the literature [5, 1].

An Information System Formalism (ISF) is a tuple F =
(Σ,LS ,LD ,Sem) where Σ is a countably infinite FO-signature,
LS ,LD are FO-languages over Σ, called the schema and dataset lan-
guage respectively, and Sem is a specification of the semantics (of
which more below). A schema S (respectively a dataset D) is a set
of LS -sentences (respectively a set of LD -sentences) over Σ.

For example, in relational DBs, Σ is a set of relations and con-
stants; LD only allows for ground atomic formulas, and LS is the
language of FO Predicate Logic with equality. Datasets and schemas
are called relational instances and relational schemas respectively. In
the case of description logic (DL) ontologies, Σ contains unary re-
lations, binary relations and constants; LS is a DL, such as SH I Q
[12], and LD again only allows for ground atomic formulas over the
predicates in Σ; Datasets are called ABoxes and schemas TBoxes.
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The semantics is given by a pair Sem = (δ,◦); δ is a function
that assigns to each FO-interpretation I over Σ and each possible
set S of LS -sentences (respectively LD -sentences D) a truth value
δ(I ,S) ∈ {true, false} (respectively δ(I ,D) ∈ {true, false}); ◦ is a
binary operation on sets of interpretations, such that for each pair of
sets M1,M2, ◦ returns a set of interpretations M3 = M1 ◦M2.

An information system (IS) F is a pair ℑ = (S ,D), with S
an LS -schema, and D an LD -dataset. The set of models of ℑ is
Mod(ℑ) = Mod(S)◦Mod(D), with Mod(S) = {I | δ(I ,S) = true}
and Mod(D) = {I | δ(I ,D) = true}. ℑ is satisfiable if Mod(ℑ) 6= /0.

For example, in both ontologies and relational DBs, schemas are
interpreted in the usual way in FOL: δ(I ,S) = true iff I |=FOL S .
In SH I Q ontologies, datasets are also interpreted in the usual way:
δ(I ,D) = true iff I |=FOL D , and ◦ is the intersection between the
schema and the dataset models. In relational DBs, however, the data
usually has a single model—that is, δ(I ,D) = true iff I = ID , where
ID is the minimal Herbrand model of D; The operation ◦ is also
defined differently: I1 ◦ I2 ∈Mod(ℑ) iff I2 = ID and ID |=FOL S .

We are also very permissive w.r.t. query languages. A query lan-
guage for F is an FO-language LQ over Σ. A boolean query Q is
an LQ -sentence. The semantics is given by a function δLQ that as-
signs to each interpretation I and boolean query Q a truth value
δLQ (I ,Q) ∈ {true, false}. A system ℑ entails Q, written ℑ |=F Q
if, for each I ∈Mod(ℑ), δLQ (I ,Q) = true. A general query Q is a
LQ -formula, where x is the vector of free variables in Q. Let σ[x/o]
be a function that, when applied to a general query Q, yields a new
boolean query σ[x/o](Q) by replacing in Q the variables in x by the
constants in o. The answer set for Q in ℑ is the following set of tuples
of constants: ans(Q,ℑ) = {o | ℑ |=F σ[x/o](Q)}.

An example of a query language could be the language of con-
junctive queries in both DBs and ontologies. Given a query language
LQ , a view over ℑ is a pair V = (V,v), with V —the definition of the
view— an LQ -query, and v—the extension of the view— a finite set
of tuples of constants, such that v = ans(V,ℑ).

Condition Set
[S↑] Syst([S↑]) = {ℑ = (S ′,D) | ℑ ∈ IS and S ⊆ S ′}
[S∗] Syst([S∗]) = {ℑ = (S ,D) | ℑ ∈ IS}
[V] Syst([V]) = {ℑ ∈ IS | each V ∈ V is a view over ℑ}

[Q = q] Syst([Q = q]) = {ℑ ∈ IS | ans(Q,ℑ) = q}

Table 1. Conditions on Information Systems

Given F = (Σ,LS ,LD ,Sem), we denote by IS, D the set of all
satisfiable systems and datasets respectively in F , and by Tup the
set of all tuples of constants over Σ. We also consider systems in IS
that satisfy certain conditions; the conditions we consider are given
in Table 1. Given a schema S , the first and second rows in the table
represent respectively the set of ISs whose schemas extend S and
are equal to S ; given a set of views V, the third row represents the
set of ISs over which every V ∈ V is a view; finally, given a query
Q and an answer set q, the last row represents the ISs for which q
is the answer to Q. We denote with [C1, . . . ,Cn] the conjunction of
conditions [C1], . . . , [Cn], and with Syst([C1, . . . ,Cn]) the subsets of
IS that satisfy all of [C1], . . . , [Cn].

3 The Privacy Problems
Given F = (Σ,LS ,LD ,Sem) and a query language LQ , our goal is to
study privacy guarantees for Bob —the owner of a system ℑ = (S ,D)
in IS— against the actions of Alice— a potential attacker.

Existing privacy frameworks for DBs[9, 10, 6] assume that the
actual data D is kept hidden. The data to be protected is defined by

a query Q, called the sensitive query, whose definition is known by
Alice. As an external user, Alice can only access the system through a
query interface which allows her to ask certain “legal” queries; these
legal queries, together with their answers, are represented as a set V
of views over ℑ. Bob wants to extend the set of legal queries, i.e., to
publish new views. The problem of interest is the following:
The publishing problem: Given ℑ = (S ,D), an initial set of views
V and a final set of views W over ℑ with V ⊆W, verify that no
additional information about the answers to Q is disclosed.2

R(x,y) S(z,y) T(z,w,x) F(z,t)
(dis1,drug1) (pat1,drug1) (pat1,male,dis1) (pat1, f lo1)
(dis2,drug1) (pat2, drug1) (pat2,male,dis2) (pat2, f lo2)
(dis3, drug2) (pat3, drug2) (pat3, f em, dis3) (pat3, f lo3)
(dis4, drug2) (pat4, drug2) (pat4, male, dis4) (pat4, f lo2)

Table 2. Example Hidden Dataset

Example 1 The IS of a hospital, modeled in FO-logic, contains
data about the following predicates: R(x,y), which relates diseases
to drugs, S(z,y), which relates patients to their prescribed drugs,
T(z,w,x), which relates patients, their gender, and their diagnosed
disease, and F(z, t) which specifies the floor of the hospital where
each patient is located. Their extension in the hidden dataset D is
given in Table 2. The schema S is public and contains FO-sentences
such as ∀x,y : [R(x,y)⇒Disease(x)∧Drug(y)], which ensures that R
only relates diseases to drugs, and sentences like ∀x : [Disease(x)⇒
¬Drug(x))], which ensures disjointness between drugs, diseases, pa-
tients, genders and floors. S also models other common-sense knowl-
edge, e.g. that the gender of a patient is unique. Bob does not want to
reveal any information about which patients suffer from dis1, i.e.,
the answer to the query Q(z) = ∃w : [T(z,w,dis1)] should be se-
cret; however, Bob also wants to publish views V1 = (V1,v1), and
V2 = (V2,v2) with V1(x,y)← F(z, t) and V2(z,w)←∃x : [T(z,w,x)],
and where v1,v2 are their respective extensions w.r.t. D . Publishing
these views could lead to a privacy breach w.r.t. Q. For example, if S
contains a sentence α stating that all the patients in f lo1 suffer from
dis1 then, by publishing V1, Alice could deduce that pat1 suffers
from dis1 and thus belongs to the answer to Q1, which clearly causes
a privacy breach. Even if the identity of patients suffering from dis1
is not revealed, the views could still provide useful information to
Alice. Suppose that S contains β stating that dis1 is a kind of disease
that only affects men; then by publishing V2 Alice could infer that
pat3, a woman, cannot be in the answer to Q1, which would permit
Alice to discard possible answers. Such privacy breaches are dataset-
dependent: if all patients in D were male and none of them is on the
first floor, then publishing V1 and V2 would be harmless. 3

Existing DB frameworks assume that the schema is static and fully
known by Alice, which are not always reasonable assumptions. For
inferential systems like ontologies [12], where the schema partici-
pates in query answering by allowing the deduction of new data, Bob
may prefer to hide a part of the schema. In fact, some widely used
ontologies, such as SNOMED-CT—a component of the Care Record
Service in the British Health System—are not fully available. Fur-
thermore, the schema may undergo continuous modifications; indeed
many ontologies are updated on a daily basis. To overcome these lim-
itations, we propose to formalise and study the following problems:

The generalised publishing problem: New views or schema axioms
are published, but the IS ℑ = (S ,D) remains static. Given an initial
public schema S1 and a final public schema S2 with S1 ⊆ S2 ⊆ S ,

2 Note that this generalises the “standard” case where V = /0.

B. Cuenca Grau and I. Horrocks / Privacy-Preserving Query Answering in Logic-Based Information Systems 41



initial views V and final views W with V ⊆W, Bob wants to verify
that no additional information about the answers to Q is disclosed.

The system evolution problem: The IS ℑ = (S ,D) evolves to ℑ′ =
(S ′,D ′). Bob wants to ensure that, if it was possible to safely publish
certain information before the change, then the same information can
be safely published after the change.

DB frameworks are probabilistic and apply to the publishing prob-
lem [10, 6, 11]. In the next section, we generalise them. Our presen-
tation differs from [10, 6, 11] in two aspects: we consider arbitrary
ISFs instead of relational DBs; and we consider the generalised pub-
lishing problem: instead of assuming that the schema is fixed and
known, we allow for partially secret schemas. We show that known
results for DBs can be naturally lifted to our more general setting.

4 Probabilistic Frameworks
The framework by Miklau & Suciu [10] is based on Shannon’s
information-theoretic notion of perfect secrecy. As mentioned be-
fore, we present the framework in a more general form.

Alice’s (additional) knowledge about the IS being attacked is given
as a distribution P : IS→ [0,1] over all possible ISs. Given P, the
probability that an IS satisfies a condition [C] in Table 1 is as follows:
P([C]) = ∑ℑ∈Syst([C]) P(ℑ). Given [C1], [C2], P([C1] | [C2]) represents
the probability, according to Alice’s knowledge, that an IS satisfies
[C1] given that it satisfies [C2]; this can be computed using the Bayes
formula: P([C1] | [C2]) = P([C1,C2])

P([C2])
Let ℑ = (S ,D) be the system to be protected. Alice initially knows

part of the schema S1 ⊆ S and views V over ℑ. After publication, she
observes the new schema S2 with S1 ⊆ S2 and views W = V∪U; she
is also aware that the real schema S extends both S1 and S2. The a-
priori and a-posteriori probabilities, according to Alice’s knowledge,
that q is the answer to Q are respectively given as follows:3

P([Q = q] | [S1↑,V]) (a-priori) (1)

P([Q = q] | [S2↑,W]) (a-posteriori) (2)

The privacy condition under consideration is called perfect privacy:
intuitively, Alice should not learn anything about the possible out-
comes of Q, whatever her additional knowledge or beliefs (i.e., for
any P). Note that the condition is trivially satisfied if S1 and V al-
ready reveal the answer to Q, i.e., if each ℑ ∈ Syst([S1↑,V]) yields
the same outcome to Q; in this case we say that Q is trivial.

Example 2 Suppose that in Example 1, the schema S with β ∈ S is
known, and V2—the relation between patients and their genders— is
published. Suppose that Alice has only vague knowledge about the
IS and considers all datasets consistent with S equally likely. Con-
sider an answer set q containing pat3. Before publishing the view,
the probability (1) is non-zero for q, whereas, after publishing V2, (2)
is zero. Intuitively, Alice’s knowledge about Q has increased. 3

Definition 1 (Perfect Privacy). Perfect privacy holds if, for each
P : IS→ [0,1] and q ∈ Tup with (1) well-defined, (2) equals (1).

The framework by Deutsch and Papakonstantinou [6, 11] models
Alice’s knowledge or beliefs as a distribution P : Tup→ [0,1] over
the possible outcomes of the sensitive query. Here, we present the
framework in a more general form.

3 These probabilities are well-defined if P([S1↑,V]) and P([S2↑,W]) are non-
zero; that is, if there is a IS with non-zero probability that is compatible
with the available information.

In Example 1, Alice may believe that the answer to Q is q1 =
{pat1} with P(q1) = 2/3, q2 = {pat1, pat2} with P(q2) = 1/6 and
q3 = {pat1, pat3} with P(q3) = 1/6. Note the difference with [10],
where Alice had prior knowledge about the possible ISs themselves.

The distribution P induces possible compatible distributions P′ :
IS → [0,1] over ISs as follows: P′ is compatible with P, writ-
ten P′ ∈ Comp(P) if, for each q, the sum of the probabili-
ties of the ISs for which ans(Q,ℑ) = q is precisely P(q) (i.e.,
∑{ℑ∈Syst([Q=q])}P′(ℑ) = P(q)). Alice’s a-priori and a-posteriori
knowledge is given respectively by (1) and (2) over P′, and the pri-
vacy condition is the following:

Definition 2 (Safety). Safety holds if, for each P : Tup→ [0,1], P′ ∈
Comp(P), and q ∈ Tup with (1) well-defined, (2) equals (1).

Triviality of Perfect Privacy and Safety: In the relational DB litera-
ture, it has been observed that, on the one hand, safety and perfect
privacy are closely related [6] and that, on the other hand, they are
too strict in practice: revealing any new information, even if appar-
ently irrelevant to Q, causes perfect privacy and safety not to hold—
intuitively, this is because the attacker’s beliefs can establish a (pos-
sibly spurious) connection between any revealed information and the
answer to the sensitive query. We show that these results can be nat-
urally lifted to the generalised publishing problem for arbitrary ISFs
as follows:

Theorem 1 For given ℑ, Q, S1,S2, and V, W: (i) Safety⇔ Perfect
Privacy, and (ii) Perfect Privacy⇔ Syst([S1↑,V])⊆ Syst([S2↑,W]).

Relaxing Perfect Privacy and Safety: A number of recent papers
have tried to weaken these notions. Miklau and Suciu [10] proposed
to place constraints on P and consider only product distributions;
this amounts to assuming that the tuples in the DB are independent.
This assumption, however, is not reasonable if the schema is non-
trivial: schema constraints can impose arbitrary correlations between
tuples. Other proposals, e.g. [3], involve making (1) only approxi-
mately equal to (2). In this paper, we propose two novel notions—
quasi-safety and quasi-privacy— that significantly relax Definitions
1 and 2 respectively; we show later on that both notions are equiva-
lent and have a nice logical counterpart in terms of purely logic-based
reasoning problems.

Consider the notion of safety. Given P : Tup→ [0,1], Definition 2
requires (1) and (2) to coincide for all its compatible distributions.
Definition 2 can be relaxed by requiring, for each P, only the ex-
istence of a compatible distribution P′ for which (1) and (2) co-
incide. Moreover, such distribution must be “reasonable” given the
public information S1,V—that is, if P assigns non-zero probability
to q1, then P′ cannot assign zero probability to all ISs that satisfy
[S1,V] and yield q1. Formally, we say that P′ ∈ Comp(P) is ad-
missible for S1,V if, for each q such that P(q) 6= /0, there is an IS
ℑ ∈ Syst([S1,V,Q = q]) such that P′(ℑ) 6= /0.

Definition 3 (Quasi-Safety). Quasi-safety holds if, for each P :
Tup → [0,1] there is an admissible P′ ∈ Comp(P) s.t., for each
q ∈ Tup, for which (1) is well-defined, (2) equals (1).

That is, whatever Alice’s knowledge or beliefs about the answers to
Q, there is always a compatible opinion about the hidden IS that is
“reasonable” given the public information and that would not cause
her to revise her beliefs after the new information is published. A
similar principle can be used for weakening perfect privacy:

Definition 4 (Quasi-Privacy). Quasi-privacy holds if, for each P :
IS→ [0,1], there is a P′ : IS→ [0,1] s.t., for each q ∈ Tup for which
(1) is well-defined over P, (2) over P′ equals (1) over P.
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That is, whatever Alice’s initial beliefs about the hidden IS, she can
always revise them such that her opinion about the answers to Q does
not change when the new information is published.

5 A Logic-based Framework
In this section, we formalise privacy from a purely logic-based
perspective as a guarantee that the published information will not
“change the meaning” of the sensitive query. We propose a collec-
tion of privacy conditions that model this notion of meaning change,
and consider both the publishing and the evolution problems.

5.1 The Generalised Publishing Problem
The most basic information about Q is obviously its answer. The
most dangerous privacy breach occurs when publishing new infor-
mation reveals part of such answer. In Example 1, before publishing
any views, Alice cannot deduce the name of any patient suffering
from dis1; after publication of V1, Alice learns that pat1 does have
dis1 and therefore belongs to the answer of Q. We will then say that
the set of certain answers to Q has changed.

Furthermore, as seen in Example 1, a privacy breach could also
occur if Alice can discard possible answers and therefore formulate
a “better guess”, even if part of the actual answer has not been dis-
closed. Initially, all possible sets of patients (e.g. q3 = {pat2, pat3})
are possible. Upon publication of V2, all answers including pat3 (e.g.
q3 = {pat2, pat3}) become impossible. We will then say that the set
of possible outcomes of Q has changed.
Possible outcomes and certain answers: Given Q and a condition [C]
(see Table 1), the possible outcomes of Q given [C] are as follows:

out([C]) = {q ∈ Tup | ∃ℑ ∈ Syst([Q = q,C])} (3)

The set of certain answers of Q given [C] is defined as the common
subset of all the possible outcomes: cert([C]) =

⋂
out([C]).

As argued before, a privacy condition should at least guarantee that
the set of certain answers given the initial schema and views stays the
same after publishing the new information:4

cert([S1↑,V]) = cert([S2↑,W]) (4)

A stronger privacy condition can be obtained if we require the set of
possible outcomes not to change as follows:

out([S1↑,V]) = out([S2↑,W]) (5)

It is ultimately up to the data owner to decide which condition is most
appropriate for his application needs.
Monotonicity for answer sets: Sometimes in this section we will fo-
cus only on ISFs and query languages that have a monotonic behav-
ior with respect to answer sets—that is, if new schema axioms and/or
views are published, the set of possible answers to a query Q can only
decrease. In the limit, if the whole system is published, then only one
answer remains possible, namely the “real” answer for Q against the
IS . This property can be formalized as follows:

S1 ⊆ S2 and V⊆W⇒ out([S∗2 ,W])⊆ out([S∗1 ,V]) (6)

Many languages currently used in practice, such as relational DBs
and DL ontologies satisfy this property. Checking Condition (5) in
ISFs that satisfy Property (6) just requires to consider the initial and
final schemas, instead of all their super-sets.

4 It can be easily seen that Condition (5) implies 4

Proposition 1 If F satisfies Property (6), then Condition (5) holds
iff out([S∗1 ,V])⊆ out([S∗2 ,W]),

In what follows, if a result depends on Property (6), it will be ex-
plicitly stated; otherwise, we assume general ISFs and queries.

Bridges between probability and logic: At this stage, we can estab-
lish a first general bridge between our logic-based conditions and
the probabilistic ones. In particular, it turns out that Condition (5) is
equivalent to both quasi-privacy and quasi-safety:

Theorem 2 Quasi-safety⇔ Quasi-privacy⇔ Condition (5).

Note that Theorem 2, on the one hand, implies that quasi-safety
and quasi-privacy are indeed equivalent notions; on the other hand, it
provides a natural logical interpretation to our probabilistic weaken-
ing of safety and perfect privacy.

Breaches in logic privacy: Condition (5) may still lead to potential
security breaches if new schema axioms are published, as shown by
the following example:

Example 3 Suppose LS is FO predicate logic, LD only allows for
ground atomic formulas, and LQ is the language of conjunctive
queries. Let A,B be unary predicates and R a binary predicate; con-
sider a Σ′ with two constants: a,b. The sensitive query is A(x). Sup-
pose that Bob publishes V1 with definition B(x) and extension {a,b}.
Initially, S1 = /0 and hence all outcomes Tup = {{},{a},{b},{a,b}}
are possible. Suppose that Bob publishes S2 = {∀x : [A(x)↔ ∃y :
[R(x,y)∧ B(y)]]}. Upon publication of S2, no possible outcome is
ruled out, but S2 has introduced a correlation between V1 and Q.
These correlations could potentially lead to a security breach. 3

Indeed, even if Alice cannot discard any possible outcome of Q,
Bob may want to prevent the new information from establishing po-
tentially dangerous correlations; to this end, we introduce a stronger
notion of logic-based privacy.

Strengthening logic privacy: We propose an additional condition in
case new schema axioms are published. Our condition is only defined
for ISs satisfying Property (6) and it ensures that for each possible
dataset D , Alice obtains the same answer for Q independently of
whether she considers the initial schema S1 or the final one S2. That
is, for each ℑ = (S2,D) ∈ Syst([S∗2 ,W]), the following should hold:

ans(Q,ℑ) = ans(Q,ℑ′) (7)

where ℑ′ = (S1,D). If we enforce this condition in the example
above, we would have that publishing S2 yields a privacy breach.
Indeed, consider D = {R(a,b),B(a),B(b)}; we have ans(Q,S1 =
{}) = {}, whereas ans(Q,S2) = {a}. These intuitions motivate the
following notion of privacy for ISFs satisfying Property (6):

Definition 5 (Strong Logic-based Privacy). Given Q, S1,S2, V, W,
strong logic-based privacy holds if Conditions (5) and (7) hold.

The above establishes a middle ground between too strict privacy
notions (Definitions 1, 2) and rather permissive ones (Definitions 3,
4). Definition 5 implies that a privacy breach may only occur if the
new information correlates the public one to the answers of Q; that
is, publishing information that is completely unrelated to Q will not
break privacy. Note, however, that if S1 = S2, then Definition 5 re-
duces to Condition (5) since Condition (7) trivially holds.

A connection with conservative extensions: Definition 5 is close to
conservative extensions, a well-established notion in mathematical
logic, and an important concept in ontology design and reuse [8, 4, 7].
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Conservative extensions have been recently proposed as the basic
notion for defining modules in ontologies—independent parts of a
given theory— and safe refinements—extensions of a theory that do
not affect certain aspects of the meaning of the original theory. In the
context of privacy-preserving query answering, the notion of a query
conservative extension [7] for monotonic ISFs is of special relevance:

Definition 6 (Query Conservative Extension). 5 Given S1 ⊆ S2,
sets Q, D of queries and datasets respectively, S2 is a query conser-
vative extension of S1 w.r.t. Q,D if, for each Q ∈ Q and D ∈ D, we
have that ans(Q,ℑ = (S2,D)) = ans(Q,ℑ′ = (S1,D)).

In order to establish a connection between Definitions 5 and 6, let
us introduce the following notation. Given [C], we denote the set of
datasets that an IS that satisfies [C] can have as follows: Data([C]) =
{D ∈ D | ∃ℑ ∈ Syst([C]),ℑ has dataset D}.

If D = Data([S∗2 ,W]), then Definition 6 corresponds precisely to
Condition (7). If V = W, and D = Data([S∗1 ,V]), then Definition 6
is a sufficient condition for strong logic-based privacy.

5.2 The System Evolution Problem
Suppose that the privacy of ℑ = (S ,D) w.r.t. a query Q and a set
V of published views has been tested and the system evolves to
ℑ′ = (S ′,D ′). We want to ensure that ℑ′ behaves in the same way
as ℑ w.r.t. the secrecy of Q given V. Such notion of robustness
under changes can be characterized as follows. Let ℑ = (S ,D),
ℑ = (S ′,D ′) be ISs, and let Q be a sensitive query. Consider a no-
tion of security characterized by a predicate Privacy(ℑ,Q,V), e.g.
(strong) logic-based privacy, which is evaluated to true if, given the
IS ℑ = (S ,D), with S being public, Q is secure for the publication
of V.

Definition 7 (Secure Evolution). The evolution of ℑ = (S ,D) to
ℑ′ = (S ′,D ′) is secure w.r.t. Q and V if Privacy(ℑ,Q,V) implies
Privacy(ℑ′,Q,V′) with V′ being the views over ℑ′ with the same
view definitions as V.

We distinguish two situations: (i) the data changes during the evo-
lution of the system, but the schema remains constant, and (ii) the
data remains constant, but the schema changes.
Varying the data: We first formulate the notion of data independence,
which ensures robust evolution w.r.t. changes in the data.

Definition 8 (Data Independence). A notion of privacy is data-
independent w.r.t. S , Q and V if, for each ℑ,ℑ′ ∈ Syst([S∗]) the
evolution of ℑ to ℑ′ is secure w.r.t. Q, V.

It is not hard to see that, given any non-trivial Q and any S , Perfect
privacy and safety are data-independent w.r.t. S ,Q. In contrast, the
notion of privacy derived from Condition 5 is not data-independent
for all S . Consider Example 1 and suppose that the schema S con-
tains the sentence β and that the dataset D only contains male pa-
tients. In this case, Condition (5) holds since no possible outcome
of Q can be ruled out when publishing V2; however, if D evolves to
D ′ containing a female patient, then the condition is violated. As a
consequence, strong logic-based privacy is not data-indepedent and,
given Theorem 2, nor are quasi-privacy and quasi-safety.

Data independence for any schema is, indeed, a strict requirement.
For ISFs satisfying Property (6), certain schemas and certain views,
it is possible to obtain data-independence results:

5 In [7], D and Q are the sets of all datasets and all queries respectively over
a given signature.

Proposition 2 Let S be a query conservative extension of S ′ = {}
w.r.t. Q = {Q} and D = D; let V, V′ be s.t. out([V]) = out([V′]).
Then (strong) logic-based privacy is data-independent w.r.t. S ,Q.

Proposition 2 guarantees that data independence is obtained for
schemas and views that are uncorrelated with the sensitive query.
Varying the schema: we now assume that the data remains constant
and the schema changes. Suppose that, in Example 1, the initial
schema S does not contain β; let S ′ = S ∪{β} and let the dataset D
contain a female patient. Publishing the names and gender of the pa-
tients (view V2) does not cause a privacy breach since S does not in-
troduce any correlation between diseases and the gender of patients;
however, when ℑ = (S ,D) evolves to ℑ′ = (S ′,D ′) then such corre-
lation does exist and the publication of V2 is no longer safe.

Note that, given Q,D , we have that S ′ is not a query conserva-
tive extension of S . This observation suggests the following sufficient
condition for secure evolution of ISFs satisfying Property (6):

Proposition 3 Let S ′ is a query conservative extension of S w.r.t
Q = {Q} and D = Data([S∗]); let out([S∗,V]) = out([S∗,V′]). Then,
the evolution of ℑ = (S ,D) to ℑ′ = (S ′,D) is secure w.r.t. Q,V for
both privacy as in Condition (5) and strong logic-based privacy.

Propositions 2 and 3 establish a bridge between the notions of con-
servative extension and secure evolution and show that the former
can be used to provide sufficient conditions for the latter.

6 Conclusion
In this paper, we have generalised existing results for privacy in
databases, and proposed novel privacy conditions. We have proposed
a novel logic-based approach and established bridges with existing
information-theoretic approaches. Our results provide a deeper fun-
damental understanding of privacy-preserving query answering and
can be used as a starting point for studying the decidability and com-
plexity of the different privacy guarantees for particular languages.
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