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Abstract. The ability to express preferences for specific tasks in
multi-agent auctions is an important element for potential users who
are considering to use such auctioning systems. This paper presents
an approach to make such preferences explicit and to use these pref-
erences in bids for reverse combinatorial auctions. Three different
types of preference are considered: (1) preferences for particular du-
rations of tasks, (2) preferences for certain time points, and (3) pref-
erences for specific types of tasks. We study empirically the tradeoffs
between the quality of the solutions obtained and the use of prefer-
ences in the bidding process, focusing on effects such as increased
execution time. We use both synthetic data as well as real data from
a logistics company.

1 Introduction

Auctions are used in multi-agent systems, among other things, to per-
form allocation of tasks (see e .g. [13] and [14]). Such reverse auc-
tions, where the buyer is the auctioneer, can be of a combinatorial
type, allowing for bidding on bundles of tasks. Sandholm [12] notes
that reverse auctions are not economically efficient because optimal
bundling depends on suppliers preferences, which traditionally can-
not be expressed. Enabling the agents to express the preferences of
their users is an important requirement for actual companies and peo-
ple to use agents for bidding.

In this paper we propose a concrete preference function to be used
by an agent to express preferences over tasks. This function expresses
preferences for specific properties of tasks and it is used in a decen-
tralized task allocation setting. We introduce a bidding algorithm,
where an agent bids on its most preferred tasks that are feasible given
its current commitments. This algorithm uses a pricing mechanism
which depends on the actual cost to perform the tasks and on the
preference for the task. The influence of preferences on the price can
be varied by setting a parameter (look at the role of the parameter p
in the algorithm in Section 3.5).

Using this algorithm, we investigate the impact of preferences
upon other aspects of task execution, such as execution time. We use
both synthetic as well as real data from a logistics company.

This paper is organized as follows. First, the auctioning system
used throughout the paper is introduced in Section 2. Section 3 in-
troduces a function to express preferences and a bidding algorithm
based upon such preferences. Experiments to evaluate the bidding al-
gorithm and to study the trade-off between preferences and efficiency
of task execution are presented in Section 4. Section 5 discusses re-
lated work, and finally, Section 6 concludes the paper.
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2 The MAGNET System

The approach we present exploits some unique features of the MAG-
NET [4] system that allows autonomous agents to negotiate over co-
ordinated tasks with precedence and time constraints. The MAGNET
system consists of: (1) a customer agent, which puts tasks up for auc-
tion. The tasks have time constraints and other restrictions; (2) sup-
pliers agents, which bid on the tasks and execute them if awarded;
and (3) the MAGNET market server, which keeps track of the activi-
ties of the agents and of the auctions. The main interactions between
agents in the MAGNET system are as follows:

• A customer agent issues a Request for Quotes (RFQ) which spec-
ifies the tasks, their precedence relations, and a time line for the
bidding process. For each task, a time window specifies the earli-
est time the task can start and the latest time the task can end.

• Supplier agents submit bids. A bid includes one or more tasks,
a price, the portion of the price to be paid as a non-refundable
deposit, and the estimated duration and time window for task exe-
cution. Bids reflect supplier resource availability and constrain the
customer’s scheduling process.

• The customer agent decides which bids to accept. Each task needs
to be mapped to one bid and the constraints of all awarded bids
must be satisfied in the final schedule. In MAGNET the cus-
tomer can chose from a collection of winner-determination algo-
rithms (A*, IDA* [2], simulated annealing, and integer program-
ming [3]).

• The customer agent awards bids and specifies the work schedule.

3 Preference Algorithm

In the bidding algorithm we propose, price is used as a mechanism to
express preferences for tasks. Preferences in our case can be a com-
bination of the following: (1) a preference for tasks of a particular
duration (e.g. I hate performing very short tasks), (2) a preference
for tasks at particular times during the day (e.g. I love getting up
early in the morning, so give me tasks that ought to start early in the
morning), and (3) a preference for particular types of tasks (e.g. I
really hate to perform a task like that).

We show how to express these preferences and how to combine
them. The preference for a task is referred to as φtask, which we
express using a real number in the interval [0,1]. Hereby, 1

2
indicates

a neutral preference, 0 is not preferred, and 1 is fully preferred. Since
humans typically do not think in terms of a number when specifying
preferences, we provide for each of the preference types covered a
more intuitive formulation, as explained next. The specifics of how
preferences are computed could be adapted for different domains,
while keeping the approach.
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3.1 Preferences for Duration

Let the preference to perform tasks of a certain duration be an integer.
Such an integer can indicate either a minimum or a maximum dura-
tion (i.e. dmin , dmax). Let dmin be the minimum duration you want a
task to last, i.e. you want the task to last longer than dmin. Durations
below dmin are not preferred. If the duration is precisely dmin your
preference is 1

2
, i.e. neutral. Let dclose be an integer that indicates

how longer than dmin you want the task to last to be fully preferred.
Tasks with duration in the range [dmin , dmin+dclose] are more pre-
ferred than neutral, but not fully preferred. Any duration longer than
dmin+dclose is fully preferred. Then the preference φduration of a
task with duration dtask can be calculated as follows:

• if there is a preference for minimum duration dmin:
dtask ≥ dmin: φduration,task = 1

2
+ min( 1

2
× dtask−dmin

dclose
, 1

2
)

dtask < dmin: φduration,task = max( dtask
dmin

- 1
2

, 0)
• if there is a preference for maximum duration dmax:

dtask ≤ dmax: φduration,task = 1
2

+ min( 1
2
× ( dmax−dtask

dclose
), 1

2
)

dtask > dmax: φduration,task = max( dmax
dtask

- 1
2

, 0)

3.2 Preferences for Time Points

Let the preference for particular time points be indicated by a time
of the day (e.g. 6.30 a.m.). Such a preference can indicate that the
time needs to be before a particular time point tbefore, or after a time
point tafter. Let tclose indicate a time which is considered close to a
particular time point. Again, the preference for a task which is pre-
cisely at the specified time point tbefore or tafter is 1

2
, i.e. preference

neutral. The preference for a given start time ttask can now be cal-
culated as follows (note that for calculations using time points these
are represented in seconds of the day):

• if a preference has been set for a task time before tbefore:
ttask ≤ tbefore: φtime,task = 1

2
+ min( 1

2
× (

tbefore−ttask

tclose
), 1

2
)

ttask > tbefore: φtime,task = max(
tbefore

ttask
- 1

2
, 0)

• if a preference has been set for a task time after tafter:
ttask ≥ tafter: φtime,task = 1

2
+ min( 1

2
× ttask−tafter

tclose
, 1

2
)

ttask < tafter: φtime,task = max( ttask
tafter

- 1
2

, 0)

3.3 Preferences for Tasks

The last way to express preferences is for particular types of tasks.
Let typetask be the type for a given task. The type of a task is spec-
ified by means of a certain range of integers, whereby integers are
ordered based upon similarity of the tasks. For example, if the tasks
are represented on the interval [0, 100], then the task identified with 1
is completely different from the task identified with 100, but has great
similarity with the task identified with 2. Let the preferred tasks in-
clude a certain range of tasks [typelower , typeupper]. Furthermore, let
typeclose be an integer that expresses when a task is close to another
task. The preference is calculated as follows:

• if (typelower ≤ typetask) ∧ (typeupper ≥ typetask)
φtype,task = 1;

• if typelower > typetask

φtype,task = max( typeclose
typelower−typetask

, 0)
• if typeupper < typetask

φtype,task = max( typeclose
typetask−typeupper

, 0)

3.4 Combining Preferences

The preferences specified above are usually combined. We use a
weighted sum of the preferences, setting the weight to 0 if a pref-
erence is not expressed.

φtask = wduration × φduration,task + wtime × φtime,task+
wtype × φtype,task, where wduration + wtime + wtype = 1

3.5 Bidding Algorithm with Preference for Tasks

We assume that the supplier agent owns a single resource with a par-
ticular capability (with which, of course, a number of different task
types can be performed, as explained earlier). Furthermore, the re-
source has an availability slot (i.e. a begin and end time) as well as
a particular typebegin when the resource is initially setup and an end
typeend at which the use of the resource needs to end. The supplier
agent maintains a schedule of the tasks planned for its resource.

We now present a bidding algorithm that takes preference values
φtask into account. The algorithm is a greedy algorithm, supplier
agents try to bid upon as many tasks as feasible to maximize the
usage of their resource. The algorithm uses a parameter, p, to vary
the influence of the preference upon the eventual price bid.

The tasks within an RFQ are first ordered based upon their
preference. If some tasks have identical preferences, they are or-
dered according to the earliest start time specified in the RFQ
for the tasks included. We assume that there exists a function
switch time: TASK TYPE × TASK TYPE → DURATION that cal-
culates the switching time from one task type to another (when it
can be performed on the resource). Furthermore, performance time:
TASK TYPE → DURATION expresses the time needed to perform the
task.

Bidding Algorithm
For the bidding algorithm, let latest end timeprevious be the lat-

est end time of the previous task in the current schedule of the re-
source (or the schedule start time in case no such task exists). Let
typeprevious be the type of the previous task (or the start type in case
of no prior task), latest start timenext be the latest start time of the
next task (or the schedule end time in case no such task exists), and
typenext be the type of the next task (or the schedule end time in case
no such task exists).

For each preference ordered task:
Check if task (current) can be done using the resource.
If yes, see if it fits in the current schedule (see below).
From the beginning of the schedule and for each empty slot
in the schedule do:

If the task fits in the current empty slot in the schedule
then insert the task in the bid,

add its time parameters to the schedule, and
compute the price of the bid (see below)

else if latest end timecurrent > latest end timenext

then continue with the next slot
else continue with the next task.

To see if the task fits in the schedule, check if the following holds:
[(latest end timeprevious + switch time(typeprevious, typecurrent))
≤ latest start timecurrent] ∧

[(latest start timenext - switch time(typecurrent, typenext) -
performance time(typecurrent))
≥ earliest start timecurrent] ∧
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[(latest end timeprevious + switch time(typeprevious, typecurrent))
≤ (latest start timenext - switch time(typecurrent, typenext)

- performance time(typecurrent))]

The price of the bid is computed as follows (note the parameter p):
pricetask =

(1 + (p × (1 − φtask)))×
[switch time(typeprevious, typecurrent) +
switch time(typecurrent, typenext, ) +
performance time(typecurrent)]

We have shown earlier how to calculate the value of φtask for the
different type of preferences. This price equation assumes a certain
standard price for each minute of time spent. In case these costs vary,
the cost per minute can be included as an additional parameter.

4 Experimental Setup

We now describe the effect of adjusting the parameter p in the bid-
ding algorithm defined above. Furthermore, we study the effect of
the preferences on the duration of task execution, which is an indica-
tor of how efficiently the tasks are being performed. Together these
form the utility function of the suppliers. Of course it is expected that
having more preferences awarded will result in a less efficient exe-
cution. We are interested in assessing the severeness of these effects.
We performed experiments using synthetic data, and experiments us-
ing a real dataset obtained from a trucking company.

4.1 Experimental Setup with Synthetic Data

We start by describing the parameters in the setup with synthetic data,
and specify the actual settings used. There are many parameters that
can influence the results. Many of them influence the difficulty of the
task allocation problem in general. These include:

1. The number of tasks to be allocated.
2. The number of resources available.
3. The ratio between the resources required to perform the tasks

and the availability of those resources (e.g. one resource might
be more scarce than another). This also includes the specification
of duration of tasks, switching time, and initial resource settings.

4. The tightness of the time windows specified in the tasks. Wider
time windows allow more flexible scheduling of tasks, therefore
finding a solution is easier.

The preference value itself is influenced by other parameters, in-
cluding the following:

1. The parameter setting for the preference functions (e.g. what is
considered to be a close by task, the stricter this norm is, the more
easily preferences can be met).

2. The variation of tasks that exist (i.e. more variation means that it
will be easier to get your preferences met).

Finally, other parameter settings can be varied, such as the number
of iterations, and the value of the parameter p, which is used in the
bidding algorithm to determine the influence of preferences on price.

4.1.1 Parameter Settings Used

We set the parameters of the preference functions and the variety of
tasks to fixed values. This means that the preference function itself

remains constant over time, so that the influence of the parameter p
is the only variation regarding the preference function.

We used several variations of the difficulty of the task allocation
throughout the experiments. In particular we considered a market
where more than sufficient resources are available (overflow) versus a
market where resources are insufficient (shortage). Furthermore, the
tightness of the time windows was varied by either setting them very
tight or setting them wide. More precisely, the following parameters
have been used to affect tightness of tasks:

1. the number of tasks was fixed to 10.
2. the number of resources available varied between 12 (tight mar-

ket) and 50 (plenty of resources available).
3. the ratio between the required resources to perform tasks and the

availability of those resources was fixed. We had three types of re-
sources, each generated with an equal probability. The number of
different tasks per resource was set to 9999. The maximum time
to change from one task to another was set to 100 minutes. Task
types were generated in a random fashion with an equal probabil-
ity as well.

4. The tightness of the time windows specified in the tasks was varied
between just sufficient time to perform the task to twice the time
needed plus two full hours.

The parameter setting for the preferences are set so that initially
the preference for tasks is around 60%, equally divided over the dif-
ferent preferences. Each of the agents is assigned one type of prefer-
ence at random. The parameter p varied between 0 and 5.

4.1.2 Results
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Figure 1. Preferences met for varying values of p

Figure 1 shows the average preferences for tasks with varying p for
the different market types and time window settings. As can be seen,
the easiest way to get the preferences met is the overflow market with
wide time windows. The most difficult is the shortage market with
tight time windows. The curves of the shortage market are less steep
compared to the overflow market. The influence of the time windows
on the average preference value is that the curve is basically lower by
a certain constant value. The shape of the curve does not change for
varying time window settings (i.e. in both the shortage market and
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Figure 2. Preferences met versus increase in duration

the overflow market, the shape of the curve is the same for narrow
and wide time windows).

Figure 2 shows the average preference for tasks on the x-axis and
the increase in the average duration to perform the tasks on the y-
axis. This clearly shows the trade-off between preferences awarded
and the efficiency of task execution. All curves look similar (an xn

type shape) except for the point where the huge increase starts, which
varies for the different types of markets. The only exception is the
curve of the overflow market with narrow time windows. In this case
the results are less stable compared to the other results. The curve
with the lowest preference value, after which a steep increase is ob-
served, is the one in the shortage market with narrow time windows.
This makes sense because there is hardly any room for allocating
tasks to other agents. The curve with the highest point is the over-
flow market with wide time windows, in which there is plenty of
space to express preferences and get them awarded.

4.2 Trucking data

Besides synthetic data, we tested our approach using a real company
dataset from the trucking domain. The dataset consists of a number
of container transports that need to take place. Tasks require a certain
transportation from one zip code (the pickup location) to an interme-
diate location (the delivery location), ending at a third location (the
return location). Therefore, a task description does not consist of one
integer specifying the task, as before, but of three integers.

Furthermore, each task is associated with a certain early start time
and a particular deadline at which the container needs to be returned
at the return location. In addition to the containers that require trans-
portation, the dataset also specifies which trucks are available. These
can carry one container at a time (so only one type of resource is
available), and have a certain availability slot when the truck be-
comes available, and when the truck needs to be returned. A location
is also specified where the truck starts, and where it has to end. This
nicely maps to the algorithm specified.

The performance time is now defined as the time to go from the
pickup to the delivery location, plus the time to go from the delivery
location to the return location. The switching time is no longer an ar-
tificial time, but it is the actual driving time from one zip code to an-
other. The only artificial data which we have generated are the pref-
erences of the various trucks. This is done according to the method

mentioned for the synthetic data. Finally, the preference for type of
tasks is the average of the three different integers included in the task
description (i.e. pickup, delivery, and return location).

4.2.1 Results
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Figure 3. Preferences met for trucking dataset, for varying values of p

Figure 3 shows how the value of p affects the average preference
for tasks. It can be seen that the value of p required to increase the
average preference significantly is much lower than for the random
dataset. Furthermore, the limit seems to be comparable with the over-
flow market with wide time windows.
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Figure 4. Average task preference versus duration of performing the tasks

Figure 4 shows the preference value versus the average duration
increase, i.e. the trade-off between preferences met, and the effi-
ciency of execution. It can be seen that there is hardly any correlation
between the average preference value of the trucks and the average
increase in duration. This is of course very good news for the truck-
ing company because this means they can award drivers their pref-
erences without increasing the total driving time. This is assuming
that preferences are equally divided amongst the truckers, as in the
experimental setup.
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5 Related Work

In the field of combinatorial auctions, a lot of attention has been de-
voted to finding out the exact preference for particular bundles of
tasks (see e.g. [5] and [11]). In general a certain preference for each
of the bundles is assumed, but no detail is given on how the bidder
comes to such a preference value. In this paper we introduce a pref-
erence function that allows for a more intuitive specification of pref-
erences, thereby taking multiple aspects of the tasks into account.
Preferences for different aspects of the tasks are combined using a
weighted average to produce a single preference value.

In research on preference elicitation, typically the impact on sell-
ing is addressed, but the precise influence of preferences upon the
quality of the solution is not. In this paper, we show how the alloca-
tion of tasks in a decentralized fashion directly influences the quality
of the solution, and we explore the relationship between the average
preference of tasks and the solution quality. In [7] an approach for
scheduling a meeting between agents is proposed, which takes into
account the preferences of the agents. The relationship between such
preferences and the quality of the solution is addressed, but the prob-
lem is not studied from the perspective of combinatorial auctions.

Task allocation can also be performed from a centralized perspec-
tive, using preferences as soft constraints. See, for example, [9] for
an approach to consider preferences in decision making. There are
decentralized variants of constraint optimization, but the agents in
our case are not necessarily cooperative. In the field of planning
and scheduling preferences have been considered as well. Languages
have been developed that allow for the specification of preferences
and soft constraints (see e.g. [8]).

The logistic domain we use for our experiments has been re-
searched for quite some time (see e.g. [10]), mainly focusing on
calculating optimal solutions from a centralized perspective. For in-
stance, in [6] the problem addressed is to find optimal routes for
transportation orders of a large set of users. Orders have to be picked
up and delivered at specific locations, within a given time window,
and using a limited number of trucks. The solution proposed is cen-
tralized, and it is used to support a human dispatcher.

The current trend in logistics requires an even more distributed
setting because of the use of fourth party logistics (4PL) [1]. 4PL
companies sign contracts with large companies to arrange their en-
tire transportation demand. These companies, however, do not have
sufficient resources on their own to arrange all these transports and
therefore distribute many of those tasks to other (partner) compa-
nies. Centralized calculation might no longer be feasible due to lack
of complete information (availability of resources is too sensitive for
a company to communicate) as well as the complexity of calculat-
ing an optimal solution within a short period (time is crucial in the
business).

6 Conclusions

We have presented an approach to specify preferences for tasks in a
combinatorial auction setting. Allowing users to specify such pref-
erences is essential for them to use auctions and to increase the
economic efficiency of reverse auctions, as reported, for instance,
in [12]. We propose a preference function and use it in a bidding
algorithm where bids on non-preferred tasks have a higher price.

We evaluated our approach in two ways, first by rigorously testing
it with synthetic data. Several parameters have been varied, namely
the tightness of the time windows, within a certain schedule), and the
relative availability of resources. It was shown that it was easiest to

get preferences awarded in for markets with wide time windows. The
trade-off between meeting preferences and overall execution time has
been studied in depth. We have shown that the overall execution time
is influenced most in the case of the overflow market, due to the fact
that in the shortage market there are hardly any alternatives at hand
and therefore, although the agent might not prefer a task, it will still
get its bid awarded. The curves observed tend to have the same shape
when the time window setting changes but the market type remains
the same. For different market types, the curves vary in steepness.

Besides testing with synthetic data, we have also used a real com-
pany dataset from the trucking domain. We have shown that the
bidding algorithm is effective in awarding suppliers more preferred
tasks. The influence of this preference on the overall solution qual-
ity was not observed using the real dataset. Hence, in this setting the
preferences being met have much less influence on the efficiency of
the solution found. For future work, it would be interesting to find
out whether other real datasets would show the same results as the
dataset used in this paper. Furthermore, exploring how well the com-
panies can express their preferences using these functions would be
interesting as well.
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