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Abstract. 1 In multi-agent systems (MAS), coalition formation is
typically studied using characteristic function game (CFG) repre-
sentations, where the performance of any coalition is independent
from co-existing coalitions in the system. However, in a number of
environments, there are significant externalities from coalition for-
mation where the effectiveness of one coalition may be affected by
the formation of other distinct coalitions. In such cases, coalition for-
mation can be modeled using partition function game (PFG) repre-
sentations. In PFGs, to accurately generate an optimal division of
agents into coalitions (so called CSG problem), one would have to
search through the entire search space of coalition structures since,
in a general case, one cannot predict the values of the coalitions af-
fected by the externalities a priori. In this paper we consider four
distinct PFG settings and prove that in such environments one can
bound the values of every coalition. From this insight, which bridges
the gap between PFG and CFG environments, we modify the exist-
ing state-of-the-art anytime CSG algorithm for the CFG setting and
show how this approach can be used to generate the optimal CS in
the PFG settings.

1 Introduction & Motivation

In multi-agent systems (MAS), coalition formation occurs when dis-
tinct autonomous agents group together to achieve something more
efficiently than they could accomplish individually. One of the main
research issues in co-operative MAS is to determine which division
of agents into disjoint coalitions (i.e. a coalition structure (CS)) max-
imizes the total payoff of the system [12, 10]. To this end, coali-
tion formation is typically studied using characteristic function game
(CFG) representations which consist of a set of agents A and a char-
acteristic function v, which takes, as input, all feasible coalitions
C ⊆ A and outputs numerical values reflecting how these coali-
tions perform. Furthermore, it is assumed that the performance of
any coalition is independent from co-existing coalitions in the sys-
tem. In other words, the value of a coalition C in a structure CS has
the same value as it does in another distinct structure CS′. Based on
this characteristic of CFGs, Rahwan et al. [10] proposed an algorithm
that usually generates an optimal CS without searching through the

1 The authors are grateful for financial support received from the UK EP-
SRC through the project Market-Based Control of Complex Computational
Systems (GR/T10657/01). The authors are also thankful to Jennifer Mc-
manus, School of English, University of Liverpool for excellent editorial
assistance.

entire space of CSs.
In many real life MAS environments, CFG representations are suf-

ficient to model coalition formation, as the coalitions either do not in-
teract with each other while pursuing their own goals or because such
interactions are small enough to be neglected. However, in a number
of other environments, there are significant externalities from coali-
tion formation (henceforth externalities) where the performance of
one coalition may be affected by the formation of another distinct
coalition. For example, as more commercial activity moves to the
internet, we can expect online economies to become increasingly so-
phisticated, as is happening, for instance, with real time electronic
purchase of wholesale telecommunications bandwidth or computer
processor resources. In such contexts, ad hoc coalition formation will
need to allow for coalition externalities, thus, rendering CFG repre-
sentation inadequate to model coalition formation. In contrast, exter-
nalities are accounted for in the partition function game (PFG) rep-
resentation. A PFG consists of a set of agents A and a partition func-
tion which takes, as input, every feasible coalition structure (CS),
and for each coalition in each structure, outputs a numerical value
that reflects the performance of the coalition in that structure. Now,
the value of a coalition C in a structure CS may not have the same
value in another distinct structure CS′. This means that it is not gen-
erally possible to pre-determine the value of a coalition in a certain
CS without actually computing it in this specific CS. Consequently,
one must search through the entire space of CSs to guarantee an opti-
mal solution. This presents a major computational challenge as, even
for a moderate number of agents, there are billions of structures to
search through (for example, for 14 agents there are 190, 899, 322
CSs and for 15 agents there are 1, 382, 958, 545 CSs).

In this paper we contribute to the literature as follows:

• We prove that it is possible to bound the coalition values in two
commonly used PFG settings, thus bridging the gap between PFG
and CFG environments;

• We show that our theorems regarding bounded values can be used
to modify the existing state-of-the-art CSG algorithm for the CFG
settings. Consequently, our new algorithm can be applied to gen-
erate the optimal CS in these PFG settings;

• Using numerical simulations we demonstrate the effectiveness of
our approach which, in a number of cases, is comparable to results
obtained for the CFG setting.

Much research effort has been directed at optimal CS generation in
the CFG setting. Sandholm et al. [12] proposed a new way to rep-
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resent the entire set of CSs in the form of a coalition structure tree.
For this representation, they developed an algorithm which gener-
ates CS values within a finite bound from the optimal value for the
entire system. It initially searches the two lowest rows of the tree
and then searches from the top downwards either until the whole
space has been searched or the running time of the algorithm has ex-
pired. Based on this representation, Dang and Jennings proposed a
much faster algorithm which, after performing the same initial step
as that of Sandholm et al., then searches exclusively through particu-
lar coalition structures in the remaining space [3]. Nevertheless, both
solutions have drawbacks; notably, that the worst case bounds they
provide are relatively low and that both the algorithms must always
search the whole space in order to guarantee an optimal solution.

To circumvent these problems Rahwan et al. recently proposed
a more efficient anytime CSG algorithm for the CFG setting [10].
Using a novel representation of the search space, this algorithm is
significantly faster than its existing counterparts. The input to the
algorithm are coalitions lists structured according to the distributed
coalitional value calculation (DCVC) algorithm presented in [9].

In contrast, in the field of economics, much research has been di-
rected at coalition formation in PFG settings. Particular efforts have
been undertaken towards computing both the Shapley value and the
core solution in such settings [7, 4]. Furthermore, PFGs have been
used to represent coalition formation in many practical applications,
such as fisheries on the high seas [8], fuel emissions reduction [5]
or Research & Development (R&D) cooperation between firms [2].
Both of the former settings are examples of games with positive ex-
ternalities, where the decision by one group of countries to reduce
fishing activities or fuel emissions may have a positive impact on
other countries. In contrast, a R&D cooperation between a group of
companies could be modeled using a game with negative externali-
ties since the market positions of some companies could be hindered
by the increased competitiveness resulting from a collusion of other
companies. An excellent overview of both CFG and PFG approaches
in economics is provided in [1].

2 Partition Function Games

For a set of agents A = {a1, . . . , an} and a coalition C ⊆ A, a
PFG generates a non-negative integer value v(C; CS), where CS
is a coalition structure of A and C ∈ CS. Following Halfalir [6],
a PFG is said to have weak positive externalities if for every three
subsets C, S, T ⊆ A where C ∩ S ∩ T �= ∅ and for any structure
CS′ of A \ (S ∪ T ∪ C) then:

v(C; {S ∪ T, C} ∪ CS
′
) ≥ v(C; {S, T, C} ∪ CS

′
).

In the case where the inequality is ≤ the PFG is said to exhibit
weak negative externalities. Intuitively, this property means that a
game has positive (respectively, negative) externalities if a merger
between two coalitions makes every other coalition better (worse)
off. Furthermore, a PFG is weakly super-additive (sub-additive) if
for any S, T ⊆ A with S∩T �= ∅ and structure CS′ of A\S∪T then:

v(S ∪ T ; {S ∪ T} ∪ CS
′
) ≥ (≤)v(S; {S, T} ∪ CS

′
) +

v(T ; {S, T} ∪ CS
′
).

Intuitively, this means that a PFG is super-additive (sub-
additive) if two coalitions Ci and Cj in a structure, say CS =
C1, . . . Ci, Cj , . . . , Ck, join together to form coalition C′ =
Ci ∪ Cj then the value of C′ in the structure CS′ =

C′, C1, . . . Ci−1, Ci+1, Cj−1, Cj+1, . . . , Ck is at least (at most) as
large as the sum of the values of Ci and Cj in CS. Classic results in
game theory tell us that for super-additive CFGs (where for any two
disjoint coalitions S, T v(S ∪ T ) ≥ v(S) + v(T )) the optimal CS
is the grand coalition (i.e. the coalition containing every agent in the
system), whereas in sub-additive CFGs (where for any two disjoint
coalitions S, T v(S ∪ T ) ≤ v(S) + v(T )) the optimal structure is
the CS of singletons, i.e. the structure where all the agents act as indi-
viduals.2 We now show, with the aid of an example (taken from [6]),
that this does not necessarily hold in a super- (sub-) additive PFG set-
ting. Consider the following super-additive PFG for A = {1, 2, 3},
where, in addition, there are negative externalities:

• v((i); {(1), (2), (3)}) = 4 for i = 1, 2, 3;
• v((j, k); {(i), (j, k)}) = 9 and v((i); {(i), (j, k)}) = 1 for all

i, j, k ∈ A where i �= j �= k; and
• v(A; {A}) = 11.

Clearly, the super-additive requirement is met but the grand
coalition is not the optimal structure since v(A; {A}) = 11 <∑3

i=1 v((i); {(1), (2), (3)}) = 12. Thus, this example shows that
the grand coalition is not always the optimal structure in a super-
additive PFG with negative externalities. Equally, for the same A,
suppose that the values of the partition function are as follows:

• v((i); {(1), (2), (3)}) = 3 for i = 1, 2, 3;
• v((j, k); {(i), (j, k)}) = 2 and v((i); {(i), (j, k)}) = 7 for all

i, j, k ∈ A where i �= j �= k; and
• v(A; {A}) = 4.

In this game, the sub-additivity property is met but the CS of sin-
gletons is not the optimal CS, due to the positive externalities. This
shows that this structure is not always the optimal in sub-additive
PFGs with positive externalities. Thus, the classic results from the
CFG setting do not always hold in the PFG one. Consequently, in
this paper, we shall study four classes of PFG:

1. super-additive games with positive externalities (PF+
sup);

2. super-additive games with negative externalities (PF−
sup);

3. sub-additive games with positive externalities (PF+
sub);

4. sub-additive games with negative externalities (PF−
sub).

Figure 1: Paths for a six agent setting

The Sandholm et al. tree representation of the CS space, briefly
described in Section 2, is very useful in solving the CSG prob-

2 There also exists similar definitions for the strong positive and negative
externalities and strong super- and sub-additivity, in which signs ≤ and ≥
are replaced with < and >. In the remainder of this paper, whenever we
refer to externalities and additivity, we mean their weak forms. Note that
strong relationships are a subset of weak ones.
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lem for PFGs. Figure 1 displays a modified version of the Sand-
holm et al. tree for six agents, where nodes (hereafter configura-
tions) represent subspaces of CSs containing coalitions of particu-
lar sizes indicated by the number (cf. [11]). For instance, the con-
figuration {5, 1} denotes the subspace of all CSs containing ex-
actly two coalitions of size 5 and 1 for 6 agents i.e {(12345), (6)},
{(12346), (5)}, {(12356), (4)}, {(12456), (3)}, {(13456), (2)}
and {(1), (23456)}. The arrows between the subspaces show how
a merger of two coalitions converts one CS to the other. For exam-
ple, the arrow from {4, 1, 1} → {4, 2} shows how the merge of the
two coalitions of size 1 converts the configuration {4, 1, 1} to {4, 2}.

The notion of weakness implies that there can be many CSs with
the optimal value. Therefore, in actual fact, we should speak about
a set of optimal coalition structures which, in a special case, might
contain every feasible CS; this could occur, for example, when all
weak externalities are zero and weak super- (sub-) additivity does
not increase (decrease) the combined value of merging coalitions.

Theorem 1 In PF+
sup (PF−

sub) the grand coalition (the coalition
structure of singletons) always belongs to the set of optimal coalition
structures. Furthermore, assuming that super- (sub-) additivity is not
weak and both the positive and negative externalities are not weak
then in PF+

sup (PF−
sub) the grand coalition (the coalition structure

of singletons) is the only optimal structure.

Proof: Consider PF+
sup (PF−

sub). Beginning with configuration
{1, 1, 1 . . . , 1}, it is possible to reach configuration {n} by a vari-
ety of paths. Assume that we move from a coalition structure CS
in configuration G of size k to a structure CS′ in configuration G′

of size k − 1, ∀k = n, . . . , 2. In such a case, CS′ must contain one
coalition which is the union of exactly two coalitions in CS ∈ G and
k−2 ‘other’ coalitions in CS which were not involved in the merge.
Due to the super-additivity (sub-additivity) property, the value of the
merged coalition in CS′ must be greater than (less than) or equal
to the sum of the component coalitions in CS. Furthermore, as a
result of the positive (negative) externalities, the value of the other
coalitions in CS′ must not be smaller (bigger) than in CS. Conse-
quently, the value of CS′ ∈ G′ is not smaller (not bigger) than the
value of CS ∈ G. Without loss of generality, this is applicable to
every path, thus the configuration {n} ({1, 1, 1 . . . , 1}) must con-
tain a structure whose value is not smaller than values of other CSs
in every other configuration. Hence, the grand coalition (structure of
singletons) always belongs to the set of optimal coalition structures
in PF+

sup (PF−
sub).

Waiving the assumption of weakness (where the ‘≤’ and ‘≥’ signs
are replaced with ‘<’ and ‘>’, respectively, in both super- and sub-
additivity as well as positive and negative externality) then the above
proof remains valid and it is not difficult to show that in the PF+

sup

(PF−
sub) setting the grand coalition (structure of singletons) is the

only optimal structure.

It immediately follows that for both these PFGs, it is not necessary
to search the entire CS space to find the optimal CS.

3 Bounded Coalition Values in PF−
sup and PF+

sub

In the PFG setting, each coalition (with the exception of the grand
coalition and some coalitions in the second level of the Sandholm et
al. tree) may have many values, depending on which CS it belongs to.
This means that we cannot determine an exact value of a coalition in
a particular structure without actually searching it. However, we will
now show that, by searching only certain paths in the Sandholm et al.

Figure 2: An extract from Sandholm et al. tree for 6 agents

representation, it is possible to bound the value of every coalition in
the entire tree. As the PF−

sup problem is dual to the PF+
sub problem,

our result can be presented for both classes of games simultaneously.

Theorem 2 Consider the PF−
sup (PF+

sub ) setting and the coali-
tion Cx in the structures CS′ = {Cx, (i1), . . . , (in−|Cx|)} and
CS′′ = {Cx, Cy} where (i1), . . . , (in−|Cx|) �∈ Cx and Cy =
A \ Cx. The value of Cx in CS′ is the greatest (smallest) value
of Cx in every coalition structure it belongs to, or ∀Cx ∈ CS,
v(Cx; CS′) ≥ (≤)v(Cx; CS). The value of Cx in CS′′ is the small-
est (greatest) value of Cx in every coalition structure it belongs to,
or ∀Cx ∈ CS, v(Cx; CS′′) ≤ (≥) v(Cx; CS).

Proof: First consider the value of Cx in CS′ (i.e. v(Cx; CS′)).
In Figure 1, CS′ can belong to any configurations in the following
path: {1, 1, 1, 1, 1, 1} → {2, 1, 1, 1, 1} → {3, 1, 1, 1} → {4, 1, 1}
→ {5, 1}. Every coalition Cx such that |Cx| ≥ 1 which appears
in any configuration in this path is the only coalition that is formed.
This guarantees that v(Cx; CS′) has never been affected by a nega-
tive (positive) externality. Conversely, in all the other configurations
where Cx appears, other non-trivial coalitions co-exist whose cre-
ation, by definition, have induced negative (positive) externality on
Cx. In such configurations the values of Cx will be at most (least)
equal to v(Cx; CS′) since, as is visible in Figure 1, one can always
reach any other configuration containing CSs with Cx starting from
CS′.3 Since, on such a path, Cx is only subject to negative (positive)
externalities, v(Cx; CS′) must be at least as big (small) as in any
other CS. Therefore, v(Cx; CS′) is the greatest (smallest) value of
Cx in every CS that it belongs to.

Now consider the value of Cx in CS′′ (i.e. v(Cx; CS′′)). Cx is a
part of both CS′ and CS′′, therefore, it is always possible to find a
path which starts from CS′ and leads to CS′′, i.e. CS′ → . . . →
CS′′. Since Cx is only subject to consecutive negative (positive) ex-
ternalities, the value of Cx will decrease (increase) or at most (least)
remain the same, every time one traverses this path, moving from
one configuration to another. Consequently, v(Cx; CS′′) will not be
greater (smaller) than v(Cx; CS′) or the value of Cx in any other
configuration on this path. Similarly, starting from any other config-
uration containing Cx, it is always possible to find a path leading to
CS′′. Since Cx is subject to consecutive negative (positive) external-
ities through such paths, the above argument is equally compelling.
Therefore, the value of Cx ∈ CS′′ is the smallest (greatest) value of
Cx in every coalition structure it belongs to.

Consider a few elements of the original Sandholm et al. tree
in Figure 2. Theorem 2 says that under PF−

sup ∀(123) ∈ CS,
v((123); CSa) ≥ v((123); CS) (where CS is any structure con-
taining (123)). Initially, it may seem possible for v((123); CSd) to
be higher than v((123); CSa) because the former structure emerged

3 With the exception of CS′, CS′′and the grand coalition, any coalition Cx

might have a number of different values in one configuration, as it belongs
to a number of distinct CSs. Thus, we use the plural for “values” and “coali-
tion structures”.
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after agent 3 joined coalition (12) in CSb and, due to super-
additivity property, v((123); CSd) could become much higher than
v((123); CSa). However, in actual fact, this cannot happen because
of the assumed negative externalities. It is always possible to find a
path from {(123), (4), (5), (6)} to any other CS that contains (123)
and on such a path the value of (123) is only subject to negative
externalities. Consequently, v((123); CSd) cannot be higher than
v((123); CSa). Such reasoning can also show that v((123); CSe)
is the smallest value of (123) in Figure 2 and similar reasoning can
be used to back up our claims for the PF+

sub setting.

4 CSG Algorithm For The PFG Setting

The Rahwan et al. CSG algorithm relies on the fact that coalition
values are always constant in the CFG setting. This makes it possible
to collect a number of basic statistics at the very beginning to assess
which configurations are most promising and which not. In the PFG
setting, coalition values depend on the CS they belong to, so such
a technique is not generally feasible. However, for both PF−

sup and
PF+

sub, Theorem 2 allows us to construct bounds on the values of
every coalition in every CS. Subsequently, we can use these bounds
to construct upper and lower bounds for each configuration. In other
words, our theorem bridges the gap between both settings, making
it possible to modify the existing state-of-the-art CSG algorithm so
that it can generate a set of optimal CSs in the PF−

sup (PF+
sub) set-

ting, often without searching the entire CS space. Let Ls denote the
(structured) list containing all coalitions of size s. 4 Our CSG algo-
rithm can be summarized as follows:

Step 1. Compute the value of the grand coalition. For every coalition
C in list Ls : 1 ≤ s = |C| < n, compute its value in the CSs
where: (i) all the other agents not in C form coalition C′ = A \
C, and (ii) every other agent not in C acts alone. These are the
maximum and minimum (minimum and maximum) values of each
coalition in the entire CS space and are stored in lists Lmax

s and
Lmin

s which are structured as in the DCVC algorithm (see [9]);
Step 2. Partition the search space into configurations. Prune those

which were searched in Step 1;
Step 3. Compute the upper bounds of every remaining configu-

ration G, denoted UBG, using the lists of maximum values
from Step 1, i.e. UBG =

∑
∀s∈G maxLmax

s . Set the upper
bound of the entire system UB to be the value of the high-
est upper bound, i.e. UB = maxUBG and set the lower
bound to be max{v(CS∗

N ), max{AvgG}}, where AvgG =∑
∀s∈G avgLmin

s is the lower bound for the average value of each
configuration G and CS∗

N is the CS with the highest value found
thus far. Order the configurations w.r.t. the value of UBG;

Step 4. Prune away those subspaces which cannot deliver a CS
greater than LB, i.e. UBG < LB;

Step 5. Search the configuration with the highest upper bound, up-
dating LB to be the highest value of the structure found thus far
(CS∗

N ). During the search process, a refined branch and bound
technique should be used;

Step 6. Once the search of the configuration in Step 5 is completed,
check whether v(CS∗

N ) = UB or all configurations have been
searched or pruned. If any of these conditions hold then the opti-
mal CS has been found. Otherwise, go to Step 4.

In Step 1 we compute the maximum (minimum) and the mini-
mum (maximum) values of each coalition C in the entire tree. Stor-
ing both numbers per coalition requires twice as much memory as
4 see [9] for more details

in the CFG setting, but ensures that the highest and lowest values of
each list Ls can be computed. This makes it possible to determine
upper and lower bounds for each configuration as well as the upper
bound of the entire system. Furthermore, in contrast to Rahwan et al.,
we cannot compute an exact average value of all the coalitions of size
si, ∀i = 1, . . . , m, for a given configuration G = {gs1 , . . . , gsm}.
However, it is possible to compute a lower bound for such an aver-
age value using Lmin

s as no average value can be smaller than the
one computed for the lists containing minimum values. In addition,
the upper bound for each configuration G can be defined as the sum
of maximal values that every coalition of size s in CS ∈ G can take,
i.e.

∑
∀s∈G maxLmax

s .
In the PFG setting, partitioning and pruning of the search space

is done as in the Rahwan et al. algorithm for the CFG setting.
Also, the process of searching through the promising subspaces is
similar. In particular, certain techniques ensure that no redundant
calculations are performed, i.e. no CS is considered twice. However,
the branch-and-bound rule needs to be modified for the PFG setting.
This rule prevents traversing hopeless paths while constructing CSs
in the considered configuration.

Branch and Bound Rule Suppose that G∗ = {gs1 , gs2 , gs3 , gs4}
is the configuration with the highest upper bound, which has not yet
been searched. In the CFG setting, the branch and bound rule of
Rahwan et al. goes as follows. Suppose the algorithm has already
added coalitions Cgs1

, Cgs2
to the CS under construction. When

adding the next coalition from list Lgs3
, the rule ignores cases which

together with max Lgs4 , would render the values of the CS less than
the current LB of the entire system. From Theorem 2, instead of
exact values of coalitions which we do not know beforehand, we
can use the maximum values as computed in Step 1 and incorporate
this rule to both PF−

sup and PF+
sub settings. However, with only

maximum values, such a branch and bound rule is likely to be less
effective than in the original setting.

Anytime properties When the arguments of Sandholm et al. [12]
are applied to the upper bounds of values of coalitions, it can be
proven that after Step 1 of our algorithm, where levels 1, 2 and n have
already been searched, the value of CS∗

N is no smaller than
⌊

n
2

⌋
of

the optimal CS, i.e.
⌊

n
2

⌋ × v(CS∗
N ) ≥ CS∗. Furthermore, updating

the lower bound in Step 5 ensures that if we were to continuously stop
and restart the algorithm, every time we stopped, we would always
have a current optimal structure CS∗

N with a value at least as big
as the value obtained before we re-started. Therefore, the algorithm
retains its anytime properties in the PFG setting.

5 Numerical Simulations

To the best of our knowledge, the CSG algorithm for the PFG set-
ting proposed in this paper is the only one in the literature; thus there
is no benchmark algorithm that can be used for a numerical com-
parison. Although it would be possible to adapt the CFG dynamic
programming techniques for the PFG setting, due to lack of space,
we will compare our results to the CSG algorithm for the CFG set-
ting instead. As noted at the beginning of the paper, this solution has
already been proven to be significantly superior w.r.t. dynamic pro-
gramming alternatives, because it does not need to search all the fea-
sible CSs. We will show that, in many cases, our modification of this
algorithm for the PFG setting also only searches through a fraction
of the CS space, thus saving a vast amount of calculation time.

Simulations are performed for the PF−
sup setting. When the new
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Figure 3: Simulation results for PF−
sup setting

coalition is formed, the ‘gain’ from super-additivity is accounted for
by adding a factor α

a
to its value. In addition, the ‘loss’ from the

externality on the other coalitions in the structure is accounted for
by multiplying their values by factors b−β

b
, where α, β ∈ [0, 1)

are randomly-generated uniform variables and a, b ≥ 1 are con-
stants. We assume that in the system there are 10 agents, from which
115,975 CSs can be formed.5 In Step 1 2028 CSs are searched, i.e.
the grand coalition, the CSs of singletons and 2C10

2 + 2C10
3 + ... +

2C10
8 +C10

9 other CSs. This amount accounts for 1.75% of the search
space.

The vertical axis on Figure 3 represents the proportion of the CS
space searched, whereas a and b are indicated on the x and y axes,
respectively. As the values of a and b increase, the ‘gain’ from super-
additivity and the ‘loss’ from externalities decrease. We performed
our simulations 25 times for each combination of a and b. The sur-
face shown in Figure 3 is the average proportion of space searched
by our algorithm. Furthermore, as the original CSG algorithm for the
CFG setting for the uniform distribution of coalition payoffs searches
on average about 2.5%, and this result is independent from a and b,
we do not report it in Figure 3.
We observe that when the ‘gain’ from super-additivity is high and
the ‘loss’ from the negative externality is low, only a minimal pro-
portion (under 4 %) of the space need be searched in order to com-
pute the optimal structure. In fact, in such cases, the grand coalition
or a coalition in the first few levels of the Sandholm et al. tree is
usually the optimal structure. Consequently, it would seem that the
smaller the externality, the more the PF−

sup setting becomes like the
super-additive CFG setting, thus explaining why so little of the space
is searched. Conversely, when the ‘gain’ from super-additivity is low
and the ‘loss’ from the negative externality is high, only a fraction of
the search space was searched. This time, the PF−

sup setting becomes
more akin to the sub-additive CFG setting, so that the CS of single-
tons or a CS with a relatively small number of cooperating agents
tends to be optimal. However, in situations where the ‘loss’ from the
externality and the ‘gain’ from the super-additivity are both either
high or low, it seems that pruning is ineffective since nearly all of
the search space has to be searched in order to guarantee an optimal
outcome (more than 98% in many cases). This is due to an inher-
ent characteristic of the PF−

sup setting: namely, that the values of

5 The particular challenge of simulations in the PFG setting is that (in contrast
to the CFG setting) one must generate the values of all CSs beforehand.
Furthermore, during the random generation of coalition values, it is im-
portant to ensure that all the CSs meet PF−

sup (PF+
sub) properties. Conse-

quently, we restrict our simulations to 10 agents and 115,975 CSs. Although
this is less than the system of 27 agents considered for the CFG setting (cf.
[11]), such a system in the PFG setting would require generating a CS space
with more than 5.24 × 1020 CSs.

the structures in each configuration are dependent on the value of the
structures in the configuration in the previous level (see Figure 1).
Consequently, when the gain from the super-additivity and the loss
from externalities are of a similar magnitude, the extreme values of
CSs in different configurations are more likely to be akin, making
pruning techniques less effective. This effect is magnified by the use
of the uniform distribution since CSs’ values in all configurations
tend to be relatively dispersed.

6 Conclusion & Future Work

In this paper, we considered coalition structure formation in the
presence of coalition externalities, a novel topic in the multi-agent
system literature. We modeled coalition formation with a partition
function game (PFG), and considered four cases: (1) super-additive
games with positive externalities (PF+

sup), or (2) negative exter-
nalities (PF−

sup); (3) sub-additive games with positive externalities
(PF+

sub); or (4) negative externalities (PF−
sub). For cases (1) and (4),

we proved that computing the optimal structure is straightforward,
because either the grand coalition or the CS of singletons belong to
the set of optimal CS. In contrast, this is not true for cases (2) and (3),
where any CS can belong to the set of optimal coalition structures.
Therefore, for these two cases we proved that it is possible to bound
the value of each coalition. From this insight, we modified the exist-
ing state-of-the-art anytime CSG algorithm for the CFG setting and
show how it can be used to generate the optimal CS in these two PFG
settings. In future work, we plan to study the numerical performance
of the new algorithm under different distributional assumptions re-
garding coalition values, and also develop a distributed version of
our approach.
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