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Abstract. A common way of dealing with the paradoxes of pref-
erence aggregation consists in restricting the domain of admissi-
ble preferences. The most well-known such restriction is single-
peakedness. In this paper we focus on the problem of determining
whether a given profile is single-peaked with respect to some axis,
and on the computation of such an axis. This problem has already
been considered in [2]; we give here a more efficient algorithm and
address some related issues, such as the number of orders that may
be compatible with a given profile, or the communication complexity
of preference aggregation under the single-peakedness assumption.

1 Introduction

Aggregating preferences for finding a consensus between several
agents is an important topic at the boarder between social choice and
artificial intelligence. Given the preferences of a set of agents (or
voters) over a set of alternatives (or candidates), preference aggrega-
tion aims at determining a collective preference relation representing
as much as possible the individual preferences, whereas voting rules
consists in finding a socially preferred candidate.

Among the paradoxes and impossibility theorems of preference
agregation, the most famous may be the following three (in all three
cases we assume that there are at least 3 alternatives):
• the Condorcet paradox [3]: a Condorcet cycle is a sequence of

candidates x1, . . . , xk such that for all i ≤ k − 1, a majority
of voters prefers xi to xi+1, and a majority of voters prefers xk to
x1. Such cycles make it impossible to build a collective preference
relation compatible with pairwise majority comparisons between
candidates.

• Arrow’s theorem [1]: any unanimous aggregation function for
which the pairwise comparison between two alternatives is inde-
pendent or irrelevant alternatives is dictatorial;

• Gibbard and Satterthwaite’s theorem [7, 8]: any surjective and
nondictatorial voting rule is manipulable.
A profile consists of a collection of preference relations over the

candidates (one per voter). In the above results, any profile is ad-
missible. However, in some contexts, voters’ preferences may have
a special structure restricting the domain of admissible profiles. The
most well known such restriction is single-peakedness. It assumes
that there is a natural linear axis, independent of the voters, on which
alternatives are positioned: one may for instance think of a left-right
axis as in politics, or a numerical axis (when the voters have to de-
cide for instance about an amount of money to spend). A voter has a
single-peaked preferences with respect to such an axis if, on each side
of the “peak” (that is, the preferred candidate), his preference grows
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with the proximity to the peak. It is well-known that Condorcet cy-
cles cannot occur when preferences are single-peaked; therefore, one
escapes from the Condorcet paradox as well as Arrow’s and Gibbard-
Satterthwaite’s theorem.

However, this way of escaping the paradoxes and impossibility
theorems assumes that the axis on which the candidates are posi-
tioned is known in advance. In contexts where it is partially or fully
unknown, one should identify it before any aggregation process is
started. Therefore, we consider the problem of determining whether,
given the preferences of some agents on a set of alternatives, these
preferences are single-peaked with respect to some axis (which we
refer to as single-peaked consistency), and if so, how one of the pos-
sible axes can be determined. This problem has been considered in
[2] (as well as the problem of determining whether a profile is single
peaked w.r.t. a tree [9], which is weaker than single peakedness w.r.t.
an axis). They give an algorithm in O(m.n2) where n (resp. m) is
the number of candidates (resp. voters), based on matrix representa-
tion. We give here a different algorithm, both more intuitive and ef-
ficient since it works in time O(m.n). While the difference between
O(m.n) and O(m.n2) is pratically not very significant for standard
political elections where n is typically small, this is no longer the
case when the set of alternatives (or “candidates ”) has a combina-
torial structure, which is often the case in AI applications. A related
problem is addressed by Conitzer [4]: without the prior knowledge
of the axis, but knowing the preference relation of one agent (which
gives some incomplete information about the axis), how can we elicit
as efficiently as possible the preferences of a second agent?

Single peaked consistency is important in at least two contexts.
First, some domains tend to have a single-peaked structure, but for
some reason we may not know the axis : In this case, from a few
votes (for instance obtained from a sample of votes), we may learn
this axis. Second, in some domains it is unclear whether it is reason-
able to assume single-peakedness: then, checking the single-peaked
consistency of the preference relations of a few voters gives a good
hint as to whether single-peakedness is reasonable.4

In Section 2, we define single-peaked consistency and give a con-
structive algorithm that checks whether a profile is single-peaked
consistent, and if so, returns a compatible axis. This algorithm works
in time O(n.m), where n is the number of agents and m the number
of alternatives. In Section 4 we study a few combinatorial aspects of
single-peaked preferences; in particular, we give a result on the num-
ber of axes that are compatible with a tuple of single-peaked prefer-
ences. In Section 5 we give a simple additional result on the com-
munication complexity of preference aggregation of single-peaked
preferences. Finally we point to interesting extensions of our work.

4 This is for instance of particular interest when alternatives are evaluated
on several criteria; here, the hidden axis may be some (a priori unknown)
combination of the different criteria (projection from a multidimensional to
a monodimentional representation).
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2 Single-peaked preferences

Let V = {1, . . . , m} be a finite set of voters and X = {x1, . . . , xn}
a finite a set of candidates (or alternatives), with n ≥ 3.

Definition 1 A preference relation � on X is a linear order on X .
The peak of a preference relation � is the candidate x∗ = peak(�)
such that x∗ � x for all x ∈ X \ {x∗}. A profile is a m-uple
P = 〈�1, . . . ,�m〉 of preference relations on X .

Definition 2 An axis O (noted by >) is a linear order on X . Given
two candidates xi, xj ∈ X , a preference relation � on X whose
peak is x∗, and an axis O, we say that xi and xj are on the same
side of the peak of � iff one of the following 2 conditions is satisfied:
(1) xi > x∗ and xj > x∗; (2) x∗ > xi and x∗ > xj .

A preference relation � is single-peaked with respect to an axis O
if and only if for all xi, xj ∈ X such that xi and xj are on the same
side of the peak x∗ of �, one has xi � xj if and only if xi is closer
to the peak than xj , that is, if x∗ > xi > xj or xj > xi > x∗.

For simplicity, we sometimes note (as in Example 1) x1x2 . . . xn

instead of x1 � x2 � · · · � xn or of x1 > x2 > · · · > xn.

Example 1 Let X = {x1, x2, x3, x4, x5, x6} and O = (x1 >
x2 > x3 > x4 > x5 > x6). The preferences x2x3x4x1x5x6;
x4x3x2x5x6x1; and x6x5x4x3x2x1 are single-peaked with respect
to O but not x4x3x5x1x6x2. Indeed, x1 and x2 are on the same side
of the peak (x4) but x2 is not preferred to x1 while it is closer to the
peak than x1.

An interesting question is the existence of a common axis to all
voters, such that the preferences of these voters are single-peaked
with respect to this common axis.

Definition 3 A profile 〈�1, . . . , �m〉 is single-peaked with respect
to O iff for each voter i, �i is single-peaked with respect to O.

Whether single-peakedness seems justified or not strongly de-
pends on the nature of X . It is often deemed reasonable if the axis
represents an objective left-right political axis such that voters’ pref-
erences are determined only from the position of the candidates on
the axis, or else, if X is a set of numerical values or more generally
a set equipped with a natural ordering.

Conitzer [4] considers the elicitation of single-peaked preferences.
The elicitation process is all the more efficient as the amount of com-
munication required by the process is low. This amount of communi-
cation can be measured in terms of the number of elementary queries
of the form “between the candidates x and y, which one do you pre-
fer?”

3 Single-peaked consistency

A very natural question is the following: given a p-voter profile, is it
single-peaked with respect to some (unknown) axis? This is defined
formally as follows:

Definition 4 (single-peaked consistency) A preference profile P =
〈�1, . . . ,�m〉 on X is single-peaked consistent if there exists an
axis O such that for all i, �i is single-peaked with respect to O.

When P is single-peaked with respect to the axis O, we say that O
is compatible with P . For every axis O, we denote by SP (O) the set
of preference relations on X that are single-peaked with respect to

O. For instance, if n = 3 and O = x1 > x2 > x3, then SP (O) =
{x1x2x3, x2x1x3, x2x3x1, x3x2x1}.

The main problem associated with this definition is to determine
if a given profile is single-peaked consistent. We now present the
main result of this article, i.e. the resolution of this problem. More
precisely, we propose an algorithm working in time O(mn) which,
given a profile, outputs an axis compatible with this profile if it ex-
ists, and find a contradiction otherwise. The axis is built recursively,
starting from the candidates ranked in last position by one or more
voters. Indeed, we have the following easy lemma.

Lemma 1 Let x be a candidate ranked in last position by a voter i.
If the axis O is compatible with �i, then x is either in the leftmost or
in the rightmost position in O.

Proof. If x is neither in the leftmost nor in the rightmost position,
then there exist a candidate y on the left of x and a candidate z on
the right of x (in O). But y �i x and z �i x, contradiction with the
fact that �i is single-peaked with respect to O.

As a consequence of Lemma 1: in a single-peaked consistent pro-
file, at most two candidates are ranked last by at least one voter.

Before giving the algorithm, we first explain in detail the first (and
easiest) iteration. Let L be the set of all candidates ranked last by at
least one voter. We consider the three (exhaustive) possible cases:

• |L| ≥ 3: then P is not single-peaked consistent, due to Lemma 1.
• L = {x}: we place indifferently x either in the leftmost or in

the rightmost position of the axis; this choice does not create any
constraint in the remainder of the construction of the axis. Indeed,
the problem is equivalent to first finding an axis compatible with
the profiles restricted to the other candidates, and then adding x.

• L = {x1, x2}: we place x1 and x2 in the leftmost and the right-
most position of the axis. P is compatible with an order O if and
only if it is compatible with the inverse of O; as a consequence,
the choice (x1 in leftmost or rightmost position) does not matter.

Then, the candidates of L being positioned, we iterate the pro-
cess considering the restriction of the preference relations to the other
candidates. Of course, this first iteration is simple because no other
candidate is already positioned in the axis.

More generally, at each step of the algorithm, we have a
set T of candidates already positioned at the extremal po-
sitions of the axis. Without loss of generality, let T =
{x1, x2, . . . , xi, xj , xj+1, . . . , xn} the candidates already posi-
tioned in the axis under construction: we have x1 > x2 > . . . > xi

in the leftmost positions of the axis O, and xj > xj+1 > . . . > xn

in the rightmost positions. The other candidates in T = X \ T will
be positioned between xi and xj positioned in the leftmost/rightmost
position). Then, at this iteration:
• either we find a full compatible axis and P is single-peaked con-

sistent;
• or we find a contradiction and P is not single-peaked consistent;
• or we position one or two new candidates to the right of i and/or

to the left of j.

The soundness of the algorithm will follow from the recursive
proof of the following hypothesis. At each iteration, the axis under
construction verifies the two following properties:
• There exists a compatible axis for P if and only if there exists a

compatible axis which extends the axis under construction.
• For any voter k, x1 ≺k x2 ≺k . . . ≺k xi and xj �k xj+1 �k

. . . �k xn.
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In particular, from the second item we deduce that the candidates in
T , i and j excepted, are not the peak of any voter.

Let us now analyze the different possible configurations. Let L be
the set of candidates ranked last by at least one voter (restricted to
the candidates in T ). Based on Lemma 1, we have 3 possible cases:
1. |L| ≥ 3: contradiction, 3 candidates must be either in position

i + 1 or j − 1.
2. L = {x, y}: either x is in position i+1 and y in position j−1, or

vice versa, or we will find a contradiction. Let us consider a voter
k who ranked x last (among the candidates in T ):

(a) x ≺k xi and x ≺k xj : this is not possible since necessarily xi

or xj is ranked worse than x by k (xi or xj was the candidate
ranked last by k at the previous iteration).

(b) xi ≺k x and xj ≺k x: x being the last candidate in T , and
since x1 ≺k x2 ≺k . . . ≺k xi and xj �k xj+1 �k . . . �k

xn, then any axis compatible with voter k on T will be compat-
ible on all the candidates. Having positioned the first candidates
does not create any constraint . Indeed, all the candidates in T
are ranked better than all the candidates in T by voter k. As a
consequence, for voter k, having x in position i + 1 and y in
position j − 1 or vice versa does not matter.

(c) xi ≺k x ≺k xj ≺k y : x is necessarily in position i + 1.
Indeed, having x in position j − 1 leads to a contradiction: x
is positioned between y and xj in the axis, but x ≺k y and
x ≺k xj . Then, necessarily x is in position i + 1 and y in
position j − 1. Symmetrically, if xj ≺k x ≺k xi ≺k y, then x
is necessarily in position j − 1.

(d) xi ≺k x ≺k y ≺k xj (or the symmetrical case) : xj is nec-
essarily the peak for the voter k (the candidate positioned im-
mediately to the left is worse, and the candidate xj+1 (if any)
positioned immediately to the right is also worse, by our re-
cursive hypothesis), hence the candidates in T are necessarily
positioned between positions i and j following the increasing
order of voter k. We test if this axis is compatible with the pref-
erences of other voters. If so, we have a compatible axis, other-
wise we conclude that P is not single-peaked consistent.

We repeat step 2 for all voters. If case 2d occurs (for at least one
voter), then the algorithm ends (either we found an axis, or a con-
tradiction). Otherwise, either we find a contradiction (x have to be
placed in two different positions), and the algorithm stops, or we
position candidates x and y on the axis.
To conclude, note that if we are not in case 2d , the induction
hypothesis x1 ≺k x2 ≺k . . . ≺k xi and xj �k xj+1 �k . . . �k

xn remains true after positioning x and y (otherwise, in case 2d
the algorithm stops).

3. L = {x}, i.e. each voter ranked x last (in T ). Several cases may
occur for voter k:

(a) x ≺k xi and x ≺k xj : as previously, this case is impossible.

(b) xi ≺k x and xj ≺k x : no constraint.

(c) xi ≺k x ≺k xj (or inverse): x is necessarily in position i + 1.

Hence, if no contradiction is obtained and no compatible order is
found, we position one or two new candidates.

Steps 2 and 3 are repeated until all the candidates are positioned
or a contradiction occurs. The previous analysis enables us to state
the following result:

Proposition 1 Let P be a preference profile. The previous algorithm
outputs an axis compatible with P if any, or finds a contradiction
otherwise.

Example 2 Let X = {x1, x2, x3, x4, x5, x6} and consider two vot-
ers with the following preferences: x6 ≺1 x5 ≺1 x4 ≺1 x1 ≺1

x3 ≺1 x2 and x1 ≺2 x6 ≺2 x5 ≺2 x2 ≺2 x3 ≺2 x4

• Iteration 1: The set L of worst candidates is L = {x1, x6}. T be-
ing empty, we can choose the positions of x1 and x6, for instance
respectively in the leftmost and rightmost positions. Partial axis:
x1 > .... > x6.

• Iteration 2: T = {x2, x3, x4, x5} and L = {x5}. For voter 1,
x6 ≺1 x5 ≺1 x1, hence necessarily x5 is in fifth position in the
axis. For voter 2, x1 ≺2 x5 and x6 ≺2 x5 hence for the voter 2
the positioning does not matter. Partial axis: x1 > ... > x5 > x6.

• Iteration 3: T = {x2, x3, x4} and L = {x2, x4}. For voter 1,
x5 ≺1 x4 ≺1 x1 ≺1 x2, hence necessarily x4 is in fourth
position, and therefore x2 is in second position. For voter 2,
x1 ≺2 x5 ≺2 x2 ≺2 x4 hence for her the positioning does not
matter. Partial axis: x1 > x2 > . > x4 > x5 > x6

• Iteration 4: T = {x3}. We verify that with x3 in third position, the
partial axis x2 > x3 > x4 is compatible with the two votes. Then,
the axis x1 > x2 > x3 > x4 > x5 > x6 is compatible with the
profile constituted by the preference relations of the 2 voters.

Example 3 Let us consider five candidates and two voters, with
x1 ≺1 x2 ≺1 x3 ≺1 x4 ≺1 x5 and x4 ≺2 x3 ≺2 x2 ≺2 x1 ≺2 x5

• Iteration 1: L = {x1, x4}: we choose x1 > ... > x4.
• Iteration 2: T = {x2, x3, x5} with L = {x2, x3}. voter 1: x1 ≺1

x2 ≺1 x3 ≺1 x4 hence x4 is necessarily the peak of the voter 1.
The unique axis possible is consequently x1 > x2 > x3 > x5 >
x4; it is not compatible with the preference relation of the second
voter. This profile is not single-peaked consistent.

Example 4 Let us consider five candidates and two voters, with
x1 ≺1 x2 ≺1 x3 ≺1 x4 ≺1 x5 and x4 ≺2 x2 ≺2 x3 ≺2 x1 ≺2 x5.
Iteration 1 is as Example 3. For iteration 2: T = {x2, x3, x5} with
L = {x2}. For voter 1, x1 ≺1 x2 ≺1 x4 hence x2 must be imme-
diately to the right of x1. For voter 2, x4 ≺2 x2 ≺2 x1 hence x2

must be immediately to the left of x4. Contradiction. This profile is
not single-peaked consistent.

Example 4 shows that a 2-voters profile may not be consistent.
Now, we analyse the running time of the algorithm. At each it-

eration, either we find a compatible order, or a contradiction, or we
position at least one new element. Assuming that each preference
relation is given in decreasing order, we find the set L of worst can-
didates in time O(m). Then, for each voter we do O(1) compara-
isons. Step 2d can be possibly longer, since we test the compatibility
of an axis with the preference relations of all voters. This step is
done in time O(nm) (O(n) for each voter), but it occurs at most
once during the algorithm. Then, as long as this step does not oc-
cur we have T (n, m) ≤ T (n − 1, m) + O(m). This sums up to
T (n, m) = O(nm), and the possible execution of step 2d still leads
to T (n, m) = O(nm). Therefore :

Proposition 2 The single-peaked consistency problem can be solved
in time O(nm).

Proposition 2 improves the O(m.n2) algorithm given in [2] and is
established by a completely different method. Interestingly the algo-
rithm in [9] for cumputing a tree with respect to which the profile is
single peaked has similarities with ours. However, not only it works
in O(m.n2) but it is designed to find a tree and does not guarantee
to output an axis where there exists one.
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Of course, there may exist several axes compatible with a given
profile (the number of such axes is the topic of the next section),
and given a profile, one might be interested in finding all the axes
compatible with it5. It is easy to see that the method we proposed
can be adapted to find all axes compatible with a profile P ; indeed,
it is sufficient to keep in steps 2b and 3b all the different possibilities
when several choices are possible. As we will see in the next section,
there can be an exponential number of compatible axes, hence of
course the running time cannot be polynomially bounded.

Example 5 Let us consider 7 candidates and two voters, with:
x4 ≺1 x3 ≺1 x5 ≺1 x6 ≺1 x2 ≺1 x1 ≺1 x7

x5 ≺2 x6 ≺2 x4 ≺2 x3 ≺2 x2 ≺2 x7 ≺2 x1

The modified algorithm gives the 8 compatible axes:

x4x3x2x1x7x6x5 x5x6x1x7x2x3x4

x4x3x2x7x1x6x5 x5x6x7x1x2x3x4

x4x3x1x7x2x6x5 x5x6x2x7x1x3x4

x4x3x7x1x2x6x5 x5x6x2x1x7x3x4

4 On the number of axes compatible with a profile

In Section 3, we proposed an algorithm for computing an axis com-
patible with a given profile, but such an axis is not necessarily unique.
It is now worth to give bounds on the number of axes compatible with
a given profile, as well as the prior probability that a profile is single-
peaked consistent. As mentioned earlier, this set of compatible axes
may be of some interest when new voters give their preferences. Ob-
viously, the more compatible axes we have, the more likely this new
profile is single-peaked consistent. On the other hand, the existence
of several compatible axes may be considered as a drawback, for in-
stance if our goal is to learn some structural information about the
candidates. In this section, we focus on the minimum and maximum
numbers of axes that are compatible with a set of k distinct votes for
n candidates. Let q(k, n) and Q(k, n) be these respective numbers.

To begin with, remark that P is compatible with O then P is com-
patible with the inverse of O (denoted by O−1). Moreover, of course,
the more voters (or candidates), the less the number of compatible
axes. Hence, q and Q are even and non increasing with k and n.

First, let us deal with the case of a single axis.

Lemma 2 |SP (O)| = 2n−1

Proof. Let O = x1 > x2 > . . . > xn and �∈ SP (O). � is fully
determined by (a) its peak xi and (b) the positions of x1, . . . , xi−1

in the remaining n − 1 positions. Indeed, we know that xj � xk for
xk < xj < x∗ and for x∗ < xj < xk, hence (a) and (b) suffice to
describe �. There are

`
n−1
i−1

´
possible positionings for x1, . . . , xi−1,

therefore,
`

n−1
i−1

´
preference relations in SP (O) whose peak is xi. To

get the cardinality of SP (O) we have to sum up over i.
By symmetry considerations, we obtain that there exist 2n−1 axes

compatibles with a given preference relation. Hence, q(1, n) =
Q(1, n) = 2n−1. We also know (cf. Example 4 without x5) that
q(2, 4) = 0, therefore, for every k ≥ 2 and n ≥ 4 we have
q(k, n) = 0. The only missing case is q(2, 3), which can be eas-
ily shown to be equal to 2.

The case of Q(k, n) is more interesting. We already know that
Q(1, n) = 2n−1, and, by Lemma 2, Q(k, n) = 0 for k > 2n−1.

5 This may be useful for instance if a new voter appears. In this case, it is
very easy to find for instance if this new profile is single-peaked consistent.

We now show that the maximum number of compatible axes is glob-
ally inversely proportional to the number of distinct votes. More pre-
cisely, Q(k, n) = 2n/k when k = 2j 1 ≤ j ≤ n−1 (Proposition 3).
This gives bounds on Q(k, n) for the other values of k. We first show
this result for k = 2n−1 (Lemma 3), and then some relations between
the values of Q(k, n) when n and/or k change (lemmas 4 and 5).

Lemma 3 Q(2n−1, n) = 2

Proof (sketch). Let O = x1 > x2 > · · · > xn. Let us focus on
the set of axes compatible with the 2n−1 preference relations (see
Lemma 2) in SP (O). Let xi, xj with xi > xj . The relation R:
xj � xj+1 � . . . xn � xj−1 � . . . � xi � . . . � x1 is compatible
with O. Any axis O′ such that xj >O′ xi >O′ xn is not compatible
with R. Therefore, O is the only axis compatible with SP (O) whose
rightmost element is xn. By symmetry, O−1 is the only one whose
rightmost element is x1. The result follows from Lemma 1.

Lemma 4 For all k, n ≥ 1, Q(k, n + 1) ≥ 2Q(k, n)

Proof. Consider a profile P of k preference relations on n candidates
that are compatible with Q(k, n) axes. We extend these k relations to
n+1 candidates by positioning the new candidate xn+1 last in all re-
lations. For each of the Q(k, n) axes compatible with the initial k re-
lations, we can add xn+1 either as the leftmost element or rightmost
element. Therefore we obtain 2Q(k, n) distinct axes, compatible
with k distinct preference relations. Thus, Q(k, n+1) ≥ 2Q(k, n).

Lemma 5 (Proof omitted) For all n ≥ 2 and all k :
Q(k, n + 1) ≤ max{Q(	k/2
, n), 2Q(k, n)}.

Proposition 3 For all n ≥ 2, all j ∈ [1, n − 1]: Q(2j , n) = 2n−j

Proof (sketch). Let j between 1 and n− 1. By Lemma 3, Q(2j , j +
1) = 2. Thanks to Lemma 4, we get Q(2j , n) ≥ 2n−j . Using
Lemma 5, we can show that it is in fact an equality.

In particular, we get that for each k between 2 and 2n−1,
2n−1/k < Q(k, n) < 2n+1/k (or, if we want tighter bounds:
2n−�log2(k)�−1 < Q(k, n) ≤ 2n−�log2(k)�).

Lemma 2 enables us to give an approximation of the probabil-
ity that a randomly generated k-voter, n-candidate profile is single-
peaked consistent. Suppose P is drawn randomly with a uniform
probability: for each voter i, the probability that a given preference
relation R is the preference relation of voter i is 1

n!
, the preference

relations of two different voters being independent, therefore each
possible profile has a probability of

`
1
n!

´k. From Lemma 2 we get
that given an axis O and a preference relation R, the probability that
R ∈ SP (O) is 2n−1

n!
. Now, the probability that a k-voter profile is

compatible with a fixed axis O is
“

2n−1

n!

”k

= 2k(n−1)

n!k
. This im-

plies that the probability that a k–voter profile on n candidates is
single-peaked consistent is smaller than n! 2

k(n−1)

n!k
= 2k(n−1)

n!k−1 . (The
exact probability is of course lower than that, but gets asymptoti-
cally close to this upper bound, when the number of voters grows.)
Therefore, the probability of single-peaked consistency decreases
exponentially with both with the number of voters and the number of
candidates6. Finally, note that the probability of single-peaked con-
sistency is lower than the probability of non-occurrence of the Con-
dorcet paradox. which has received much more attention (see e.g.
[6]).
6 Of course, the above computation relies on the assumption that the pref-

erence relations of the voters are independent, which is arguably not very
realistic. Positive correlations between preference relations allow the prob-
ability of single-peaked consistency to decrease less fast.
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5 Communication complexity of the aggregation of
single-peaked preferences

We end this paper by a short additional result on the communica-
tion complexity of the aggregation of single-peaked preferences. As
said in Section 1, the restriction to single-peaked profiles allows for
escaping usual impossibility theorems, which means that there exist
natural and satisfactory voting rules and aggregation functions un-
der single-peakedness. First, it is well-known that, if the number of
voters is odd (which we will now assume for the sake of simplicity),
then the median of the peaks is the Condorcet winner and the pair-
wise majority aggregation of a profile P , defined by x �∗

P y if and
only if |{k | x �k y}| > m

2
for all x, y ∈ X , is a linear order.

We are now interested in the communication complexity of the me-
dian voting rule and pairwise majority aggregation for single-peaked
profiles. The deterministic communication complexity of a function
is the minimal quantity of information (measured in number of bits)
used by the a protocol that computes it. One can find a study on
the communication complexity of several voting rules (without the
single-peakedness restriction) in [5].

In this Section, we assume that the axis O is given (and is common
knowledge to all voters).

Obviously, the deterministic communication complexity of the
median of peaks for single-peaked profiles is at most m.	log n
,
since the median of peaks can simply be computed by asking vot-
ers to name their peak, which needs 	log n
 bits per voter. The lower
bound is less obvious. It can be obtained by taking the same fooling
set as in the proof of Theorem 3 in [5], and taking an axis whose
median is a. This leads to the following result:
Proposition 4 The deterministic communication complexity of the
median of peaks is O(m. log n) and Ω(m. log n)7.
The (deterministic) communication complexity of pairwise majority
aggregation is a little less obvious but still very simple:
Proposition 5 The deterministic communication complexity of pair-
wise majority aggregation for single-peaked profiles is at most
2m.	log n
 + 2m(n − 2).

The proof uses a protocol very similar to the one used in [4] for the
elicitation of single-peaked preferences of a voter. We start by deter-
mining the median of peaks, which needs m.	log n
 bits (see above).
Then we communicate the result to each voter (which requires again
m.	log n
 bits). After this, the voters are asked m − 2 successive
pairwise comparisons, according to the following protocol, presented
informally on an example: suppose the median of peaks is x3 (the
axis being x1 < x2 < x3 < x4 < . . .). We set rank(x3) = 1, and
we ask to each voter her preference between x2 and x4. If there is a
majority for x2, then x2 is the second “socially preferred candidate”
and we set rank(x2) = 2. Then, we ask to each voter her prefer-
ence between x1 and x4, and so on. Each of these steps requires the
central authority (CE) to send to each voter the information enabling
her to know the two candidates she has to compare. For this, CE does
not have to send the identity of the two candidates (which would re-
quire 2	log n
 bits) but only one bit, indicating whether the winner
of the previous step is the “right” candidate, or the “left” one (for
instance, after the voters have been asked their preferences between
x2 and x4, if there is a majority for x4 then CE sends the information
“right” to the voters, who now know the next comparison is between
x2 and x5). Each voter sends the answer to CE, which requires one
bit per voter. Hence each iteration requires 2m bits. There are exactly
n − 2 iterations, hence the protocol requires the communication of

7 Actually, the same bounds would hold for the nondeterministic communi-
cation complexity – see [5].

m.	log n
 + 2m(n − 2) bits. Finally, we see easily that x �∗
P y if

and only if rank(x) < rank(y), hence the protocol computes �∗
P .

6 Discussion

In this article we have studied some combinatorial and algorithmic
aspects of reasoning with single-peaked preferences. The main con-
tribution is an algorithm that outputs an axis compatible with a profile
(when there is one) in time O(mn). We have identified the minimal
and maximal number of axes that are simultaneously compatible with
a profile (which, as a byproduct, gives an approximation of the proba-
bility of single-peaked consistency of a randomly generated profile).
As a side result we have given some simple results on the communi-
cation complexity of the aggregation of single-peaked preferences.

This work deserves some further research in several directions. In
particular, as said in Section 4, the probability that a profile single-
peakes decreases dramatically with the number of voters and the
number of candidates. However, in many practical cases, even if not
stricto sensu single-peaked, the profile can be close (with respect
to some metric) to being so. For instance, in a nation-wide polit-
ical election, given the very high number of voters, the profile is
surely not single-peaked. However, in this case, it may be the case
that the profile is approximately single-peaked. To make this more
precise, we need to define formal notions of “approximate single-
peakedness”, which are meant to measure how far a profile is from
being single-peaked. Several definitions seem natural, such as (1)
the minimum number of voters whose deletion gives a single-peaked
profile, (2) the minimum number of candidates whose deletion gives
a single-peaked profile, or (3) the minimum number of axes such
that each preference relation of the profile is single-peaked with at
least one axis. Computing these measures of single-peakedness lead
to very interesting computational problems, for which our algorithm
of Section 3 can be the starting point. For instance, for (1) and (2),
we can design a branch-and-bound algorithm that generalizes our al-
gorithm. As for (3), we can modify our algorithm to produce a set of
axes which covers the whole profile (i.e. such that each preference
relation of the profile is compatible with at least one axis).
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