
Structure Learning of Markov Logic Networks
through Iterated Local Search

Marenglen Biba and Stefano Ferilli and Floriana Esposito1

Abstract.

Many real-world applications of AI require both probability and
first-order logic to deal with uncertainty and structural complexity.
Logical AI has focused mainly on handling complexity, and statis-
tical AI on handling uncertainty. Markov Logic Networks (MLNs)
are a powerful representation that combine Markov Networks (MNs)
and first-order logic by attaching weights to first-order formulas
and viewing these as templates for features of MNs. State-of-the-
art structure learning algorithms of MLNs maximize the likelihood
of a relational database by performing a greedy search in the space
of candidates. This can lead to suboptimal results because of the
incapability of these approaches to escape local optima. Moreover,
due to the combinatorially explosive space of potential candidates
these methods are computationally prohibitive. We propose a novel
algorithm for learning MLNs structure, based on the Iterated Lo-
cal Search (ILS) metaheuristic that explores the space of structures
through a biased sampling of the set of local optima. The algorithm
focuses the search not on the full space of solutions but on a smaller
subspace defined by the solutions that are locally optimal for the op-
timization engine. We show through experiments in two real-world
domains that the proposed approach improves accuracy and learning
time over the existing state-of-the-art algorithms.

1 Introduction

Traditionally, AI research has fallen into two separate subfields: one
that has focused on logical representations, and one on statistical
ones. Logical AI approaches like logic programming, description
logics, classical planning, symbolic parsing, rule induction, etc, tend
to emphasize handling complexity. Statitistical AI approaches like
Bayesian networks, hidden Markov models, Markov decision pro-
cesses, statistical parsing, neural networks, etc, tend to emphasize
handling uncertainty. However, intelligent agents must be able to
handle both for real-world applications. The first attempts to integrate
logic and probability in AI date back to the works in [1, 8, 19]. Later,
several authors began using logic programs to compactly specify
Bayesian networks, an approach known as knowledge-based model
construction [26].

Recently, in the burgeoning field of statistical relational learning
[7], several approaches for combining logic and probability have
been proposed such as probabilistic relational models [17], bayesian
logic programs [10], relational dependency networks [18], and oth-
ers. All these approaches combine probabilistic graphical models
with subsets of first-order logic (e.g., Horn Clauses). In this paper we
focus on Markov logic [22], a powerful representation that has finite

1 Department of Computer Science, University of Bari, Italy, email:
{biba,ferilli,esposito}@di.uniba.it

first-order logic and probabilistic graphical models as special cases.
It extends first-order logic by attaching weights to formulas provid-
ing the full expressiveness of graphical models and first-order logic
in finite domains and remaining well defined in many infinite do-
mains [22, 25]. Weighted formulas are viewed as templates for con-
structing MNs and in the infinite-weight limit, Markov logic reduces
to standard first-order logic. In Markov logic it is avoided the as-
sumption of i.i.d. (independent and identically distributed) data made
by most statistical learners by using the power of first-order logic to
compactly represent dependencies among objects and relations.

Learning an MLN consists in structure learning (learning the
logical clauses) and weight learning (setting the weight of each
clause). In [22] structure learning was performed through ILP meth-
ods [13] followed by a weight learning phase in which maximum-
pseudolikelihood [2] weights were learned for each learned clause.
State-of-the-art algorithms for structure learning are those in [11, 16]
where learning of MLNs is performed in a single step using weighted
pseudo-likelihood as the evaluation measure during structure search.
However, these algorithms follow systematic search strategies that
can lead to local optima and prohibitive learning times. The algo-
rithm in [11] performs a beam search in a greedy fashion which
makes it very susceptible to local optima, while the algorithm in
[16] works in a bottom-up fashion trying to consider fewer candi-
dates for evaluation. Even though it considers fewer candidates, after
initially scoring all candidates, this algorithm attempts to add them
one by one to the MLN, thus changing the MLN at almost each step,
which greatly slows down the computation of the optimal weights.
Moreover, both these algorithms cannot benefit from parallel archi-
tectures. We propose an approach based on the Iterated Local Search
(ILS) metaheuristics that samples the set of local optima and per-
forms a search in the sampled space. We show that, through a simple
parallelism model such as independent multiple walk, ILS achieves
improvements towards the state-of-the-art algorithms.

The paper is organized as follows: Section 2 introduces MNs and
MLNs, Section 3 describes learning approaches for MLNs, Section
4 introduces stochastic local search methods, Section 5 presents the
ILS metaheuristic for MLNs structure learning. We present the ex-
periments in Section 6 and conclude in Section 7.

2 Markov Networks and Markov Logic Networks

A MN (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1,X2,. . . ,Xn) ∈ χ [5]. It is
composed of an undirected graph G and a set of potential functions.
The graph has a node for each variable, and the model has a potential
function φk for each clique in the graph. A potential function is a
non-negative real-valued function of the state of the corresponding

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-361

361

clique. The joint distribution represented by a MN is given by:

P (X = x) =
1

Z

∏

k

φk(x{k})

where x{k} is the state of the kth clique (i.e., the state of the variables
that appear in that clique). Z, known as the partition function, is given
by:

Z =
∑

x∈χ

∏

k

φk(x{k})

MNs are often conveniently represented as log-linear models, with
each clique potential replaced by an exponentiated weighted sum of
features of the state, leading to:

P (X = x) =
1

Z
exp(

∑

j

wj fj(x))

A feature may be any real-valued function of the state. We will
focus on binary features, fj ∈ {0, 1}. In the most direct translation
from the potential-function form, there is one feature correspond-
ing to each possible state xk of each clique, with its weight being
log(φ(x{k}). This representation is exponential in the size of the
cliques. However a much smaller number of features (logical func-
tions of the state of the clique) can be specified, allowing for a more
compact representation than the potential-function form, particularly
when large cliques are present. MLNs take advantage of this.

A first-order knowledge base (KB) can be seen as a set of hard
constraints on the set of possible worlds: if a world violates even
one formula, it has zero probability. The basic idea in Markov logic
is to soften these constraints: when a world violates one formula in
the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associ-
ated weight that reflects how strong a constraint it is: the higher the
weight, the greater the difference in log probability between a world
that satisfies the formula and one that does not, other things being
equal.

A MLN [22] L is a set of pairs (Fi; wi), where Fi is a formula in
first-order logic and wi is a real number. Together with a finite set of
constants C = {c1, c2, . . . , cp} it defines a MN ML;C as follows:

1. ML;C contains one binary node for each possible grounding
of each predicate appearing in L. The value of the node is 1 if the
ground predicate is true, and 0 otherwise.

2. ML;C contains one feature for each possible grounding of
each formula Fi in L. The value of this feature is 1 if the ground
formula is true, and 0 otherwise. The weight of the feature is the wi

associated with Fi in L. Thus there is an edge between two nodes of
ML;C iff the corresponding ground predicates appear together in at
least one grounding of one formula in L. An MLN can be viewed as
a template for constructing MNs. The probability distribution over
possible worlds x specified by the ground MN ML;C is given by

P (X = x) =
1

Z
exp(

F∑

i=1

wini(x))

where F is the number of formulas in the MLN and ni(x) is the num-
ber of true groundings of Fi in x. As formula weights increase, an

MLN increasingly resembles a purely logical KB, becoming equiva-
lent to one in the limit of all infinite weights.

In this paper we focus on MLNs whose formulas are function-
free clauses and assume domain closure (it has been proven that no
expressiveness is lost), ensuring that the MNs generated are finite. In
this case, the groundings of a formula are formed simply by replacing
its variables with constants in all possible ways.

3 Structure and Parameter Learning of MLNs

A first-order knowledge base (KB) is a set of sentences or formu-
las in first-order logic [6]. Formulas are constructed using four types
of symbols: constants, variables, functions, and predicates. Constant
symbols represent objects in the domain of interest. Variable sym-
bols range over the objects in the domain. Function symbols repre-
sent mappings from tuples of objects to objects. Predicate symbols
represent relations among objects in the domain or attributes of ob-
jects. A term is any expression representing an object in the domain.
It can be a constant, a variable, or a function applied to a tuple of
terms. An atomic formula or atom is a predicate symbol applied to
a tuple of terms. A ground term is a term containing no variables. A
ground atom or ground predicate is an atomic formula all of whose
arguments are ground terms. Formulas are recursively constructed
from atomic formulas using logical connectives and quantifiers. A
positive literal is an atomic formula; a negative literal is a negated
atomic formula. A KB in clausal form is a conjunction of clauses,
a clause being a disjunction of literals. A definite clause is a clause
with exactly one positive literal (the head, with the negative literals
constituting the body). A possible world or Herbrand interpretation
assigns a truth value to each possible ground predicate.

Inductive Logic Programming (ILP) systems learn clausal KBs
from relational databases, or refine existing KBs [13]. Hypotheses
are constructed through refinement operators that add or remove lit-
erals from clauses. In the learning from interpretations setting of ILP,
the examples are databases, and the system searches for clauses that
are true in them. For example, CLAUDIEN [4], starting with a triv-
ially false clause, repeatedly forms all possible refinements of the
current clauses by adding literals, and adds to the KB those that sat-
isfy a minimum accuracy and coverage criterion. In the learning from
entailment setting, the system searches for clauses that entail all pos-
itive examples of some relation and no negative ones. For example,
FOIL [21] learns each definite clause by starting with the target rela-
tion as the head and greedily adding literals to the body.

MN weights have traditionally been learned using iterative scaling
[5]. However, maximizing the likelihood (or posterior) using a quasi-
Newton optimization method like L-BFGS has recently been found
to be much faster [23]. Regarding structure learning, the authors in
[5] induce conjunctive features by starting with a set of atomic fea-
tures (the original variables), conjoining each current feature with
each atomic feature, adding to the network the conjunction that most
increases likelihood, and repeating. The work in [15] extends this
to the case of conditional random fields, which are MNs trained to
maximize the conditional likelihood of a set of outputs given a set of
inputs.

The first attempt to learn MLNs was that in [22], where the au-
thors used the CLAUDIEN system to learn the clauses of MLNs
and then learned the weights by maximizing pseudo-likelihood. In
[11] another method was proposed that combines ideas from ILP and
feature induction of MNs. This algorithm, that performs a beam or
shortest first search in the space of clauses guided by a weighted
pseudo-likelihood (WPLL) measure [2], outperformed that of [22].

M. Biba et al. / Structure Learning of Markov Logic Networks Through Iterated Local Search362

Recently, in [16] a bottom-up approach was proposed in order to re-
duce the search space. This algorithm uses a propositional MN learn-
ing method to construct template networks that guide the construc-
tion of candidate clauses. In this way, it generates fewer candidates
for evaluation. Even though it evaluates fewer candidates, after ini-
tially scoring all candidates, the algorithm attempts to add them one
by one to the MLN, thus changing the MLN at almost each step,
which greatly slows down the computation of the WPLL. For ev-
ery candidate structure, in both [11, 16] the parameters that optimize
the WPLL are set through L-BFGS that approximates the second-
derivative of the WPLL by keeping a running finite-sized window of
previous first-derivatives.

Regarding weight-learning, as pointed out in [11] a potentially
serious problem that arises when evaluating candidate clauses us-
ing WPLL is that the optimal (maximum WPLL) weights need to
be computed for each candidate. Since this involves numerical op-
timization, and needs to be done millions of times, it could easily
make the algorithm too slow. In [15, 5] the problem is addressed by
assuming that the weights of previous features do not change when
testing a new one. Surprisingly, the authors in [11] found this to be
unnecessary if it is used the very simple approach of initializing L-
BFGS with the current weights (and zero weight for a new clause).
Although in principle all weights could change as the result of intro-
ducing or modifying a clause, in practice this is very rare. Second-
order, quadratic-convergence methods like L-BFGS are known to be
very fast if started near the optimum [23]. This is what happened in
[11]: L-BFGS typically converges in just a few iterations, sometimes
one. We use the same approach for setting the parameters that opti-
mize the WPLL.

4 Iterated Local Search

Many widely known and high-performance local search algorithms
make use of randomized choice in generating or selecting candidate
solutions for a given combinatorial problem instance. These algo-
rithms are called stochastic local search (SLS) algorithms [9] and
represent one of the most successful and widely used approaches for
solving hard combinatorial problems. Many “simple” SLS methods
come from other search methods by just randomizing the selection of
the candidates during search, such as Randomized Iterative Improve-
ment (RII), Uniformed Random Walk, etc. Many other SLS methods
combine “simple” SLS methods to exploit the abilities of each of
these during search. These are known as Hybrid SLS methods [9].
ILS is one of these metaheuristics because it can be easily combined
with other SLS methods.

One of the simplest and most intuitive ideas for addressing the fun-
damental issue of escaping local optima is to use two types of SLS
steps: one for reaching local optima as efficiently as possible, and
the other for effectively escaping local optima. ILS methods [9, 14]
exploit this key idea, and essentially use two types of search steps
alternatingly to perform a walk in the space of local optima w.r.t.
the given evaluation function. The algorithm works as follows: The
search process starts from a randomly selected element of the search
space. From this initial candidate solution, a locally optimal solution
is obtained by applying a subsidiary local search procedure. Then
each iteration step of the algorithm consists of three major steps: first
a perturbation method is applied to the current candidate solution s;
this yields a modified candidate solution s’ from which in the next
step a subsidiary local search is performed until a local optimum s”
is obtained. In the last step, an acceptance criterion is used to de-
cide from which of the two local optima s or s’ the search process

Algorithm 1 Structure Learning
Input: P:set of predicates, MLN:Markov Logic Network,
RDB:Relational Database
CLS = All clauses in MLN ∪ P;
LearnWeights(MLN,DB); Score = WPLL(MLN,RDB);
repeat

BestClause = SearchBestClause(P,MLN,Score,CLS,RDB);
if BestClause �= null then

Add BestClause to MLN;
Score = WPLL(MLN,RDB);

if BestScore <= Score then

Gain = Score - BestScore; BestScore = Score;
end if

end if

until BestClause = null || Gain <= minGain for two consecutive
steps
return MLN

is continued. The algorithm can terminate after some steps have not
produced improvement or simply after a certain number of steps. The
choice of the components of the ILS has a great impact on the per-
formance of the algorithm.

As pointed out in [9] there are three good reasons to consider ap-
plying SLS algorithms instead of systematic algorithms. The first is
that many problems are of a constructive nature and their instance
is known to be solvable. In these situations, the goal of any search
algorithm is to find a solution rather than just to decide whether a
solution exists. This holds in particular for optimization problems,
where the actual problem is to find a solution of sufficiently high
quality. Therefore, the main advantage of a complete systematic al-
gorithm (the ability to detect that a given problem instance has no
solution) is not relevant for finding solutions of solvable instances.
Secondly, in most application scenarios, the time to find a solution
is limited. In these situations, systematic algorithms often have to be
aborted after the given time has been exhausted, which renders them
incomplete. This is problematic for many systematic optimization al-
gorithms that search through spaces of partial solutions without com-
puting complete solutions early in the search, and if such a systematic
algorithm is aborted prematurely, usually a non solution candidate is
available, while in the same situation SLS algorithms typically re-
turn the best solution found so far. Thirdly, algorithms for real-time
problems should be able to deliver reasonably good solutions at any
point during their execution. For optimization problems this typically
means that run-time and solution quality should be positively corre-
lated; for decision problems one could guess a solution when a time-
out occurs, where the accuracy of the guess should increase with the
run-time of the algorithm. This so-called any-time property of algo-
rithms is usually very difficult to achieve, but in many situations the
SLS paradigm is naturally suited for devising any time algorithms.

In general, it is not straightforward to decide whether to use a
systematic or SLS algorithm in a certain task. Systematic and SLS
algorithms can be considered complementary to each other. SLS al-
gorithms are advantageous in many situations, particularly if reason-
ably good solutions are required within a short time, if parallel pro-
cessing is used and if knowledge about the problem domain is rather
limited. In other cases, when time constraints are less important and
some knowledge about the problem domain can be exploited, sys-
tematic search may a better choice.

Structure learning of MLNs is a hard optimization problem due
to the large space to be explored, thus SLS methods are suitable for

M. Biba et al. / Structure Learning of Markov Logic Networks Through Iterated Local Search 363

finding solutions of high quality in short time. Moreover, one of the
key advantages of SLS methods is that they can greatly speed up
learning through parallel processing, where speedups proportional to
the number of CPUs can be achieved [9]. We also exploit this feature
of our ILS algorithm, by parallelizing multiple independent walks of
ILS in separate CPUs.

5 Generative Structure Learning of MLNs through
ILS

In this section we describe the ILS metaheuristic tailored to the prob-
lem of learning the structure of MLNs. Algorithm 1 iteratively adds
the best clause to the current MLN until two consecutive steps have
not produced improvement (however other stopping criteria could be
applied). Algorithm 2 performs an iterated local search to find the
best clause to add to the MLN. It starts by randomly choosing a unit
clause CLC in the search space. Then it performs a greedy local
search to efficiently reach a local optimum CLS . At this point, a per-
turbation method is applied leading to the neighbor CL′

C of CLS

and then a greedy local search is applied to CL′
C to reach another lo-

cal optimum CL′
S . The accept function decides whether the search

must continue from the previous local optimum CLC or from the
last found local optimum CL′

S (accept can perform random walk or
iterative improvement in the space of local optima).

Careful choice of the various components of Algorithm 2 is impor-
tant to achieve high performance. The clause perturbation operator
(flipping the sign of literals, removing literals or adding literals) has
the goal to jump in a different region of the search space where search
should start with the next iteration. There can be strong or weak per-
turbations which means that if the jump in the search space is near
to the current local optimum the subsidiary local search procedure
LocalSearchII may fall again in the same local optimum and enter
regions with the same value of the objective function called plateau,
but if the jump is too far, LocalSearchII may take too many steps to
reach another good solution. In our algorithm we use only strong per-
turbations, i.e. we always re-start from unit clauses (in future work
we intend to adapt dynamically the nature of the perturbation). Re-
garding the procedure LocalSearchII we decided to use an iterative
improvement approach in order to balance intensification (greedily
increase solution quality by exploiting the evaluation function) and
diversification (randomness induced by strong perturbation to avoid
search stagnation). The accept function always accepts the best solu-
tion found so far.

6 Experiments

6.1 Datasets

We carried out experiments on two publicly-available databases:
the UW-CSE database used by [11, 22, 16] (available at
http://alchemy.cs.washington.edu/data/uw-cse) and the Cora dataset
originally labeled by Andrew McCallum. Both represent standard re-
lational datasets and are used for two important relational tasks: Cora
for entity resolution and UW-CSE for social network analysis. For
Cora we used a cleaned version from [24], with five splits for cross-
validation.

The published UW-CSE dataset consists of 15 predicates di-
vided into 10 types. Types include: publication, person, course,
etc. Predicates include: Student(person), Professor(person), Ad-
visedBy(person1, person2), TaughtBy(course, person, quarter), Pub-
lication (paper, person) etc. The dataset contains a total of 2673 tu-
ples (true ground atoms, with the remainder assumed false). The Cora

Algorithm 2 SearchBestClause
Input: P:set of predicates, MLN:Markov Logic Net-
work, BestScore: current best score, CLS: List of clauses,
RDB:Relational Database)
CLC = Random Pick a clause in CLS ∪ P;
CLS = LocalSearchII (CLS);
BestClause = CLS ;
repeat

CL’C = Perturb(CLS);
CL’S = LocalSearchII (CL’C ,MLN,BestScore);
if WPLL(BestClause,MLN,RDB) ≤ WPLL(CL’S ,MLN,RDB)
then

BestClause = CL’S ;
Add BestClause to MLN;
BestScore = WPLL(CL’S ,MLN,RDB)

end if

CLS = accept(CLS ,CL’S);
until two consecutive steps have not produced improvement
Return BestClause

dataset consists of 1295 citations of 132 different computer science
papers, drawn from the Cora Computer Science Research Paper En-
gine. The task is to predict which citations refer to the same paper,
given the words in their author, title, and venue fields. The labeled
data also specify which pairs of author, title, and venue fields refer to
the same entities. We performed experiments for each field in order
to evaluate the ability of the model to deduplicate fields as well as ci-
tations. Since the number of possible equivalences is very large, we
used the canopies found in [24] to make this problem tractable.

6.2 Systems and Methodology

We implemented Algorithm 1 (ILS) in the Alchemy package [12].
We used the implementation of L-BFGS in Alchemy to learn maxi-
mum WPLL weights. We compared our algorithm performance with
the state-of-the-art algorithms for generative structure learning of
MLNs: BS (Beam Search) of [11] and BUSL (Bottom-Up Structure
Learning) of [16].

In the UW-CSE domain, we used the same leave-one-area-out
methodology as in [22]. In the Cora domain, we performed cross-
validation. For each system on each test set, we measured the con-
ditional log-likelihood (CLL) and the area under the precision-recall
curve (AUC) for all the predicates. The advantage of the CLL is that
it directly measures the quality of the probability estimates produced.
The advantage of the AUC is that it is insensitive to the large num-
ber of true negatives (i.e., ground atoms that are false and predicted
to be false). The CLL of a query predicate is the average over all
its groundings of the ground atoms log-probability given evidence.
The precision-recall curve for a predicate is computed by varying the
CLL threshold above which a ground atom is predicted to be true;
i.e. the predicates whose probability of being true is greater than the
threshold are positive and the rest are negative.

For all algorithms, we used the default parameters of Alchemy
changing only the following ones: maximum variables per clause =
5 for UW-CSE and 6 for Cora; penalization of WPLL: 0.01 for UW-
CSE and 0.001 for Cora. For L-BFGS: convergence threshold = 10−5

(tight) and 10−4 (loose); minWeight = 0.5 for UW-CSE for BUSL as
in [16], 1 for BS as in [11] and 1 for ILS; minGain = 0.05 for ILS.
For ILS we used a multiple independent walk parallelism, assigning
an instance of the algorithm to a separate CPU on a cluster of Intel
Core2 Duo 2.13 GHz CPUs.

M. Biba et al. / Structure Learning of Markov Logic Networks Through Iterated Local Search364

6.3 Results

After learning the structure, we performed inference on the test fold
for both datasets by using MC-SAT [20] with number of steps =
10000 and simulated annealing temperature = 0.5. For each exper-
iment, all the groundings of the query predicates on the test fold
were commented. MC-SAT produces probability outputs for every
grounding of the query predicate on the test fold. We used these val-
ues to compute the average CLL over all the groundings and the rela-
tive AUC (for AUC we used the method proposed in [3]). For ILS we
report the best performance in terms of CLL among ten parallel in-
dependent walks. Both CLL and AUC results (Table 1) are averaged
over all predicates of the domain. Learning times are reported in Ta-
ble 2. For BS in the Cora domain we were not able to report results,
since structure learning with this algorithm did not finish in 45 days.
BS is heavily slowed by its systematic top-down nature that tends to
evaluate a very large number of candidates. In the UW-CSE domain,
BS gets easily stuck in local optima due to its greedy strategy.

Table 1. Accuracy results for all algorithms

UW-CSE CORA
Algorithm CLL AUC CLL AUC

BS -0.312±0.046 0.320 - -
BUSL -0.074±0.014 0.431 -0.196±0.003 0.201

ILS -0.069±0.016 0.432 -0.102±0.003 0.225

In both domains, ILS gives the best overall results in terms of CLL
and AUC. BUSL is competitive with ILS in terms of accuracy but is
much slower. Even though BUSL evaluates fewer candidates than
ILS, it changes the MLN completely at each step, thus calculating
the WPLL becomes very expensive. In ILS this does not happen be-
cause, like in [11], at each step L-BFGS is initialized with the current
weights (and zero weight for a new clause) and it converges in a few
iterations. We empirically observed that ILS is very effective in es-
caping local optima and further improvements can be achieved by
dynamically adapting the strength of the perturbation operator.

Table 2. Average learning times for all algorithms (in minutes)

Algorithm UW-CSE CORA
BS 335 -

BUSL 618 9350
ILS 148 1597

7 Conclusion and Future Work

Markov logic networks are a powerful representation that combine
first-order logic and probability. We have introduced an iterated lo-
cal search algorithm for learning the structure of Markov Logic Net-
works. The approach is based on a biased sampling of the set of local
optima focusing the search not on the full space of solutions but on
a smaller subspace defined by the solutions that are locally optimal
for the optimization engine. We have shown through experiments in
two real-world domains that the proposed algorithm performs bet-
ter than state-of-the-art structure learning algorithms for MLNs. Fu-
ture work includes implementing more sophisticated parallel models
suich as MPI (Message Passing Interface) or PVM (Parallel Virtual

Machine), dynamically adapting the nature of perturbations in ILS,
using a Metropolis criterion in the acceptance function of ILS.

ACKNOWLEDGEMENTS

We thank Pedro Domingos and Stanley Kok for helpful discussions,
Marc Sumner for help on using Alchemy and Lilyana Mihalkova for
help on BUSL.

REFERENCES

[1] F. Bacchus, Representing and Reasoning with Probabilistic Knowledge,
Cambridge, MA: MIT Press, 1990.

[2] J. Besag, ‘Statistical analysis of non-lattice data’, Statistician, 24, 179–
195, (1975).

[3] J. Davis and M. Goadrich, ‘The relationship between precision-recall
and roc curves’, in Proc. 23rd ICML, pp. 233–240, (2006).

[4] L. De Raedt and L. Dehaspe, ‘Clausal discovery’, Machine Learning,
26, 99–146, (1997).

[5] S. Della Pietra, V. Della Pietra, and J. Laferty, ‘Inducing features of
random fields’, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19, 380–392, (1997).

[6] M. R. Genesereth and N. J. Nilsson, Logical foundations of artificial
intelligence, San Mateo, CA: Morgan Kaufmann., 1987.

[7] L. Getoor and B. Taskar, Introduction to Statistical Relational Learn-
ing, MIT, 2007.

[8] J. Halpern, ‘An analysis of first-order logics of probability’, Artificial
Intelligence, 46, 311–350, (1990).

[9] H. H. Hoos and T. Stutzle, Stochastic Local Search: Foundations and
Applications, Morgan Kaufmann, San Francisco, 2005.

[10] K. Kersting and L. De Raedt, ‘Towards combining inductive logic pro-
gramming with bayesian networks’, in Proc. 11th Int’l Conf. on Induc-
tive Logic Programming, pp. 118–131. Springer, (2001).

[11] S. Kok and P. Domingos, ‘Learning the structure of markov logic net-
works’, in Proc. 22nd Int’l Conf. on Machine Learning, pp. 441–448,
(2005).

[12] S. Kok, P. Singla, M. Richardson, and P. Domingos, ‘The alchemy sys-
tem for statistical relational ai’, Technical report, Department of CSE-
UW, Seattle, WA, http://alchemy.cs.washington.edu/, (2005).

[13] N. Lavrac and S. Dzeroski, Inductive Logic Programming: Techniques
and applications, UK: Ellis Horwood, Chichester, 1994.

[14] H.R. Loureno, O. Martin, and T. Stutzle, ‘Iterated local search’, in
Handbook of Metaheuristics, 321–353, F. Glover and G. Kochenberger,
Kluwer Academic Publishers, Norwell, MA, USA, (2002).

[15] A. McCallum, ‘Efficiently inducing features of conditional random
fields’, in Proc. UAI-03, pp. 403–410, (2003).

[16] L. Mihalkova and R. J. Mooney, ‘Bottom-up learning of markov logic
network structure’, in Proc. 24th Int’l Conf. on Machine Learning, pp.
625–632, (2007).

[17] D. Koller N. Friedman, L. Getoor and A. Pfeffer, ‘Learning probabilis-
tic relational models’, in Proc. 16th Int’l Joint Conf. on AI (IJCAI), pp.
1300–1307. Morgan Kaufmann, (1999).

[18] J. Neville and D. Jensen, ‘Dependency networks for relational data’, in
Proc. 4th IEEE Int’l Conf. on Data Mining, pp. 170–177. IEEE Com-
puter Society Press., (2004).

[19] N. Nilsson, ‘Probabilistic logic’, Artificial Intelligence, 28, 71–87,
(1986).

[20] H. Poon and P. Domingos, ‘Sound and efficient inference with proba-
bilistic and deterministic dependencies’, in Proc. 21st Nat’l Conf. on
AI, (AAAI), pp. 458–463. AAAI Press, (2006).

[21] J. R. Quinlan, ‘Learning logical definitions from relations’, Machine
Learning, 5, 239–266, (1990).

[22] M. Richardson and P. Domingos, ‘Markov logic networks’, Machine
Learning, 62, 107–236, (2006).

[23] F. Sha and F. Pereira, ‘Shallow parsing with conditional random fields’,
in Proc. HLT-NAACL-03, pp. 134–141, (2003).

[24] P. Singla and P. Domingos, ‘Entity resolution with markov logic’, in
Proc. ICDM-2006, pp. 572–582. IEEE Computer Society Press, (2006).

[25] P. Singla and P. Domingos, ‘Markov logic in infinite domains’, in Proc.
23rd UAI, pp. 368–375. AUAI Press, (2007).

[26] J. S. Wellman, M. Breese and R. P. Goldman, ‘From knowledge bases
to decision models’, Knowledge Engineering Review, (1992).

M. Biba et al. / Structure Learning of Markov Logic Networks Through Iterated Local Search 365

