
WWW sits the SAT:
Measuring Relational Similarity on the Web

Danushka Bollegala1 and Yutaka Matsuo2 and Mitsuru Ishizuka3

Abstract. Measuring relational similarity between words is impor-
tant in numerous natural language processing tasks such as solving
analogy questions and classifying noun-modifier relations. We pro-
pose a method to measure the similarity between semantic relations
that hold between two pairs of words using a web search engine.
First, each pair of words is represented by a vector of automatically
extracted lexical patterns. Then a Support Vector Machine is trained
to recognize word pairs with similar semantic relations. We evaluate
the proposed method on SAT multiple-choice word-analogy ques-
tions. The proposed method achieves a score of 40% which is com-
parable with relational similarity measures which use manually cre-
ated resources such as WordNet. The proposed method significantly
reduces the time taken by previously proposed computationally in-
tensive methods, such as latent relational analysis, to process 374
analogy questions from 8 days to less than 6 hours.

1 Introduction

Similarity can be broadly categorized into two types: attributional
and relational [4, 14]. Attributional similarity is correspondence be-
tween attributes and relational similarity is correspondence between
relations. When two words have a high degree of attributional sim-
ilarity, they are called synonymous. When two pairs of words show
a high degree of relational similarity, they are called analogous. For
example, the two analogous word-pairs: ostrich:bird and lion:cat –
both implying the relation X is a large Y – has a high relational sim-
ilarity.

Relational similarity measures are useful for numerous tasks in
natural language processing such as detecting word analogies and
classifying semantic relations in noun-modifier pairs. Word anal-
ogy questions have been used as a component of Scholastic Apti-
tude Test (SAT) to evaluate applicants to the U.S. college system
for decades. A SAT analogy question comprises a source-pairing of
concepts/terms and a choice of (usually five) possible target pairings,
only one of which accurately reflects the source relationship. A typi-
cal example is shown below.

Question: Ostrich is to Bird as:
a. Cub is to Bear
b. Lion is to Cat
c. Ewe is to Sheep
d. Turkey is to Chicken
e. Jeep is to Truck

1 Research Fellow of the Japan Society for the Promotion of Sci-
ence (JSPS), The University of Tokyo, 7-3-1, Hongo, Tokyo, Japan.
danushka@mi.ci.i.u-tokyo.ac.jp

2 matsuo@biz-model.t.u-tokyo.ac.jp
3 ishizuka@i.u-tokyo.ac.jp

Here, the relation is a large holds between the two words in the ques-
tion (e.g. Ostrich and Bird), which is also shared between the two
words in the correct answer (e.g. Lion is a large Cat). SAT analogy
questions have been used as a benchmark to evaluate relational sim-
ilarity measures in previous work on relational similarity [19, 14].

Noun-modifier pairs such as flu virus, storm cloud, expensive
book, etc are frequent in English language. In fact, WordNet contains
more than 26, 000 noun-modifier pairs. Natase and Szpakowicz [6]
classified noun-modifiers into five classes according to the relations
between the noun and the modifier. Turney [14] used a relational
similarity measure to compute the similarity between noun-modifier
pairs and classify them according to the semantic relations that hold
between a noun and its modifier.

We proposes a method to measure the relational similarity between
two given pairs of words using text-snippets returned by a web search
engine. Snippets provide useful information about the relations that
hold between words. For example, Google4 returns the snippet ...the
ostrich is the largest bird in the world and can be found in South
Africa... for the conjunctive query ostrich AND bird. This snippet
alone suggests that ostrich is a large bird. The proposed method au-
tomatically extracts lexical patterns that describe the relation implied
by the two words in a word-pair and computes the relational similar-
ity between two word-pairs using a machine learning approach.

Relational similarity is a dynamic phenomenon. In particular, rela-
tions between named entities change over time and across domains.
Therefore, it is costly or even impossible to manually update lan-
guage resources to reflect those changes. The proposed method does
not require language resources such as taxonomies or dictionaries
which makes it attractive when measuring relational similarity be-
tween words that do not appear in manually created resources.

Using SAT analogy questions as training data, we propose an algo-
rithm to automatically extract lexical patterns to represent the numer-
ous relations implied by two words. The proposed method requires
a lesser number of search engine queries (one query per word-pair)
and does not require computationally intensive large matrix manipu-
lations as required by the previously proposed latent relational anal-
ysis (LRA) [12], thereby reducing the time taken to answer 374 SAT
analogy questions from 8 days by LRA to less than 6 hours.

2 Related work

The Structure-mapping theory (SMT) [2] claims that an analogy is a
mapping of knowledge from one domain (base) into another (target)
which conveys that a system of relations known to hold in the base
also holds in the target. The target objects do not have to resemble
their corresponding base objects. This structural view of analogy is

4 http://code.google.com/apis

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-333

333

based on the intuition that analogies are about relations, rather than
simple features. Although this approach works best when the base
and the target are rich in higher-order causal structures, it can fail
when structures are missing or flat [20].

Turney et al. [16] combined 13 independent modules by consid-
ering the weighted sum of the outputs of each individual module to
solve SAT analogy questions. The best performing individual mod-
ule was based on Vector Space Model (VSM). In the VSM approach
to measuring relational similarity [15], first a vector is created for
a word-pair X:Y by counting the frequencies of various lexical pat-
terns containing X and Y. In their experiments they used 128 man-
ually created patterns such as “X of Y”, “Y of X”, “X to Y” and “Y
to X”. These patterns are then used as queries to a search engine and
the number of hits for each query is used as elements in a vector to
represent the word-pair. Finally, the relational similarity is computed
as the cosine of the angle between the two vectors representing each
word-pair. This VSM approach achieves a score of 47% on college-
level multiple-choice SAT analogy questions. A SAT analogy ques-
tion consists of a target word-pair and five choice word-pairs. The
choice word-pair that has the highest relational similarity with the
target word-pair in the question is selected by the system as the cor-
rect answer.

Turney [12, 14] proposes Latent Relational Analysis (LRA) by ex-
tending the VSM approach in three ways: a) lexical patterns are au-
tomatically extracted from a corpus, b) the Singular Value Decompo-
sition (SVD) is used to smooth the frequency data, and c) synonyms
are used to explore variants of the word-pairs. LRA achieves a score
of 56.4% on SAT analogy questions. Both VSM and LRA require a
large number of search engine queries to create a vector representing
a word-pair. For example, with 128 patterns, VSM approach requires
at least 256 queries to compute relational similarity. LRA considers
synonymous variants of the given word pairs, thus requiring even
more search engine queries. Despite efficient implementations, sin-
gular value decomposition of large matrices is time consuming. In
fact, overall LRA takes over 8 days to process the 374 SAT analogy
questions [14], which can be problematic when used in many real
world NLP tasks.

Veale [19] proposed a relational similarity measure based on tax-
onomic similarity in WordNet. He evaluates the quality of a candi-
date analogy A:B::C:D by comparing the paths in WordNet, joining
A to B and C to D. Relational similarity is defined as the similar-
ity between the A:B paths and C:D paths. However, WordNet does
not fully cover named entities such as personal names, organizations
and locations, which becomes problematic when using this method
to measure relational similarity between named entities.

Using a relational similarity measure, Turney [13] proposed an un-
supervised learning algorithm to extract patterns that express implicit
semantic relations from a corpus. His method produces a ranked set
of lexical patterns that unambiguously describes the relation between
the two words in a given word-pair. Patterns are ranked according to
their expected relational similarity (i.e. pertinence), computed using
an algorithm similar to LRA. To answer SAT a analogy question,
first, ranked lists of patterns are generated for each of the six word
pairs (one stem word-pair and five choice word-pairs). Then each
choice is evaluated by taking the intersection of its patterns with the
stem’s patterns. The shared patterns are scored by the average of their
rank in the stem’s lists and the choice’s lists. The algorithm picks the
choice with the lowest scoring shared pattern as the correct answer.
This method reports a SAT score of 54.6%.

A:B

C:D

Web

Search

Engine

pattern

extraction/

selection

(PrefixSpan)

snippets
feature

vectors

Training/

Relational

Similarity

(SVM)

Identify the implicit relations Compare the relations

in the two word-pairs

Figure 1. Outline of the proposed method.

3 Method

3.1 Outline

The proposed relational similarity measure is outlined in Fig.1. It can
be described in two main steps: identifying the implicit relations be-
tween the two words in each word-pair and comparing the relations
that exist in each word-pair. In order to measure the relational simi-
larity between two word-pairs A:B and C:D, we must first identify the
relations implied by each word-pair. For example, the relation X is-
a-large Y holds between the the two words in pairs ostrich:bird and
lion:cat. We propose the use of PrefixSpan [7], a sequential pattern
mining algorithm, to extract implicit relations from snippets returned
by a web search engine for two words. We train a Support Vector
Machine (SVM) [18] using SAT multiple-choice analogy questions
as training data to compare the extracted relations and identify anal-
ogous word-pairs.

3.2 Pattern Extraction and Selection

We represent the implicit relations indicated by the two words in
a word-pair X:Y using automatically extracted lexical patterns. Al-
though automatic pattern extraction methods [9, 11] have been pro-
posed based on dependency parsing of sentences, extracting lexical
patterns from snippets using such methods is difficult because most
snippets are not grammatically correct complete sentences. However,
lexical syntactic patterns have been successfully used to extract se-
mantic information such as qualia structures [1] from web text snip-
pets. Consequently, in this paper we employ a shallow pattern extrac-
tion method based on sequential pattern mining.

To identify the implicit relations between two words X and
Y, we first query a web search engine using the phrasal query
“X*******Y”. Here, the wildcard operator “*” would match any
word or nothing. This query retrieves snippets that contain both X
and Y within a window of 7 words. For example, Google returns the
snippet shown in Fig.2 for the word-pair lion:cat. We use PrefixSpan

...lion, a large heavy-built social cat of open rocky areas in Africa ...

Figure 2. A snippet returned by Google for the query “lion*******cat”.

(i.e., prefix-projected sequential pattern mining) [7] algorithm to ex-
tract frequent subsequences from snippets that contain both X and Y.
PrefixSpan extracts all word subsequences which occur more than a
specified frequency in snippets. We select subsequences that contain

D. Bollegala et al. / WWW Sits the SAT: Measuring Relational Similarity on the Web334

both query words (eg. lion and cat) and replace the query words re-
spectively with variables X and Y to construct lexical patterns. For
example, some of patterns we extract from the snippet in Fig.2 are
“X a large Y”, “X a large Y of” and “X, a large social Y”. PrefixS-
pan algorithm is particularly suitable for the current task because it
can efficiently extract a large number of lexical patterns.

We used the SAT analogy questions dataset which was first pro-
posed by Turney and Littman [15] as a benchmark to evaluate re-
lational similarity measures, to extract lexical patterns. The dataset
contains 2176 unique word-pairs across 374 analogy questions. For
each word-pair, we searched Google and download the top 1000
snippets. From the patterns extracted by the above mentioned pro-
cedure, we select ones that occur more three times and have less than
seven words. The variables X and Y in patterns are swapped to create
a reversed version of the pattern. The final set contains 9980 unique
patterns. However, out of those patterns only 10% appear in both for
a question and one of its choices. It is impossible to learn with such a
large number of sparse patterns. Therefore, we perform a pattern se-
lection procedure to identify those patterns that convey useful clues
about implicit semantic relations.

First, for each extracted pattern v, we count the number of times
where v appeared in any of the snippets for both a question and its
correct answer (pv) and in any of the snippets for both a question and
any one of its incorrect answers (nv). We then create a contingency
table for each pattern v, as shown in Table 1. In Table 1, P denotes
the total frequency of all patterns that occur in snippets for a question
and its correct answer (P =

∑
v

pv) and N is the same for incorrect
answers (N =

∑
v

nv). If a pattern occurs many times in a question

Table 1. Contingency table for a pattern v

v patterns other Total
than v

Freq. in snippets for question
and correct answer pv P − pv P
Freq. in snippets for question
and incorrect answer nv N − nv N

and its correct answer, then such patterns are reliable indicators of
latent relations between words. To evaluate the reliability of an ex-
tracted pattern as an indicator of a relation, we calculate the χ2 [3]
value for each pattern using Table 1 as,

χ2 =
(P + N)(pv(N − nv) − nv(P − pv))2

PN(pv + nv)(P + N − pv − nv)
.

Patterns with χ2 value greater than a specified threshold are used as
features for training. Some of the selected patterns are shown later in
Table 3.

3.3 Training

For given two pairs of words A:B and C:D, we create a feature vec-
tor using the patterns selected in section 3.2. First, we record the
frequency of occurrence of each selected pattern in snippets for each
word-pair. We call this the pattern frequency. It is a local frequency
count, analogous to term frequency in information retrieval [10]. Sec-
ondly, we combine the two pattern frequencies of a pattern (i.e., fre-
quency of occurrence in snippets for A:B and that in snippets for
C:D) using various feature functions to compute the feature-values
for training. The different feature functions experimented in the pa-
per are explained in section 4.

We model the problem of computing relational similarity as a one
of identifying analogous and non-analogous word-pairs, which can
be solved by training a binary classifier. Using SAT analogy ques-
tions as training data, we train a two-class support vector machine
(SVM) as follows. From each question in the dataset, we create a
positive training instance by considering A:B to be the word-pair for
the question and C:D to be the word-pair for the correct answer. Like-
wise, a negative training instance is created from a question word-
pair and one of the incorrect answers.

The trained SVM model can then be used to compute the rela-
tional similarity between two given word-pairs A:B and C:D as fol-
lows. First, we represent the two word-pairs by a feature vector F
of pattern frequency-based features. Second, we define the relational
similarity RelSim(A : B, C : D) between the two word-pairs A:B
and C:D as the posterior probability Prob(F |analogous) that fea-
ture vector F belongs to the analogous-pairs (positive) class,

RelSim(A : B, C : D) = Prob(F |analogous).

Being a large margin classifier, the output of an SVM is the distance
from the decision hyper-plane. For the purpose of solving SAT ques-
tions, we can directly use the distance from the decision hyper-plane
and rank the candidate answers. However, distance from the decision
hyper-plane is not a calibrated posterior probability that lies between
[0, 1] range. We use sigmoid functions to convert this uncalibrated
distance into a calibrated posterior probability (see [8] for a detailed
discussion on this topic).

4 Experiments

For the experiments in this paper we used the 374 SAT college-level
multiple-choice analogy questions dataset which was first proposed
by Turney et al. [16]. We compute the total score for answering SAT
questions as follows,

score =
no. of correctly answered questions

total no. of questions
. (1)

Formula 1 does not penalize a system for marking incorrect answers.

4.1 Feature Functions

Evidence from psychological experiments suggest that similarity can
be context-dependent and even asymmetric [17, 5]. Human subjects
have reportedly assigned different similarity ratings to word-pairs
when the two words were presented in the reverse order. However,
experimental results investigating the effects of asymmetry reports
that the average difference in ratings for a word pair is less than 5 per-
cent [5]. Consequently, in this paper we assume relational similarity
to be symmetric and limit ourselves to symmetric feature functions.
This assumption is in line with previous work on relational similarity
described in section 2.

Let us assume the frequency of a pattern v in two word-pairs A:B
and C:D to be fAB and fCD , respectively. We compute the value as-
signed to the feature corresponding to pattern v in the feature vector
that represents the two word-pairs A:B and C:D using the following
four feature functions.

|fAB − fCD|: The absolute value of the difference of pattern fre-
quencies is considered as the feature-value.

(fAB − fCD)2: The square of the difference of pattern frequencies
is considered as the feature-value.

D. Bollegala et al. / WWW Sits the SAT: Measuring Relational Similarity on the Web 335

fAB × fCD: The product of the pattern frequencies is considered
as the feature-value.

JS divergence: Ideally, if two word-pairs are analogous we would
expect to see similar distributions of patterns in each word-pair.
Consequently, the closeness between the pattern distributions can
be regarded as an indicator of relational similarity. We define a
feature function based on Jensen-Shannon divergence [3] as a
measure of the closeness between pattern distributions. Jensen-
Shannon (JS) divergence DJS(P ||Q), between two probability
distributions P and Q is given by,

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M). (2)

Here, M = (P + Q)/2 and DKL is the Kullback-Leibler diver-
gence, which is given by,

DKL(P ||Q) =
∑

v

P (v) log
P (v)

Q(v)
. (3)

Here, P (v) denotes the normalized pattern frequency of a pat-
tern v in the distribution P . Pattern frequencies are normalized
s.t.

∑
v

P (v) = 1 by dividing the frequency of each pattern by
the sum of frequencies of all patterns. We define the contribution
of each pattern towards the total JS-divergence in Formula 2 as its
feature value, JS(v). Substituting Formula 3 in 2 and collecting
the terms under summation, we derive JS(v) as,

JS(v) =
1

2
(p log

2q

p + q
+ q log

2p

p + q
).

Here, p and q respectively denote the normalized pattern frequen-
cies of fAB and fCD .

Table 2. Performance with various feature weighting methods

Feature function Score
|fAB − fCD| 0.30

(fAB − fCD)2 0.30
fAB × fCD 0.40

JS(v) 0.32

To evaluate the effect of various feature functions on performance,
we trained a linear kernel SVM with each of the feature functions.
We randomly selected 50 questions from the SAT analogy questions
for evaluation. The remainder of the questions (374-50) are used for
training. Experimental results are summarized in Table 2. Out of the
four feature functions in Table 2, product of pattern frequencies per-
forms best. For the remainder of the experiments in the paper we used
this feature function. Patterns with the highest linear kernel weights

Table 3. Patterns with the highest SVM linear kernel weights

pattern χ2 SVM weight
and Y and X 0.8927 0.0105
Y X small 0.0795 0.0090
X in Y 0.0232 0.0087
use Y to X 0.5059 0.0082
from the Y X 0.3697 0.0079
to that Y X 0.1310 0.0077
or X Y 0.0751 0.0074
X and other Y 1.0675 0.0072
a Y or X 0.0884 0.0068
that Y on X 0.0690 0.0067

are shown in Table 3 alongside their χ2 values. The weight of a fea-
ture in the linear kernel can be considered as a rough estimate of the

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

Sc
o

re

Number of snippets

Figure 3. Performance with the number of snippets

influence it imparts on the final SVM output. Patterns shown in Ta-
ble 3 express various semantic relations that can be observed in SAT
analogy questions.

We experimented with different kernel types as shown in Table 4.
Best performance is achieved with the linear kernel. A drop of per-
formance occurs with more complex kernels, which is attributable
to over-fitting. Figure 3 plots the variation of SAT score with the

Table 4. Performance with different Kernels

Kernel Type Score
Linear 0.40
Polynomial degree=2 0.34
Polynomial degree=3 0.34
RBF 0.36
Sigmoid 0.36

number of snippets used for extracting patterns. From Fig.3 it is ap-
parent that overall the score improves with the number of snippets
used for extracting patterns. Typically, with more snippets to pro-
cess, the number of patterns that can be extracted for a word-pair
increases. That fact enables us to represent a word-pair with a rich
feature vector, resulting in better performance.

Table 5 summarizes various relational similarity measures pro-
posed in previous work. All algorithms in Table 5 are evaluated on
the same SAT analogy questions. Score is computed by Formula 1.
Because SAT questions contain 5 choices, a random guessing algo-

Table 5. Comparison with previous relational similarity measures.

Algorithm score Algorithm score
1 Phrase Vectors 0.382 11 Holonym:member 0.200
2 Thesaurus Paths 0.250 12 Similarity:dict 0.180
3 Synonym 0.207 13 Similarity:wordsmyth 0.294
4 Antonym 0.240 14 Combined [16] 0.450
5 Hypernym 0.227 15 Proposed (SVM) 0.401
6 Hyponym 0.249 16 WordNet [19] 0.428
7 Meronym:substance 0.200 17 VSM [15] 0.471
8 Meronym:part 0.208 18 Pertinence [13] 0.535
9 Meronym:member 0.200 19 LRA [12] 0.561
10 Holonym:substance 0.200 20 Human 0.570

rithm would obtain a score of 0.2 (lower bound). The score reported
by average senior high-school student is about 0.570 [15] (upper
bound). We performed 5-fold cross validation on SAT questions to
evaluate the performance of the proposed method. The first 13 (rows
1-13) algorithms were proposed by Turney et al. [16], in which they
combined these modules using a weight optimization method. For

D. Bollegala et al. / WWW Sits the SAT: Measuring Relational Similarity on the Web336

given two word-pairs, the phrase vector (row 1) algorithm creates
a vector of manually created pattern-frequencies for each word-pair
and compute the cosine of the angle between the vectors. Algorithms
in rows 2-11 use WordNet to compute various relational similarity
measures based on different semantic relations defined in WordNet.
Similarity:dict (row 12) and Similarity:wordsmith (row 13) re-
spectively use Dictionary.com and Wordsmyth.net to find
the definition of words in word-pairs and compute the relational simi-
larity as the overlap of words in the definitions. The proposed method
outperforms all those 13 individual modules reporting a score of
0.401, which is comparable with Veale’s [19] WordNet-based rela-
tional similarity measure.

Table 6. Comparison with LRA on runtime

LRA Hrs:Mins Hardware
Find alternatives 24 : 56 1 CPU
Filter phrases and patterns 143 : 33 16 CPUs
Generate a sparse matrix 38 : 07 1 CPU
Calculate entropy 0 : 11 1 CPU
Singular value decomposition 0 : 43 1 CPU
Evaluate alternatives 2 : 11 1 CPU
Total 209 : 41

Proposed Hrs:Mins Hardware
Download snippets 2 : 05 1 CPU
Pattern extraction 0 : 05 1 CPU
Pattern selection 2 : 56 1 CPU
Create feature vectors 0 : 46 1 CPU
Training 0 : 03 1 CPU
Testing 0.01 1 CPU
Total 5 : 56

Although LRA (row 19 in Table 5) reports the highest SAT score
of 0.561 it takes over 8 days to process the 374 SAT analogy ques-
tions [14]. On the other hand the proposed method requires less than
6 hours using a desktop computer with a 2.4 GHz Pentium4 proces-
sor and 2GB of RAM. In Table 6 we compare the proposed method
against LRA on runtime. The runtime figures for LRA are obtained
from the original paper [14] and we have only shown the compo-
nents that consume most of the processing time. The gain in speed
is mainly attributable to the lesser number of web queries required
by proposed method. To compute the relational similarity between
two word-pairs A:B and C:D using LRA, we first search in a dictio-
nary for synonyms for each word. Then the original words are re-
placed by their synonyms to create alternative pairs. Each word-pair
is represented by a vector of pattern-frequencies using a set automat-
ically created 4000 lexical patterns. Pattern frequencies are obtained
by searching for the pattern in a web search engine. For example, to
create a vector for a word-pair with three alternatives, LRA requires
12000 (4000 × 3) queries. On the other hand, the proposed method
first downloads snippets for each word-pair and then searches for
patterns only in the downloaded snippets. Because multiple snippets
can be retrieved by issuing a single query, the proposed method re-
quires only one search query to compute a pattern-frequency vector
for a word-pair. Processing snippets is also efficient as it obviates the
trouble of downloading web pages, which might be time consuming
depending on the size of the pages. Moreover, LRA is based on sin-
gular value decomposition (SVD), which requires time consuming
complex matrix computations.

5 Conclusion

We proposed a relational similarity measure that uses a web search
engine to find the relations that exists between words. We represent
two word-pairs by a feature vector using automatically extracted lex-
ical patterns. Then an SVM is trained using SAT analogy questions
as training data. The proposed method achieved SAT scores com-
parable to previously proposed WordNet-based relational similarity
measures while significantly reducing the processing time. In future,
we intend to integrate WordNet-based similarity measures with the
proposed SVM-based method to construct more accurate relational
similarity measures.

REFERENCES

[1] P. Cimiano and J. Wenderoth, ‘Automatic acquisition of ranked qualia
structures from the web’, in Proc. of ACL’07, pp. 888–895, (2007).

[2] B. Falkenhainer, K.D. Forbus, and D. Gentner, ‘Structure mapping
engine: Algorithm and examples’, Artificial Intelligence, 41, 1–63,
(1989).

[3] C. D. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing, The MIT Press, Cambridge, Massachusetts, 2002.

[4] D.L. Medin, R.L. Goldstone, and D. Genter, ‘Similarity involving at-
tributes and relations: Judgments of similarity and difference are not
inverse’, Psychological Sciences, 1(1), 64–69, (1990).

[5] D.L. Medin, R.L. Goldstone, and D. Gentner, ‘Respects for similarity’,
Psychological Review, 6(1), 1–28, (1991).

[6] V. Natase and S. Szpakowicz, ‘Exploring noun-modifier semantic re-
lations’, in Proc. of fifth int’l workshop on computational semantics
(IWCS-5), pp. 285–301, (2003).

[7] J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M. Hsu, ‘Mining sequential patterns by pattern-growth: the prefixs-
pan approach’, IEEE Transactions on Knowledge and Data Engineer-
ing, 16(11), 1424–1440, (2004).

[8] J. Platt, ‘Probabilistic outputs for support vector machines and com-
parison to regularized likelihood methods’, Advances in Large Margin
Classifiers, 61–74, (2000).

[9] D. Ravichandran and E. Hovy, ‘Learning surface text patterns for a
question answering system’, in Proc. of ACL ’02, pp. 41–47, (2001).

[10] G. Salton and C. Buckley, Introduction to Modern Information Re-
treival, McGraw-Hill Book Company, 1983.

[11] R. Snow, D. Jurafsky, and A.Y. Ng, ‘Learning syntactic patterns for
automatic hypernym discovery’, in Proc. of Advances in Neural Infor-
mation Processing Systems (NIPS) 17, pp. 1297–1304, (2005).

[12] P.D. Turney, ‘Measuring semantic similarity by latent relational analy-
sis’, in Proc. of IJCAI’05, pp. 1136–1141, (2005).

[13] P.D. Turney, ‘Expressing implicit semantic relations without supervi-
sion’, in Proc. of Coling/ACL’06, pp. 313–320, (2006).

[14] P.D. Turney, ‘Similarity of semantic relations’, Computational Linguis-
tics, 32(3), 379–416, (2006).

[15] P.D. Turney and M.L. Littman, ‘Corpus-based learning of analogies and
semantic relations’, Machine Learning, 60, 251–278, (2005).

[16] P.D. Turney, M.L. Littman, J. Bigham, and V. Shnayder, ‘Combining
independent modules to solve multiple-choice synonym and analogy
problems’, in Proc. of RANLP’03, pp. 482–486, (2003).

[17] A. Tversky, ‘Features of similarity’, Psychological Review, 84(4), 327–
352, (1997).

[18] V. Vapnik, Statistical Learning Theory, Wiley, Chichester, GB, 1998.
[19] T. Veale, ‘Wordnet sits the sat: A knowledge-based approach to lexical

analogy’, in Proc. of ECAI’04, pp. 606–612, (2004).
[20] T. Veale and M. T. Keane, ‘The competence of structure mapping on

hard analogies’, in Proc. of IJCAI’03, (2003).

D. Bollegala et al. / WWW Sits the SAT: Measuring Relational Similarity on the Web 337

