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Abstract. Grammar induction is one of attractive research areas of 
natural language processing. Since both supervised and to some 
extent semi-supervised grammar induction methods require large 
treebanks, and for many languages, such treebanks do not currently 
exist, we focused our attention on unsupervised approaches. 
Constituent Context Model (CCM) seems to be the state of the art 
in unsupervised grammar induction. In this paper, we show that the 
performance of CCM in free word order languages (FWOLs) such 
as Persian is inferior to that of fixed order languages such as 
English. We also introduce a novel approach, called parent-based 
constituent context model (PCCM), and show that by using some 
history notion of context and constituent information of each span's 
parent, the performance of CCM, especially in dealing with 
FWOLs, can be significantly improved. 

1   INTRODUCTION 

Based on the type of corpora that different unsupervised grammar 
induction methods use, these methods are divided into three major 
categories [1]: supervised, unsupervised, and semi-supervised. 
Supervised methods normally rely on the correct parse of training 
sentences via a full-parsed and tagged treebank. Semi-supervised 
methods use less supervision information than supervised ones. 
Unsupervised methods rely only on tagged sentences without any 
bracketing.

Although current supervised methods highly outperform 
unsupervised methods, there are important motives to continue the 
work on unsupervised methods [2, 3, 4], because producing the 
necessary training data (corpora) of supervised methods is a time 
consuming, hard, and expensive work. Besides, it is very difficult 
to adapt supervised methods for new tasks, languages, and 
domains. Consequently, it is the corpus availability that directs the 
research in this area. Not only unsupervised methods do not need 
such training data, but also they can be used in many applications: 
in primary phases of constructing large treebanks, in language 
modeling, and in some NLP research areas that do not require an 
exact grammar of sentences. 

Constituent Context Model (CCM) [2, 3] seems to be the state 
of the art in unsupervised grammar induction. In this paper, we 
show that the performance of CCM in free word order languages 
(FWOLs) such as Persian is inferior to that of fixed order 
languages such as English. We also introduce a novel approach, 
called parent-based constituent context model (PCCM), and show 
that by using some history notion of context and constituent 
information of each span's parent, the performance of CCM, 
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especially in dealing with FWOLs, can be significantly improved. 
The remainder of the paper is arranged as follows: Section 2 is 

about previous approaches to unsupervised grammar induction. 
Section 3 explains original constituent context model, and our 
improved method. Section 4 demonstrates the evaluation of the 
proposed algorithm. Finally, section 5 includes paper's conclusion. 

2   PREVIOUS WORKS 

There is a lot of ongoing research on unsupervised grammar 
induction (UGI) methods. These methods can be divided into three 
groups: 1) Likelihood based; 2) Compression based, and 3) 
Distribution based. These groups are discussed in the next three 
sub-sections.

2.1   Likelihood Based Methods 

This group of UGI selects maximum likelihood model using a 
probabilistic context free grammar (PCFG). Likelihood based 
methods, also known as inside-outside (IO), work using the 
expectation maximization (EM) algorithm [5, 6, 7]. There are some 
researches in amendment of these methods [8]. IO algorithms 
produce a grammar in Chomsky normal form (CNF). These 
algorithms often converge toward a local optimum state by 
iteratively re-estimating the probabilities in a manner that 
maximizes the likelihood of the training corpus, given the 
grammar. They would nearly always converge to a linguistically 
improper grammar [9]. These methods have also been implemented 
using genetic algorithms [10]. One algorithm in this group, which 
added the parent of each non-terminal as the conditioning 
information to the IO grammar rules, is history-based IO (HIO) 
[11]. In HIO, grammar rules are in CNF, but HIO replaces ordinary 
CNF ( BAX ) with a pseudo CNF which adds the parent of 

each non-terminal in the left hand side of the rules 
( BAXParentX , ). HIO showed some improvement in UGI, 

especially in Persian [11]. 

2.2   Compression Based Methods 

These methods work using the minimum description length (MDL) 
principle. Several methods based on this approach have been 
proposed, none of which showed a satisfactory result [6]. One of 
these methods uses the Bayesian model selection criterion for 
hidden Markov model (HMM) and PCFGs, but it only works in 
small and artificial languages [12]. Another method [13] works on 
regular languages rather than context free languages. Since the 
only factor with which these methods work is the compression of 
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the most frequent sequence of tags (sequences with high mutual 
information), their results are not satisfactory. For example, the 
sequences IN DT and DT NN have high mutual information in 
both English and Persian languages. In Penn treebank, the 
sequence IN DT and DT NN have 1.3675 and 1.266 pointwise 
mutual information. Thus these methods incorrectly divide the 
sequence IN DT NN into IN DT and DT NN. 

2.3   Distribution Based Methods 

These methods are based on a simple idea: the sequences of words 
or tags that construct the same constituents appear in analogous 
contexts. There are several methods based on this approach: 
Distributional clustering was one of the first attempts in this regard 
[14]. This method used a conditional entropy measure to identify 
constituents. Another method in this group used Kullback-Leibler 
(KL) divergence measure of contexts to extract probable rules [15]. 
In this algorithm, only sequences with two tags are compared with 
sequences with a single tag. Thus, the method cannot induce 
sequences that do not correspond to a single tag sequence. 

There are other approaches that use distributional clustering in 
finding similar tag sequences appeared in similar contexts [16]. 
These methods generate some linguistically plausible clusters, but 
at the same time find many implausible ones. Therefore, they 
cannot induce acceptable grammars. 

Context distributional clustering (CDC) is another distributed 
method that uses distributional clustering of sequence of tags. 
However, in CDC, only clusters that satisfy the mutual information 
(MI) measure are regarded as valid clusters. In other words, the MI 
measure is used to prune linguistically implausible clusters. CDC 
also incorporates the MDL to extract grammars [5, 6]. 

At present, the most successful UGI algorithm is the so-called 
constituent context model (CCM). CCM is a parameter search 
algorithm [4] that, by using some distributional information in an 
EM method, can induce a grammar. Section 3.1 explains this 
algorithm in more detail. 

All these methods use local distributional context. However, 
there are two techniques that use the whole sentence as the context: 
Alignment-Based Learning (ABL) and EMILE [17, 18]. These 

techniques look for minimal pairs. In fact, they search for pairs of 
sentences that, except for a particular phrase, look the same. These 
two algorithms have reasonable results only in restricted and 
artificial languages [17]. 

3   PARENT-BASED CCM 

In this section, a novel method based on CCM is introduced, which 
improves CCM's performance, especially in dealing with free word 
order languages (FWOL). Before describing the new method, 
CCM is briefly explained in next sub-section. 

3.1   CCM 

As mentioned before, CCM is a distribution based method and 
works on the basis of a weakened version of the classic linguistic 
constituency tests [19]: constituents occur in their contexts. CCM 
is designed to transmit the constituency of a sequence (it works 
with part-of-speech tag sequences) directly to its context, which is 
intended to pressure new sequence in that context. This pressure 
directs a new sequence to be parsed as a constituent in the 
following step. In fact, this method is a distributional clustering 
with no-overlap constraint. 

3.1.1   Constituents and Contexts 

In CCM, all sequences of tags, i.e. spans, are modeled, regardless 
of being constituent or non-constituent. Contexts in CCM are local 
linear contexts, which means that context of a word is the pair of 
words immediately adjacent to its left and right. For example, in 
the sentence "Factory payrolls fell in September", the word 
"payrolls" occurs in the context "Factory–fell". 

A bracketing of a sentence is a boolean matrix where a true 
element indicates that the related span is a constituent, and 
conversely a false element corresponds to a non-constituent (called 
distituent).

                          
                    (a)                                                                                                      (b)

(c)
Figure 1.   A parse tree for the Persian sentence (a), Its related bracketing (b), and the constituents and context associated with the bracketing (c).
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Figure 1 demonstrates a parse tree of a sentence in Persian 
language, its related bracketing, and constituent-contexts of the 
parse tree. Representation of words in the sentence is based on 
[20]. 

A bracketing "B" is non-crossing if at most one of the two 
crossing brackets is a constituent in "B". A non-crossing bracketing 
that satisfies these rules is a tree-equivalent bracketing: 1) all unit 
spans (i.e., spans including just one word) of a sentence are 
constituent; 2) the span containing full sentence is constituent, and 
3) all zero size spans of a sentence are distituent. If a bracketing 
corresponds to a binary tree, then the bracketing is binary, too. 

The performance of CCM depends on two simple properties: 1) 
only binary bracketings are valid, and 2) constituents occur in 
constituent contexts. It has been shown that without the first 
assumption, CCM cannot produce valuable results [2, 3]. 

The generative CCM over sentences S  has two steps. First, 
according to some distribution P(B), a bracketing B is chosen, and 
then given that bracketing, the corresponding sentence is generated 
[4]: 

                               BSPBPBSP |,                               (1) 

Contexts and constituents are independent. These are generated 
by using the following equation: 
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where ij  are spans, ijx  are contexts, trueP ij |  is the 

conditional probability of constituency of ij  when 
ijB  is true, and 

falseP ij |  is the same probability when 
ijB  is false. In a similar 

manner, truexP ij |  and falsexP ij |  can be defined for ijx . The 

marginal probability of sentence S  is: 
                      

BbracektingpossileAll
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For inducing a grammar, CCM runs the EM algorithm on this 
model [4]. In the EM algorithm, brackets B  are observed, and 
sentences S  are hidden (unobserved) random variables. 

3.1.2   The Induction Algorithm 

As mentioned before, in CCM, only binary bracketings are valid, 
so all binary bracketings are equally likely. The EM algorithm 
includes the following two steps: 
E-Step: Fix current  and obtain the conditional bracketing 
likelihoods ,| SBP .

M-Step: Find  that maximizes 
B

BSPSBP |,log,|

with fixed .
In estimating parameters by the EM algorithm, the 

computational bottleneck is the E-step, where we must calculate 
posterior expectations of various tree configurations according to a 
fixed parameter vector . This problem can be fixed by a cubic 
dynamic program similar to the inside-outside algorithm [4]. 

3.1.3   Weakness in Free Word Order Languages 

In addition to CCM weakness in dealing with long sentences, its 
performance further degrades when dealing with FWOLs. 

In linguistic typology, the order in which words appear in 
sentences is called the word order. In FWOLs, the orders of some 
or all of the words in many sentences are not important, and they 
can freely appear in different places of the sentences. 

As described in 3.1, CCM uses span type counts for validity 
discrimination of constituents and their contexts. Since in FWOLs, 
words appear in optional places, each span type is divided into a 
number of different span types. This property decreases the count 
of each span type. Consequently, there would be less information 
about pattern of constituents and their contexts available during 
parsing. CCM was applied to Persian, which is a rather FWOL, and 
it was shown that CCM's performance is reduced when dealing 
with such languages [21]. In the next section, we demonstrate how 
CCM performance can be improved by using parent information of 
constituents and contexts. 

3.2   Parent-based CCM (PCCM) 

In this section, we introduce a new model called parent-based 
constituent context model (PCCM), in which spans' parent 
information is employed to improve CCM performance especially 
in FWOLs. 

3.2.1   Adding Parent Information 

As described in section 3.1, in CCM, the context and constituent 
probabilities of each span are computed, and then used in grammar 
induction. PCCM takes advantage of two types of supplementary 
probabilities. The first type is the conditional constituent 
probability of every span, given span's parent. The second type is 
the conditional context probability of each span's context, given its 
parent's context. 

For example, in the sentence of figure 1, we calculate the two 
following probabilities for the span "IN NN2": constituent 
probability of span "IN NN2" by considering constituent 
probability of span "IN NN2 VBD", as the parent span of "IN NN2",
( VBDNNINParentNNINP cyconstituen 2|2 ) and context 

probability of pair "NN1-VBD" by considering context probability 
of pair "NN1- ", as the parent context of "NN1-VBD",
( 1|1 NNParentVBDNNPcontext ).

3.2.2   The Induction Algorithm 

The employed induction algorithm is analogous to that of CCM. 
We combine extracted probabilities of original CCM with the new 
probabilities. The final probabilities will be used for grammar 
induction. Here like CCM, only binary bracketings are valid and 
we employ EM algorithm in a similar manner to CCM. 

The difference between CCM and PCCM is in the definition and 
usage of  parameters. In CCM,  is only the context and 
constituent probability of each span of the sentences, but in PCCM, 

 parameter is the context and constituent probability of each span 
of the sentences (original CCM) and the context and constituent 
probability of each span by considering the span's parent (PCCM). 

In estimating parameters with EM algorithm, the computational 
bottleneck is the E-step, where we must calculate posterior 
expectations of various tree configurations according to a fixed 
parameter vector . This problem can be fixed by using dynamic 
programming. The only difficulty is that dynamic programming 
works in a bottom up manner, and we cannot get any knowledge 
about parents of spans. To tackle this problem, we used a 
memoization technique. Memoization works in a top down manner 
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with an analogous order to that of dynamic programming. We also 
used relative frequency estimates for setting  of the M-step. It is 
worth noting that, due to the usage of parent information, the 
smoothing task in PCCM is even more important than in CCM. 

It has been shown that the time complexity of CCM is 3nO ,

and its space requirement is 2nO  [4]. The time complexity of 

PCCM is the same as CCM [22]; however, its space requirement is 
3nO , due to the need to store the extra information regarding 

parents of contexts and constituents.

4   EXPERIMENTAL RESULTS 

In this section, we first give a brief description of Persian as an 
FWOL, and then describe the results of applying PCCM to two 
different corpuses of both English and Persian. 

4.1   Persian Language 

Persian is the native language of approximately one hundred 
million people, and is spoken in different countries such as Iran, 
Afghanistan, and Tajikistan. This language belongs to Indo branch 
of the Indo-European language family. 

Normally the structure of declarative sentences in Persian is "(S) 
(PP) (O) V". Parentheses in this structure represent optional 
components, i.e. subjects, prepositional phrases, and objects. This 
language has high potential to be categorized in the FWOLs, 
especially in the preposition adjunction and complements. For 
example, adverbs can occur anywhere in the sentences without any 
change in the meaning [23]. 

4.2   Experiments 

We applied PCCM to both English and Persian. In English, we 
used WSJ-10 corpus with sentences of less than 11 words and 
ATIS corpus. Using the ten-fold cross validation method, the 
results were evaluated by measuring unlabeled precision (UP), 
unlabeled recall (UR), and F1 (Harmonic mean of UP and UR) of 
parsed trees against a number of gold trees (trees in the treebank). 

Figure 2.   Parsing performance of PCCM method comparison with 
other unsupervised methods on ATIS corpus. 

      
Figure 3.   Parsing performance of PCCM method comparison with 

other unsupervised methods on WSJ-10 corpus. 

Figure 3 shows the results of PCCM against that of a number of 
other techniques including DEP-PCFG [9] and SUP-PCFG [3]. The 
random, left- and right-branching approaches are also shown as the 
baselines. The random method chooses binary trees randomly. The 
left- and right-branching methods respectively choose left and right 
branching chains parsing. Since the structure of parse trees are 
binary, upper bound (UBOUND) of UP and F1 are less than 100 
percent.

The results in both figure 2 and 3 show that PCCM on ATIS and 
WSJ-10 corpuses outperforms other unsupervised grammar 
induction methods. 

In Persian, two different training corpuses were manually 
developed. The sentences of these corpuses contain less than 11 
words, and have been extracted from a corpus named Peykareh 
[24, 25], which has been collected from formal newspapers in 
Persian. Peykareh has more than 32255 sentences and uses a tag set 
similar to the tag set used in [20, 26]. For extracting sentences, the 
punctuation and null elements were removed. The first corpus 
includes 3000 sentences, which have been manually changed in 
such a way that the structure of "S PP O V" is held. The common 
property of the sentences in this corpus is that the order of words 
are artificially fixed (i.e., they are not free in order). The second 
corpus comprises 2500 sentences of free word order. Some other 
features of these two corpuses are shown in table 1. 

Table 1.   Main features of first and second corpuses.

 Corpus 1 Corpus 2

Num. of sentences 3000 2500

Max. Len. 10 10

Min. Len. 2 2

Avg. Len 7 7

Num. of Pos Tags 18  18

Num. of Words 22153 18482

In Persian, we first ran CCM and PCCM on each of the above 
corpuses, separately. We also joined these corpuses to create a new 
mixed corpus, and repeated the experiments on this corpus, too. 
The results are shown in table 2. Three baselines for Peykareh are 
shown in table 3. 

Table 2.   Comparison of CCM and PCCM methods on Persian 
Corpuses. 

Corpus Method UP UR F1
CCM 44.15 68.45 53.68 

First Corpus 
PCCM 48.01 70.89 57.25 
CCM 26.67 51.3 35.17 

Second Corpus 
PCCM 31.21 54.23 39.62 
CCM 32.92 55.2 41.42 

Third Corpus 
PCCM 37.92 59.17 46.22 

Table 3.   Baselines for Peykareh treebank. 
Method UP UR F1

LEFT-BRANCHING 25.07 16.45 19.87 
RIGHT-BRANCHING 17.63 11.57 13.97 

UNBOUND 94.35 100 97.09 

Table 3 shows that Persian, unlike English that is highly right-
branching, is neither left- nor right-branching, which was also 
observed by [11]. However, high upper bound of F1 shows that 
Persian has a binary structure. 

The results of table 2 show the effect of the free word orderness 
on the CCM's performance. The reduction in the performance of 
CCM on the second corpus in comparison to that of the first corpus 
is 18 percent in F1 score. The results of applying CCM to the 
combined corpus demonstrate that CCM shows little improvement. 
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Thus CCM method is weak in dealing with FWOLs. The reason for 
this weakness is that CCM works based on the repetition of 
constituents in their contexts. Since in FWOLs, some words can 
freely appear in different places of sentences, the mentioned 
repetition decreases substantially and, as a result, the performance 
of CCM worsens. 

The experiments also show that PCCM outperforms CCM in 
both languages. However, the improvement achieved by using 
PCCM's parent information is more considerable in FWOLs. 

An important implementation issue to note is the restriction of 
parent information usage in spans with maximum length of 5. In 
order to select an appropriate value for the maximum span's length, 
we applied PCCM to different maximum span's lengths, and to 
different corpuses. As it is shown in figure 4, the best performance 
is achieved when the spans are shorter than or equal to 5 words. 
One possible reason is that as spans get longer, the co-occurrence 
of spans and their parents will substantially decrease, and thus 
parsing will be less-informative. 

Figure 4.   The effect of using parent information for different span's 
length in English WSJ-10 and Persian first, second and third corpuses. 

5   CONCLUSION 

Constituent Context Model (CCM) is currently the state of the art 
in unsupervised grammar induction. It combines distributional 
clustering methods with an EM parameter search. CCM works 
based upon sequences of words (spans) repetition. However, in free 
word order languages such as Persian, words can grammatically 
appear in different places of sentences and, as a result, the number 
of occurrences of each span type decreases. Consequently, CCM 
faces more divergent information. In this paper, we proposed a 
novel approach, called parent-based constituent context model 
(PCCM), by adding some history notion of context and constituent 
information of each span's parent. Considering parent information 
for constituents and contexts prevents from probability divergence 
and parsing will be more-informative. To evaluate the new method, 
we applied CCM and PCCM to both English and Persian (as a free 
word order language). The results of applying the new method to 
several corpuses with different degree of free word orderness show 
that using parent information improves CCM's performance, 
particularly when the degree of free word orderness is high. 
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