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Abstract. We present a system for taxonomy extraction, aimed at
providing a taxonomic backbone in an ontology learning environ-
ment. We follow previous research in using hierarchical clustering
based on distributional similarity of the terms in texts. We show that
basing the clustering on a comparable corpus in four languages gives
a considerable improvement in accuracy compared to using only the
monolingual English texts. We also show that hierarchical k-means
clustering increases the similarity to the original taxonomy, when
compared with a bottom-up agglomerative clustering approach.

1 Introduction

Does a country and its environment form the language of the people
living in it? Or does the language spoken rather form the way people
perceive their environment? This type of questions has been raised
by linguists like Sapir/Whorf and Berlin/Kay. Whatever the answer
to such questions, we do believe that each language provides us with
a unique “view” of the world, coded into its grammar and lexicon.
The question we wish to answer in this paper is whether this diversity
will prove an asset in a taxonomy extraction system or whether the
different “views” will merely serve to clutter the meaning expressed
through an isolated language.

Several researchers have made use of clustering based on distri-
butional similarity between terms to perform taxonomy extraction
[1, 2, 12, 13]. We follow their work by first extracting a taxonomy
using only English language texts and comparing the result to a gold
standard taxonomy. We then repeat the procedure, building a tax-
onomy using four different languages (adding German, French and
Spanish to the English), using a comparable corpus. We show that
the multilingual version gives a considerable improvement in accu-
racy and stability over the monolingual version, when compared to
the gold standard.

We also make use of a hierarchical k-means clustering technique
and show that we are able to reproduce the original taxonomy with
greater fidelity than when using a bottom-up agglomerative cluster-
ing approach.

2 Background and resources

As part of the recently started THESEUS MEDICO project,2 funded
by the German government, a system for querying and analyzing
medical information (medical records, x-rays etc.) is currently under
construction. Certain parts of such a system would arguably bene-
fit from a domain ontology, providing background knowledge during
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e.g., information retrieval or image recognition tasks. In the domain
of (human) anatomy, there exists such an ontology: the Foundational
Model of Anatomy (FMA) ontology. It is developed by the Struc-
tural Informatics Group at the University of Washington and it is
open source.3 It contains about 100,000 English terms, 8,000 Latin,
4,000 French, 500 Spanish and 300 German terms. There are also
some terms in other languages such as Italian and Filipino, but they
were not used in this project. The languages we decided to work
with (based on available resources and language competence in the
project) were English, German, French and Spanish. The ontology
models the hierarchical is-a and part-of relations, along with some
other relations, but only the is-a structure was considered in this
project. We define our task as such: given a domain-specific corpus,
we want to recreate the structure of the FMA ontology as closely as
possible, using a hierarchical term clustering approach.

2.1 Corpus collection

We needed a domain corpus in the relevant languages to have data
on which to train the distributional models. We decided to use the
Wikipedia4 pages filed under the ’Anatomy’ category for each lan-
guage.5 This resulted in about 7,300 pages for English, 2,600 for
French, 2,400 for German and 1,000 for Spanish. This corresponds to
about 4.4 million words for English, 1.1 million for French, 890,000
for German and 400,000 for Spanish. We stripped the texts of HTML
and other markup or scripts, as well as Wikipedia related text (as far
as possible). It should be noted that Wikipedia is constantly changing
and growing and that these numbers reflect the status as of February
2007.

2.2 Preprocessing the data

In order to lessen some of the detrimental effects of the data sparse-
ness problem, we decided to lemmatize the corpus (giving us more
occurrences of each word type). We used Intrafind’s6 LiSa system for
morphological analysis[9] for all languages.

Since the concepts in the ontology are associated with terms rather
than words, we needed a way of letting the automatic methods treat
multi-word terms as single units, as well as being able to distinguish
single word terms from “mere” words. We therefore made use of a
simple term spotting technique (see [10] for more on term spotting),
marking the longest consecutive string of words that also appears in

3 http://sig.biostr.washington.edu/projects/fm/index.html
4 http://www.wikipedia.org
5 For English: http://en.wikipedia.org/wiki/Category:Anatomy. This page

links to the corresponding pages in the other languages.
6 http://www.intrafind.de
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the FMA ontology, as a term. The terms in the FMA ontology were
also lemmatized, in order to better match the lemmatized corpus text.

After preprocessing the data, it looks something like this (example
from the FMA corpus):

the TERM_zygomatic_bone#55158 (
malar TERM_bone#34122 ) be a pair
TERM_bone#34122 of the human
TERM_skull#49338 .

Obviously many other relations (e.g., the synonymy and part-of
relations) also hold between the terms we are studying, not just the
is-a relation. The distributional model we apply in these experiments
(see Sect. 2.3) is not designed to separate between different types of
relatedness – we accept a degree of overlap between relations in our
learned taxonomy. However, given the results presented in the papers
listed in Sect. 1, we can expect a focus on the type of relations we are
interested in for these experiments (i.e., the sibling (cohyponymy)
and is-a (hyponymy) relations).

2.3 Distributional model parameters

When building the distributional models for each language, there are
a number of parameters that can be varied. In a pre-study, we ex-
amined the effects of these parameters on a flat clustering task, i.e.,
merely clustering the terms into groups, with no hierarchical infor-
mation. We used the best settings from this pre-study for the hierar-
chical clustering experiments.

Although using the settings from such a pre-study will not be pos-
sible in a typical application scenario, our aim here is not to present
high-scoring evaluation figures for the system as such. Our focus is
to investigate a possible improvement when using multilingual data
as opposed to just the monolingual data. Also note that the pre-study
was carried out on strictly monolingual data.

Size of sliding window: When constructing a term-term distribu-
tional model, one typically makes use of a fixed-size sliding window
which is moved over the text. Varying the size of this window ef-
fects the type of information captured by the model. We varied the
window size between 3–500 in our experiments (on each side of the
focus word). We also investigated the effects of not using a sliding
window, but rather using document co-occurrence as our features.

Minimum feature frequency: If a feature is too infrequent, it is
possible that its distribution is not captured well enough in the corpus
to be of any use. We therefore experimented with different lower
thresholds for our features.

Left/right distinction: In some cases it might be important to keep
track of whether the context word appeared to the left or to the right
of the focus word. If we want to make this distinction, we simply
introduce separate features for each word: one for the left and one
for the right context.

Distance weighting: Intuitively, words appearing closer to the fo-
cus word should be given more weight than words appearing further
away when building a distributional model. We made use of three
different distance weighting schemes in our experiments (d stands
for distance measured in number of words from the focus word):

1. Flat: no weighting scheme is applied.
2. Inverse distance: the context term is weighted by 1

d
.

3. Logarithmic distance: the context term is weighted by 21−d

(weights decrease faster than for Inverse distance).

Feature weighting: We can hypothesize that a very frequent con-
text word (measured over the whole corpus) contributes less to defin-
ing the “distributional profile” of a focus word, than a less frequent

context word would. We use three feature weighting schemes to try
to model this hypothesis (the choice of weighting schemes is inspired
by [2]):

1. Flat: no feature weighting is applied.
2. Conditional probability: if the term under consideration is t, the

current feature is f and freq stands for the frequency of a partic-
ular term or term-feature pair, then we get:

weight(t, f) = p(t|f) ≈
freq(t, f)

freq(f)

3. Mutual Information: we can write the Mutual Information formula
like this: ∑

tx,fy

p(tx, fy)log
p(tx, fy)

p(tx)p(fy)

where x, y ∈ {0, 1}, indicating the presence or absence of t and
f (again, probabilities are estimated using relative frequencies).

Dimensionality reduction: we tried using singular value decom-
position [6] for some settings on the distributional models.

3 Hierarchical clustering

We examine two kinds of hierarchical clustering: bottom-up agglom-
erative clustering and hierarchical k-means. Neither method pro-
duces a hierarchy in the traditional sense, but rather a structure like
the one depicted in figure 1. The bottom-up approach builds this
structure starting with each term in its own cluster, whereas k-means
starts with all terms in the same cluster and recursively splits each
(sub-)cluster.

Figure 1. Structure produced by hierarchical clustering methods.
Picture taken from Wikimedia Commons

(http://commons.wikimedia.org), file name
“Hierarchical clustering diagram.png”.

3.1 Bottom-up agglomerative clustering

We start by building a word-space model, using the settings that gave
the best results in the pre-study. We use:

• Window size: 500 (in each direction).
• Distance weighting: flat.
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• Feature weighting: none.
• Left/right distinction: not made.
• Minimum feature frequency: 51.
• Dimensionality reduction: svd, 200 dimensions.

We employ a version of average linking, where we start by cal-
culating a centroid representation for each cluster and then calculate
the average similarity of each cluster member to this centroid.

3.2 K-means clustering

The agglomerative clustering approach, described in the previous
section, produces a binary tree. Since we have many terms to cluster
(1,164 terms in total – we only cluster terms with a minimum fre-
quency of 50 in the English corpus), this results in a very deep tree,
especially if we compare it with the FMA ontology, which is much
flatter. Further, a binary tree will never be able to correctly capture
some hierarchical relations. E.g., the relations between finger and
thumb, index finger, middle finger, ring finger and little finger are not
binary (one-to-one) but n-ary (one-to-many). We would like to model
the relationship with finger directly dominating the others. Using hi-
erarchical k-means clustering, we are no longer forced to produce
binary trees; we can simply tell the algorithm how many times we
would like to split the cluster at each iteration. Though we still do
not get a structure where one term directly dominates other terms,
but rather a one-to-many variant of the structure shown in figure 1,
we at least have a chance of producing a model which is closer in
structure to the FMA ontology.

For each clustering step, we try to find the appropriate k for split-
ting that particular cluster. We iterate through different values of k

and evaluate each clustering by calculating the harmonic mean of in-
tra similarity and inter distance between the clusters [15] and choose
the best performing k in each step. In our experiments, we set an
upper limit for k to 20, since it would be very time consuming to
evaluate every possible k–value.7

3.3 Clustering from multilingual evidence

To test the effects of including evidence from more than one language
when performing the clustering, we started by building four separate
distributional models, one for each language, using the same settings
as described in 2.3. Next, for each term in every non-English model,
we look up in the FMA ontology if it is listed as a translation of
any of the English terms. If it is, we concatenate the vector for this
non-English term to the vector of the English term, resulting in a
vector that is twice the length of the original vector. This process is
repeated for every non-English language, which means that the final
vectors we are working with are four times the length of the original
vectors (since we are using four languages). Figure 2 illustrates the
idea behind such a multilingual vector.

3.4 Evaluating the hierarchical clustering

Some of the first measures for evaluating the similarity between two
ontologies (also applicable to taxonomies in general) were intro-
duced in [11]. Further additions and alterations have been suggested
since then, see [2]. In [3], an attempt is made to establish a stan-
dard measure called TFCSC , which is the harmonic mean between

7 Choosing 20 as upper limit as opposed to any other number was an arbitrary
choice.

Figure 2. Distributional information from each language is
concatenated to form an elongated version of the co-occurrence
vector. The vectors used in the monolingual experiments consist

only of the part marked ’English’.

TPCSC (TP for taxonomic precision) and TRCSC (TR for taxo-
nomic recall). “CSC” stands for “common semantic cotopy”, where
“semantic cotopy” refers to the set of all super- and sub concepts of
a particular concept and “common” means that one only takes the
concepts shared by both ontologies into consideration. If OC is the
computed ontology and OR is the reference ontology, then TPcsc

and TRcsc are calculated as:

TPcsc(OC , OR) :=
1

|OC ∩ OR|

∑

c∈OC∩OR

tpcsc(c, OC , OR)

TRcsc(OC , OR) := TPcsc(OR, OC)

tpcsc(c, OC , OR) :=
|csc(c, OC , OR) ∩ csc(c, OR, OC)|

|csc(c, OC , OR)|

csc(c, OC , OR) := {ci|ci ∈ OC ∩ OR ∧ (ci <C c ∨ c <C ci)}

These measures have also been implemented and made avail-
able as open source and as a web service through the University of
Sheffield.8 There is a serious problem with using this evaluation in
our case, however. Our gold standard, the FMA ontology, is a tradi-
tional hierarchy, where one term (concept) dominates another to form
a hierarchy tree. Our automatically created results look like variants
of the structure shown in figure 1. If we consider the situation more
closely, we realize that the CSC of any concept between these two
hierarchies will always be empty, which makes this approach unfit
for evaluating our results.

To evaluate the type of taxonomies we are dealing with here,
we propose to use Pearson’s product-moment correlation coefficient
(PMCC). The idea is that we can characterize a taxonomy by listing
all pairs of concepts that it contains, along with the distance between
each concept pair. E.g., for the ontology in figure 3, we get the fol-
lowing distances:

A0 -> A: 1
A0 -> A1: 2
A0 -> root: 2
A0 -> B: 3
A0 -> B0: 4
A0 -> B1: 4
A1 -> A: 1
A1 -> root: 2
A1 -> B: 3
A1 -> B0: 4
A1 -> B1: 4
A -> root: 1
...
8 http://wit.shef.ac.uk:8080/onteval/
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root

A B

A1 A0 B0 B1

Figure 3. Small example taxonomy.

Once we have calculated these series, we can use them to calculate
the PMCC measure:

ρX,Y =
cov(X, Y )

σXσY

where X is the series from the reference taxonomy and Y the series
from the learned taxonomy, cov stands for covariance and σ is the
standard deviation. The measure returns a value between -1 and 1,
where 1 means perfect correlation, 0 means no correlation and -1
means perfect negative correlation, somewhat simplified.

4 Results and discussion

First off, we compare the bottom-up agglomerative clustering to the
hierarchical k-means clustering described in section 3.2. Table 1
shows that the k-means approach gives a result which is substan-
tially closer to the gold standard than the bottom-up agglomerative
approach does. Since the k-means clustering uses a random initial-
ization, we repeated the experiments ten times and report the average
correlation and the standard deviation for this approach. These exper-
iments were carried out using only the English terms and texts.

ρ σ ρmin ρmax

Bottom-up aggl. 0.109 N/A 0.109 0.109
K-means hierarch. 0.166 0.043 0.114 0.237

Table 1. Comparing bottom-up and k-means monolingual
clustering. ρ is the correlation, σ the standard deviation.

We see two possible explanations for this improvement. One is
that, since we are evaluating different k for each new split and stick-
ing with the best one, it is possible that we this way are able to find
a more “data-cohesive” way of splitting the terms. Another explana-
tion could be that we are mimicking the flatter structure of the FMA
ontology better this way, than we are with the bottom-up approach.
As ever, a combination of these two factors seems most likely.

Turning our attention now to the comparison of the mono- and
multilingual cases, table 2 shows that the multilingual clustering on
average gives a considerable increase in correlation, paired with a
marked decrease in standard deviation, indicating that this method is
less sensitive to different random initializations.

Now, one might argue that these improvements are not surprising
– more data is always more data. However, as was stated in the in-
troduction, since the additional data comes from different languages
than the original data, it was not self evident that the added data
would help to clarify the taxonomy extraction, rather than confuse

ρ σ ρmin ρmax

Monolingual clustering 0.166 0.043 0.114 0.237
Multilingual clustering 0.201 0.027 0.137 0.229

Table 2. Comparing mono- and multilingual k-means clustering.

the models. Our results, however, do support using the multilingual
evidence for this application.

Previous research (see references in Sect. 1) has demonstrated the
ability of distributional similarity models to capture relevant infor-
mation for the task at hand and that the resulting hierarchical clus-
tering methods do capture useful semantic information. The focus of
this article therefore is not to demonstrate this once more, but rather,
again based on the articles previously referred to, we take this as a
given and instead investigate if the distributional models can be made
even more useful by including multilingual data. This is in fact what
we see confirmed in our experiments.

The approach for building the multilingual model presented here
assumes that we have access to a domain-specific bilingual (or mul-
tilingual) dictionary. One could imagine getting by without such a
dictionary and instead using machine translation techniques to iden-
tify term equivalents [8]. Because we are dealing with comparable
rather than parallel texts here, we would have had to resort to tech-
niques like the ones suggested by e.g., [14, 4, 5]. These have the
disadvantage of being much less accurate than techniques developed
for parallel texts. To avoid evaluating the quality of a term translation
system rather than the effects of multilingual evidence, we decided
on using the translation information coded in the FMA ontology as
our lexicon. This seems not too far fetched a scenario: having ac-
cess to a domain-specific bilingual dictionary and wishing to extract
a taxonomy for the terms listed there.

5 Conclusions

In our experiments, we have focused on clustering based on distribu-
tional similarity. Other researchers have experimented with includ-
ing other types of information for taxonomy extraction, such as two
terms (NPs) sharing the same head noun [2, 16], two terms appearing
in certain lexico-syntactic patterns [7] or combining the hyponymy
(is-a) and cohyponymy (sibling) relations [17]. We have ongoing ex-
periments where we include this type of information in the taxon-
omy extraction process and we are optimistic that the multilingual
approach presented here will prove equally beneficial in these cases.

Summing up, the increase in average correlation and decrease in
standard deviation when evaluating against the gold standard mean
that we can make a strong case for the usefulness of multilingual ev-
idence for the taxonomy extraction task. What’s more, the resulting
resource has added value when compared with the monolingual ap-
proach, since we are now free to switch between languages at will,
while staying within the same taxonomic structure.
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