
Groovy Neural Networks

Axel Tidemann1 and Yiannis Demiris2

Abstract. The drum machine has been an important tool in mu-
sic production for decades. However, its flawless way of playing
drum patterns is often perceived as mechanical and rigid, far from the
groove provided by a human drummer. This paper presents research
towards enhancing the drum machine with learning capabilities. The
drum machine learns user-specific variations (i.e. the groove) from
human drummers, and stores the groove as attractors in Echo State
Networks (ESNs). The ESNs are purely generative (i.e. not driven by
an input signal) and the output is used by the drum machine to imi-
tate the playing style of human drummers, making it a cost-effective
way of achieving life-like drums.

1 INTRODUCTION

The research in this paper is aimed to enhance the cost-effective and
easy way of creating drum tracks that is possible with current music
production software (e.g. Logic, Pro Tools, Cubase) with the groove
of a human drummer. The drum machine is a much cheaper alter-
native to recording live drums. However, the drum machine plays
patterns without flaws, which makes it sound rigid and machine-
like. Human drummers vary the way patterns are played, both on a
small-scale level (varying dynamics and tempo) and on a large-scale
level (changing the pattern to be played altogether, such as playing a
break). These variations constitute the groove of the drummer. Cur-
rent music production software have parameters that can be tweaked
to achieve a human-like effect, however these variations add random
noise with the intention that these variations will be perceived as
human - the software has no understanding of what makes a drum
pattern groovy. The research presented in this paper models these
user-specific variations with recurrent neural networks, and demon-
strates that the networks are able to represent both the small and
large-scale variations that make a drummer groovy. These networks
are then used to imitate the playing style of the drummers that served
as teachers. The result is a groovy drum machine.

2 BACKGROUND

Modeling user-specific variations in playing style has been a field
of study for years within the AI community. Saunders et al. [12]
use string kernels to identify the playing style of pianists, by look-
ing at changes in beat-level tempo and beat-level loudness. However,
imitating the style of the pianists was not attempted. Tobudic and
Widmer [15] also consider variations in tempo and dynamics as the
two most important parameters of expressiveness. To learn the play-
ing style of a pianist, they use first-order logic to describe how the
pianist would play a certain classical piece, and then a clustering al-
gorithm to group similar melody lines (i.e. phrases) together. They

1 IDI, NTNU, Norway, email: tidemann@idi.ntnu.no
2 ISN, Imperial College London, UK, email: y.demiris@imperial.ac.uk

use the models to play back music in the style of given pianists. Pa-
chet’s Continuator uses Markov models to create a system that al-
lows real-time interactions with musicians [8], however his focus is
more on replicating the tonal signature of a musician; the Markov
model represents the probabilities that a certain note will follow an-
other. A musician plays a phrase and the Continuator will then play
another phrase which is a continuation of that phrase. Mantaras and
Arcos use case-based reasoning to generate expressive music perfor-
mance by imitating certain expressive styles, such as joyful or sad
[2]. Raphael [10] has implemented a real-time system for accom-
panying soloists, “Music Plus One”. The system allows soloists to
play along with an orchestra played by a computer, after the soloist
has “practiced” along with the system. The idea is to model how a
soloist tends to vary the tempo when playing a classical piece of mu-
sic, making the orchestra (i.e. the computer) follow the soloist.

Current sophisticated drum sample software (e.g. FXpansion
BFD, Toontrack EZdrummer, DigiDesign Strike, Reason Drum Kits,
Native Instruments Battery) contains gigabytes of samples that
closely match the acoustic response to playing dynamics. However,
the drum libraries still need to be programmed, since they provide
no intelligent way to generate human-like drum patterns. This must
be done by the user, either by programming the pattern himself or
choosing a rhythm template. The drum software contains parameters
that can be tweaked to enhance the realism of the produced tracks
(typically a “groove engine” where it is possible to increase ran-
domization of beats and/or adjust timing and velocity), in addition
to manually changing programmed patterns. Still, the user needs to
know how to achieve the desired result, since the software has no
understanding of how to generate human-like drum patterns. If the
user could buy a “drummer in a box” that had a model of how a real
drummer plays a certain pattern, it would greatly reduce the cost of
having life-like drums. We believe this could be an important tool for
musicians, since the programming of the drums would be easier and
the user could select the drummer of his preference to perform on his
tracks.

3 ARCHITECTURE

The architecture for learning and imitation of drum patterns is called
“Software for Hierarchical Extraction and Imitation of drum patterns
in a Learning Agent” (SHEILA), see figure 1. SHEILA learns drum
patterns and the playing style of human drummers, and stores them
in a library. After training, SHEILA can be used as a groovy artifi-
cial drummer, capable of imitating the playing style of the drummers
that provided the drum patterns used as training data. The drumming
domain is suited for time-dependent sequential modeling due to its
repetitive nature, since the groove of a drummer manifests over time.

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-271

271



�������

��������

�����

�������
�����

����������� ���		� �� ���������
�����	���

���� ���		� ���

���

�����������������������	���

���

���� ��������� 
������
��� ���

�����

����	

����

������

� �� �� ���

�� �
� ��� ����

Figure 1. The SHEILA architecture. Playing style is learned in a
hierarchical fashion by learning large-scale variations (i.e. variations of a

pattern), as well as small-scale variations (variations of dynamics and
tempo). All the models are represented by Echo State Networks (ESNs). The

melody is used to group similar drum patterns together. After the training
phase, SHEILA can imitate the playing style of the drummers that served as

teachers.

3.1 Modeling the groove using neural networks

The inputs to SHEILA are drum patterns and the accompanying
melody, both represented in the MIDI3 format. SHEILA models both
small- and large-scale variations of drum patterns using Echo State
Networks (ESNs). An ESN is a recurrent neural network character-
ized by a large sparsely connected hidden layer, where only the out-
put layer weights are modified during learning [6]. The input layer
weights are generated at random, and left unchanged during training.
By only modifying the output layer weights, training the network
is reduced to a linear regression problem, which is a lot cheaper
computationally compared to the backpropagation through time al-
gorithm. In SHEILA, the input layer is not used. The ESNs learn the
sequences by teacher forcing, i.e. by writing the desired sequence
of output states into the output nodes during the training phase. The
only inputs to the hidden layer comes from the output nodes. After
training, the teacher forcing stops, and the network runs on its own.
The ESN continues to generate the desired output sequence due to
the reverberations of the hidden layer dynamics. In other words, the
desired sequence of output states is stored as an attractor in the ESN.
How this is used in SHEILA will be explained in the following sec-
tions. Why use ESNs to represent the groove sequence? Apart from
the obvious advantage of using a dynamical system with memory
capabilities, it also draws on biological inspiration; neuroscientific
findings suggest specific areas of the brain process temporal musical
information [11]. To model a human quality such as groove, using a
technique that is modeled on how the brain works seems like a step
in the right direction.

The name of the drummer and the song is also stored in the
SHEILA library. Different drummers play the same pattern, but in
their own style. The name of the drummer and the song will then
help the user of SHEILA to decide which style he wants on the imi-
tated drum track when SHEILA is used to imitate a drummer.

3.1.1 Large-scale variations

Large-scale variations are defined as changes in the actual pattern
played, such as playing a break instead of a certain pattern. The most
commonly played drum patterns are denoted core patterns. Core pat-
terns are found by a recursive process: first the different parts of
the melody are found (what in common music terms would be re-
ferred to as the verse/chorus/bridge of the song). This is achieved by
transforming the melody into a string, and searching for supermaxi-
mal repeats, an approach used in computational biology to discover

3 Musical Instrument Digital Interface, a protocol for electronic music equip-
ment to communicate in real time.

sequences of genes [4]. A supermaximal repeat is defined as a re-
curring pattern that is not a substring of any other pattern. Similar
parts are grouped together, and the core patterns are the most com-
monly played drum pattern within the similar parts. To find the most
commonly played drum patterns, the same search for supermaximal
repeats is performed. Patterns correspond to one bar of the MIDI
note sequence (i.e. 4 quarter notes). Patterns that differ from the core
pattern within a melodic segment is considered to be a large-scale
variation of the core pattern. For each song, there will be several
core patterns, corresponding to the melodic segments. Core patterns
are written as Cx, whereas variations are written as CxVy . From
the low-level MIDI data a high-level representation of the song is
found, namely the sequence of drum patterns. The sequence of pat-
terns within a melodic segment is represented by an ESN (from now
on referred to as ESNseq). The string sequence is transformed into a
binary matrix where one row corresponds to one bar, and the loca-
tion of the high bit indicates which pattern (core or variation) to play.
This sequence is then teacher forced to the ESNseq, which produces
the same output sequence after the training phase. The design choice
to have one ESNseq for similar melodic segments was made because
it is the intention that SHEILA will later be used in a different set-
ting, where only specific core patterns (and their variations) are to be
played. If the ESNseq learned the large-scale sequence of the entire
song, it would only be suited to play back that particular song.

3.1.2 Small-scale variations

Small-scale variations are defined as variations in timing (i.e. how
much the drummer is before or after the metronome) and dynamics
(i.e. how hard a beat it played, also referred to as velocity) that oc-
cur when a drummer is playing a pattern. After defining the core
patterns and variations, the similar drum patterns are grouped to-
gether, and the MIDI data is transformed into a target matrix where
one row represents one timestep of the MIDI data. Quantizing the
raw MIDI data allows for calculation of how much a note was be-
fore/after the metronome. The placements of the velocity and on-
set time data also code for which note was played (for instance, hi-
hat, snare drum or kick drum). The velocity and onset times were
scaled to the range [0,1]. One ESN represent the sequence of veloci-
ties (denoted ESNvel), one ESN represent the sequence of onset times
(ESNons). Early experiments tried to combine both onset time and ve-
locity in one ESN, but finding a stable solution was difficult. Closer
examination of the data revealed that the onset times had a variation
that was on a slower timescale than that of the velocities. The on-
set times varies over several bars, whereas the velocity varies greatly
from one note to the next (this will be elaborated in section 4). The
spectral radius of the ESN describes the speed of the internal dynam-
ics of the ESN, and is the most important parameter to tune [5]. It was
therefore crucial that the velocity and onset times were represented
on different networks, since this parameter needed to be different for
each network. After the division was made, finding stable solutions
became a lot easier.

The grouped patterns are then used to train ESNs that represent
their variations in velocity and timing, resulting in specific ESNs for
the core pattern and for each of the variations of the core pattern.

3.2 Imitating the groove

When the training is completed, the user of SHEILA presents a de-
sired pattern in the MIDI format. Upon recognition, the user can
choose which drummer should play the desired pattern. The name

A. Tidemann and Y. Demiris / Groovy Neural Networks272



of the drummer and which song the pattern was played on will aid
the user to decide. The user then specifies how many bars the de-
sired pattern should be played. SHEILA then runs the ESNseq of the
desired pattern for the desired number of bars, outputting the se-
quence of core patterns and variations. The corresponding ESNvel

and ESNons are then run for the desired number of bars; the output
results in MIDI data. The ESNseq introduces large-scale variations,
and the ESNvel and ESNons introduce small-scale variations. Recall
that the ESNs are all purely generative, they are not driven by input
at all. However, they need to be given a starting state, which is the last
state of the hidden and output layer of the network during training.

4 EXPERIMENTAL SETUP

The SHEILA system was implemented in MatLab. To find the su-
permaximal repeats, vmatch4 was used, which is implemented using
the algorithms described in [1]. Propellerheads Reason 3.05 loaded
with Reason Drum Kits was used for recording MIDI signals and for
generating sound from MIDI files. Recording MIDI was done with a
Roland TD-36 velocity sensitive electronic drum kit. Five male ama-
teur drummers (average age 27.8) recorded drum tracks to a melody
written by the authors, and were told to play specific patterns for the
verse (shown in figure 2), chorus and bridge. At each 8th bar of the
verse, there was a break that they had to play the same way. Apart
from these directions, the drummers were free to introduce large-
scale variations as they saw fit. The overall structure of the song was
verse/chorus/verse/chorus/bridge/chorus/chorus. The tempo was 120
beats per minute (BPM), yielding the length of the song 2:30 min-
utes. The ESNseq had 50 hidden nodes, and a spectral radius α = .99.
The spectral radius describes the speed of the internal dynamics of
the ESN; α = .99 specifies slow dynamics. This was chosen because
the timescale of the ESNseq were often long and highly irregular. The
ESNvel and ESNons on the other hand, represent faster dynamics since
their role is to capture a short cycle in a long stream of data. By exam-
ining the training data, the timescale of which variations occur was
discovered to be different on velocity and timing data. This can be
seen in figure 3, which shows the velocity and timing data for the hi-
hat sequence that correspond to the pattern in figure 2. Observe how
the velocity data vary greatly from one note to the next, whereas the
onset time varies more slowly.

To account for these observations, α = .1 for the fast ESNvel,
α = .4 for the slower ESNons. These values are found by experimen-
tation, as recommended by Jaeger [5]. The networks started out with
10 nodes in the hidden layer. Finding a stable solution in a purely
generative ESN was not guaranteed in every trained ESN. The train-
ing error would be low for every network, but once left to run on
its own, some networks tended to oscillate in an unstable manner.
To overcome this problem, each ESN was run for the same length
as the training data, and if the resulting output pattern differed more
than 10% from the training pattern, it was discarded and another ESN
was created, trained and tested. If five consecutive ESNs had an error
greater than 10%, the number of nodes in the hidden layer was in-
creased by 1. In practice, this simple heuristic would guarantee that
a solution would be found rather quickly, with less than 25 nodes
in the hidden layer. Recall that the training of the ESN is a simple
linear regression task; training and testing an ESN on some of the
longer sequences (e.g. a 144 x 3 matrix) takes less than a second on
an 1.8GHz iMac G5 running MatLab 7.

4 www.vmatch.de
5 www.propellerheads.se
6 www.roland.com

hihat
snare
kick

Figure 2. One of the three core patterns the drummers were required to
play in the experiment.

0 10 20 30 40 50 60 70 80 90
0

32

64

96

127

M
ID

I 
v
el

o
ci

ty

Time in beats, hihat

12

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

Time in beats, hihat

Figure 3. The plots show the training sequence of hihat velocity and onset
time when drummer B played the pattern in figure 2. The difference from
one velocity to the next is much larger than the difference from one onset

time to the next, which fluctuates on a much slower timescale.

5 RESULTS

To evaluate the imitation performance of the SHEILA architecture,
it was set to play back the same song structure used during training.
Table 1 shows how many large-scale variations a drummer would
introduce when playing a core pattern in addition to how often vari-
ations were played instead of the core pattern, calculated from the
original training data. The table shows how some drummers tends to
introduce many variations and play them often, whereas other drum-
mers tend to play just the pattern they were told to play. This indi-
cates the complexity of the sequence the ESNseq had to learn, and the
complexity of the imitated sequence.

Table 1. The tuples represent how many unique variations the drummers
introduced when playing a core pattern, and how often variations in total
were played instead of a core pattern (keeping in mind that a particular
variation can be repeated throughout the sequence). This indicates the
complexity of the sequence of large-scale variations and core patterns.

Drummer A B C D E
C1 5, 54% 3, 18% 7, 43% 2, 7% 5, 46%
C2 10, 41% 2, 22% 8, 41% 1, 3% 11, 63%
C3 6, 75% 2, 38% 5, 63% 0, 0% 5, 63%

The small-scale variations of both velocity and onset time can be
modeled using a Gaussian distribution, as described in [13]. One of
the leading software samplers on the market, FXpansion BFD, use
the same approach to model human variations in its “Humanize pan-
els”7. This allows for a simple way to show the small-scale varia-
tions present in both the original and imitated data. Figures 4 and 5
show how SHEILA models the small-scale variations of drummers
A and E playing the pattern shown in figure 2 (due to space limits,

7 See page 118 of the user manual (accessed 2008-05-26),
www.fxpansion1.com/resourceUploads/BFD Manual English.pdf

A. Tidemann and Y. Demiris / Groovy Neural Networks 273

O
ns

et
 ti

m
e,

 ti
ck

s



the graphs for all drummers cannot be shown). Figure 4 shows how
drummer A strongly accentuates (i.e. periodically varies the veloc-
ity of) the hihat beats, whereas drummer E has a more even velocity
profile for the hihat beats.

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat
M

ID
Iv

el
oc

ity
127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 4. To the left is the velocity profile for drummer A, playing the
pattern shown in figure 2. The Y scale is [0 − 127], corresponding to the

MIDI resolution. The X scale corresponds to the beats in the measure, which
is a common way to count when playing music. The blue bar stems from the

training data, the red bar from the output of SHEILA, when instructed to
play the same song as that of the training input. The similarity between the

blue and red bars indicate that the ESNvel successfully captures the
small-scale variations of the training data. Notice also how the velocity

profile differs from that of drummer E (to the right). Most easily seen is how
the accentuation (i.e. variation of velocity) on the hihat is not as pronounced

as for drummer A; this is a manifestation of the different grooves of
drummers A and E.

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, kick drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 5. To the left is the onset time profile for drummer A, playing the
pattern shown in figure 2. The Y scale is onset time in ticks. There are 120

ticks in the range [0 − 0.99] between each quarter note. The X scale
corresponds to the beats in the measure, similar to figure 4. As in figure 4,

the blue bar is the statistics from the training data, the red bar is the analysis
performed on the imitation done by SHEILA, showing that the output of the
ESNons resembles that of the training data. The plot shows how drummer A
tends to be ahead of the metronome when playing the pattern in figure 2. To

the right is the onset time plot for drummer E. The onset times tend to be
more centered around the metronome for the hihat beats, distinctively more
than for drummer A, which contributes to the difference of groove between

drummers A and E.

The onset time plays an important role in how aggressive/relaxed
drum patterns are perceived, depending on whether the onset time
is before or after the metronome. Figure 5 reveals that drummer A

tends to be ahead of the metronome (yielding a more aggressive feel),
whereas drummer E tends be more centered around the metronome,
for a more “tight” feel. The authors are aware that these terms are
vague but acoustically distinct; we encourage the reader to listen to
available MP3 files8 that better demonstrate these differences (in-
cluded are imitations performed by SHEILA). Figures 4 and 5 show
the mean and standard deviation for both velocity and onset time,
both for the original data and the imitated output. The similarity be-
tween the plots shows how SHEILA successfully models the small-
scale variations, in addition to demonstrating that drummers A and E
plays the same pattern with a different groove.

To assess both the large- and small-scale differences between orig-
inal and imitated drum tracks, as well as between drummers, a se-
quence similarity metric was implemented as described in [7]. The
cost function was adapted to account for differences in velocity as
well as timing of events, e.g. by adding the normalized difference in
velocity between two events. The similarity metrics can be seen in
table 2. The metrics show that imitations are similar to originals, and
that the drummers have different styles when compared to another.
The difference when comparing originals to imitations and drum-
mers to each other is generally an order of magnitude. However, note
that the metrics only have value as relative comparisons between the
MIDI sequences. They do not represent an absolute difference. Yui-
jan and Bo have recently developed a normalized metric [16], how-
ever it does not account for timed series; this appears to be an open
research issue, and beyond the scope of this paper. Still, the similarity
metrics indicate a strong degree of similarity between original drum
tracks and imitations (which is further backup up by figures 4-5), and
that each drummer has a playing style different from the others.

Table 2. (a) shows the similarity metric described in [7] when comparing
original drum tracks to SHEILA’s imitations, (b) compares drummers to

other drummers. The metrics indicate that the originals and imitated drum
tracks are similar, and that the different drummers have different playing

styles.

Original A B C D E
Imitation 0.46408 0.37102 0.37176 0.60169 0.37995

(a)
A B C D E

A 0 5.185 5.8272 6.1193 6.9911
B 5.185 0 5.4271 1.944 5.4166
C 5.8272 5.4271 0 6.0649 6.4713
D 6.1193 1.944 6.0649 0 6.135
E 6.9911 5.4166 6.4713 6.135 0

(b)

Another important aspect of the onset time is the tempo drift that
occurs over time. A drummer will constantly be before or after the
metronome, which will make the tempo fluctuate over time, as can
be seen in figure 3. Figure 6 shows how the output of SHEILA in-
duced the same drift in tempo over time as that of the original drum
sequence. To examine how the ESN store the grooves as attractors,
plots were made of hidden layer nodes during a run where the ESN
was generating output. Figure 7 shows plots for some hidden nodes
of the ESNvel of the pattern in figure 2 for drummer A. The ESNvel

was run for 240 timesteps (double what it was trained on). The fig-
ures show that the activation patterns have stable attractor shapes,
but with deviations. This is a further testament to how small-scale
variations are introduced when imitating a certain pattern; these de-
viations will make the output slightly different over time. But since

8 www.idi.ntnu.no/∼tidemann/sheila

A. Tidemann and Y. Demiris / Groovy Neural Networks274



100 200 300 400 500 600 700
−0.15

−0.1

−0.05

0

0.05

0.1

Note sequence

O
ns

et
 ti

m
e

Actual onset time

Imitated onset time

Figure 6. Tempo drift throughout the song, drummer A. The circle plots
show the tempo drift present in the recorded drum patterns. The cross plots
show the onset times during imitation. Observe how both the original and

imitated note sequence drift over time in a similar fashion.

the attractors are modeled from the patterns from a human drummer,
the fluctuations will be similar to that of the human drummer.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

Node 3

N
o
d

e 
4

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Node 7

N
o
d

e 
8

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Node 20

N
o
d
e 

2
1

Figure 7. Attractor plots, for some randomly selected hidden layer nodes
of the ESNvel of the pattern in figure 2, drummer A. The ESNvel was run for

240 timesteps (twice the training length). The plots are stable, but with
deviations implying that the output will be slightly different over time.

6 DISCUSSION AND CONCLUSION

The choice of using MIDI was based on simplicity regarding the
gathering and analysis of data. Another advantage with MIDI is that
it will disregard the sound of the drums, which often will help to
identify a drummer. The MIDI data allows focusing on the playing
style of the drummer, which is the aim for our research.

By using ESNs, SHEILA is able to model the human quality that
is groove by using a biologically inspired computational model. The
model encompasses the quality of varying the output like that of a hu-
man drummer, making the output different from the original but still
recognizable. The research presented in this paper enables the drum
machine to become closer to a groovy human drummer. Effectively,
the results will make it cheaper and easier to create human-like drum
tracks when making music.

7 FUTURE WORK

SHEILA depends on MIDI information gathered using a MIDI drum
kit. Acquiring the data is expensive; extracting the drum patterns
and melody line directly from sound files would give access to vast
amounts of training data; possible approaches are described in [9].
Apart from ease of computation, the reason for recording live drum-
mers was an interest in making SHEILA learn the physical playing
style of human drummers, i.e. the movement of the arms, upper torso
and head. This would be used to visualize SHEILA. During the ex-
periments conducted for this paper, motion tracking was also done.
The goal is to be able to use SHEILA in a live setting as an ac-
companying musician, interacting with humans playing other instru-
ments. This work will continue research done with motion tracking

and subsequent imitation of arm movements as described in [14],
using multiple forward and inverse models as building blocks for a
motor control architecture [3].

ACKNOWLEDGEMENTS

The authors would like to thank the referees who helped improve the
paper, and the drummers who participated in the experiment (Daniel
Erland, Inge Hanshus, Sven-Arne Skarvik, Tony André Søndbø).

REFERENCES

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch, ‘Replacing Suffix Trees
with Enhanced Suffix Arrays’, Journal of Discrete Algorithms, 2, 53–
86, (2004).

[2] Ramon Lopez de Mantaras and Josep Lluis Arcos, ‘AI and music
from composition to expressive performance’, AI Mag., 23(3), 43–57,
(2002).

[3] Yiannis Demiris and Bassam Khadhouri, ‘Hierarchical attentive mul-
tiple models for execution and recognition of actions’, Robotics and
Autonomous Systems, 54, 361–369, (2006).

[4] Dan Gusfield, Algorithms on strings, trees, and sequences: computer
science and computational biology, Cambridge University Press, New
York, NY, USA, 1997.

[5] Herbert Jaeger, ‘Tutorial on training recurrent neural networks, cover-
ing BPPT, RTRL, EKF and the ”echo state network”’, Technical re-
port, German National Research Institute for Information Technology,
(2005).

[6] Herbert Jaeger and Harald Haas, ‘Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy in Wireless Communication’, Sci-
ence, 304(5667), 78–80, (2004).

[7] H. Mannila and P. Ronkainen, ‘Similarity of event sequences’, TIME,
136–139, (1997).

[8] Francois Pachet, Enhancing Individual Creativity with Interactive Mu-
sical Reflective Systems, Psychology Press, 2006.

[9] G. E. Poliner, D. P. W. Ellis, A. F. Ehmann, E. Gomez, S. Streich, and
B. Ong, ‘Melody transcription from music audio: Approaches and eval-
uation’, IEEE Transactions on Audio, Speech and Language Process-
ing, 15(4), 1247–1256, (May 2007).

[10] Christopher Raphael, ‘Orchestra in a box: A system for real-time mu-
sical accompaniment’, in IJCAI workshop program APP-5, pp. 5–10,
(2003).

[11] Séverine Samson and Nathalie Ehrlé, The cognitive neuroscience of mu-
sic, chapter Cerebral substrates for musical temporal processes, Oxford
University Press, 2004.

[12] Craig Saunders, David R. Hardoon, John Shawe-Taylor, and Gerhard
Widmer, ‘Using string kernels to identify famous performers from their
playing style.’, in ECML, eds., Jean-François Boulicaut, Floriana Es-
posito, Fosca Giannotti, and Dino Pedreschi, volume 3201 of Lecture
Notes in Computer Science, pp. 384–395. Springer, (2004).

[13] Axel Tidemann and Yiannis Demiris, ‘Imitating the groove: Making
drum machines more human’, in Proceedings of the AISB symposium
on imitation in animals and artifacts, eds., Patrick Olivier and Chris
Kay, pp. 232–240, Newcastle, UK, (April 2007).

[14] Axel Tidemann and Pinar Öztürk, ‘Self-organizing multiple models for
imitation: Teaching a robot to dance the YMCA’, in IEA/AIE 2007, vol-
ume 4570 of Lecture Notes in Computer Science, pp. 291–302. Springer
Verlag, (June 2007).

[15] Asmir Tobudic and Gerhard Widmer, ‘Learning to play like the great pi-
anists.’, in IJCAI, eds., Leslie Pack Kaelbling and Alessandro Saffiotti,
pp. 871–876. Professional Book Center, (2005).

[16] Li Yujian and Liu Bo, ‘A normalized levenshtein distance metric’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(6),
1091–1095, (2007).

A. Tidemann and Y. Demiris / Groovy Neural Networks 275


