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Abstract. We present a system that automatically turns the pages
of the music score for musicians during a performance. It is based
on a new algorithm for following an incoming audio stream in real
time and aligning it to a music score (in the form of a synthesised
audio file). Precision and robustness of the algorithm are quantified
in systematic experiments, and a demonstration using an actual page
turning machine built by an Austrian company is described.

1 Introduction

The musicians among the readers may be familiar with the problem
of having to turn the pages of the music score while playing a piece
of music on an instrument. This is not so much a problem in a live
concert, where the artist either plays the piece by heart or has a (semi-
)professional page turner by her side, but it is very bothersome during
practicing (where it has to be done over and over again). In many
cases, having to turn the page requires the musician to remove one
hand from the instrument and, thus, to stop playing and then continue
after the page has been turned. Such a forced disruption is annoying
and frustrating, both musically and from a practicing point of view.
An intelligent system that automatically ‘knows’ when to turn the
pages and does that in a reliable manner would be highly useful.

The Austrian Company Quidenus GmbH (www.qidenus.com) has
developed an electro-mechanical device that turns the pages of
books, music scores, etc. via two physical ‘fingers’ (see Fig. 5, cen-
ter). The device is operated by the musician via a foot switch. The
musician may thus play without interruption, but is still forced to fo-
cus her thoughts on the act of page turning as the respective point
in the piece approaches. Our idea was to make this device decide
and act completely autonomously, without the musician having to
do anything, by ‘listening’ to the musician in real time, comparing
the ongoing performance to some internal representation of the sheet
music, and automatically turning the page at the appropriate time.
This is a very challenging AI task, which involves real-time machine
listening and adaptivity. The contribution of this paper to Artificial
Intelligence is thus a general method for tracking (‘listening to’) au-
dio streams in real time, on-line, with high robustness and flexibility.

2 Requirements and Related Work

Technically, what is required is an algorithm that is capable of au-
tomatically listening to a live music performance (in the form of a
raw audio stream, in our case) and tracking the current position in
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the score. This task is known as automatic score following. There
has been quite some work on score following in the AI and computer
music communities, starting as early as 1984 [3, 9] and intensifying
in recent years (e.g., [2, 4, 7, 8]). Many of these algorithms require
practising sessions with the same musician [9], during which the sys-
tem learns a predictive model of the expected tempo and timing de-
viations applied by the musician, represented, e.g., as a Graphical
Model or Bayesian Network [7], or a Hidden Markov Model [8].

Our goal is to avoid this laborious training phase and develop a
system that adapts to the musician currently playing without any
training. An additional goal is to provide robustness in the face
of structural changes (see below), which has mostly been ignored
in previous approaches (with the notable exception of [6], where
HMMs are used to model the high-level structure of the music). In
more detail, our system should have the following properties:

On-line tracking: The artificial page turner must ‘listen to’ and fol-
low a musician’s performance in real time. Specifically, in a real
scenario, we cannot assume that the musician plays a MIDI in-
strument (in which case we would have conveniently processable
symbolic input data), but, rather, a ‘regular’ instrument whose
sound is recorded by a microphone. The problem is thus to track
a raw audio stream and to align it to the music score in real time.

Robustness against changes in tempo and timing: In classical
music, musicians deliberately vary the tempo (among other
parameters) to add expression to a piece; this phenomenon comes
under various names like ‘agogics’, ‘rubato’, or ‘expressive
timing’. In fact, this is an indispensable part of (classical) music
performance [10]. Such tempo changes can be very abrupt and
large (e.g., a slowing down of 50% within one beat). Musical
scores do contain some rough indications (like a ritardando
prescription), but these are neither precise and quantitative nor
complete. A music tracking system must be able to accommodate
such changes without becoming confused.

Robustness in the face of structural changes: In some cases, the
musician may choose to follow structural indications in the score
(specifically, repeats), but may also decide to ignore repeated
sections. A page turning system should be able to automatically
recognise the performer’s decisions.

Error tolerance: Musicians make mistakes (particularly in the
practise phase); they may omit notes or whole segments, play er-
roneous or superfluous notes, or spontaneously restart at a partic-
ular point of a piece after having made a mistake. Clearly, a page
turning system should be robust to such errors.

Adaptivity: Initially, it is unclear how and how fast the musician
is going to play. The system has to be able to adapt to the spe-
cific circumstances of a live performance, without prior training
or information.
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Figure 1. Excerpt (bars 43-46) of the Etude Op.25 No.11 in A minor by Frédéric Chopin: notated score (top); audio signal of synthesised reference score
(middle); real performance (bottom); the correct time alignment produced by the algorithm is indicated by connecting lines. To avoid clutter, only the

alignment of points at bar lines is shown.

3 On-line Audio Following

The solution we are going to adopt is the following. Rather than try-
ing to identify individual notes from the incoming audio stream and
trying to associate these with the corresponding notes in the notated
score (the ‘sheet music’), we first convert (a MIDI version of) the
given score into a sound file, by using any available software synthe-
siser. That gives an audio rendition of the piece in poor sound qual-
ity, without any expressive aspects (the piece will sound mechanical),
and, in the case of the piano, without any pedalling. In the live track-
ing process, the incoming audio stream must be aligned, on-line, to
the synthesised audio file. Figure 1 shows a short excerpt from the
Etude Op.25 No.11 in A minor by Frédéric Chopin, with the corre-
sponding excerpts from the synthesised score audio file, and from an
actual performance.

The algorithm to be described here builds on our on-line time-
warping (OLTW) method presented in [5], and adds a number of new
strategies to make it more robust and adaptive. We first recapitulate
the basic algorithm and then present our new method.

3.1 The Basic Audio Alignment Algorithm

In [5], we presented an algorithm for the online alignment of two
audio streams that is based on Dynamic Time Warping (DTW). The
streams are given as sequences of short (46 ms) audio frames. The
important differences between this algorithm and standard DTW are
linear time and space complexity, and the fact that the optimal align-
ment is computed incrementally. The algorithm works as follows:

Given two sequences U = u1, ..., um and V = v1, ..., vn, an
alignment between U and V is a path W = W1, ..., Wi (through
a cost matrix) where each Wk is an ordered pair (ik, jk) such that
(i, j) ∈ W means that the points ui and vi are aligned. W is con-
strained to be monotonic and continuous. An m×n matrix represents
a local cost function d(i, j) which assigns costs to the alignment of
each pair (ui, vi). The cost of a path W is the sum of the local align-
ment costs along the path. The m×n path cost matrix D is computed
using the recursion:

D(i, j) = d(i, j) + min

{
wa ∗ D(i, j − 1)
wa ∗ D(i − 1, j)

wb ∗ D(i − 1, j − 1)

}
(1)

D(i, j) is the cost of the minimum cost path from (1, 1) to (i, j),
D(1, 1) = d(1, 1), wa = 1 and wb = 2. The weights wa and wb

are used to normalise paths of different lengths to make them com-
parable. The alignment algorithm computes a quasi-optimal solution
(a ‘forward path’) by incrementally constructing this cost matrix in
real time. During the initial phase, as long as less than s = 500 el-
ements of each series have been processed, columns and rows are
calculated alternately and the path follows the diagonal of the ma-
trix. Calculating a row (column) means incrementing the pointer to
the next element of the respective time series, calculating the new
local distances, and updating the cost matrix D by using formula 1.

After this initial phase the number of cells to be calculated is given
by a search width parameter c = 500, e.g. for a new column i the
local distances d(i, j−(c−1)), d(i, j−(c−2)), ..., d(i, j) are calcu-
lated, where j is the index of the current row. The calculation of the
minimum cost paths using formula 1 is restricted to using only calcu-
lated cells. In this way, only a sub-band of the cost matrix of constant
width is computed (see Fig. 2), which reduces time and space com-
plexity from quadratic to linear.

To decide if a row or a column should be computed (i.e., which of
the two time series to advance), the minimum path cost for each cell
in the current row j and column i is found. If this occurs in the cur-
rent position (i, j) both a new row and column are calculated. If this
occurs elsewhere in row j a new row is calculated and if this occurs
elsewhere in column i a new column is calculated. If one time se-
ries has been incremented more than MaxRunCount = 3 times, the
other series is incremented. In our musical setting, this embodies the
assumption that a given performance will not be more than 3 times
faster or slower than the reference score, and prevents the alignment
algorithm from ‘running away’ too far.

The audio streams to be aligned are represented as sequences
of analysis frames, using a low-level spectral representation com-
puted via a windowed FFT of the signal with a hamming window
of size 46ms and a hop size of 20ms. The data is mapped into 84
frequency bins which are spread linearly up to 370Hz and logarith-
mically above, with semitone spacing, and then normalised to sum
up to 1. In order to emphasise note onsets – the most important in-
dicators of musical timing – only the increase in energy in each bin
relative to the previous frame is stored. The cost of aligning two such
84-dimensional vectors is computed as the Euclidean distance be-
tween the two vectors.
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3.2 Steps Towards Intelligent Audio Following

Experiments with the original OLTW algorithm showed that it works
relatively well with professional performances (e.g., recordings by
famous pianists), when there are no serious performance errors –
though even there we encountered some substantial alignment errors,
especially in situations of rapidly changing tempo. With less perfect
performances, the algorithm has severe problems.

In this paper, we propose three strategies for making on-line audio
following more effective. They will be evaluated experimentally in
Section 4.1. The strategies are presented here in the context of music
alignment, but – with the exception of the second one – they are
completely general and should prove useful in many other domains
that require robust on-line sequence alignment. In the following, the
completely known time series representing the score sits on the y
axis of the cost matrix, the live audio stream on the x axis.

Strategy 1: The Backward-Forward Strategy

The first strategy consists in using the present hypothesis plus the
information from which it was constructed, in order to re-consider
past decisions and then, in turn, using the revised decisions to im-
prove the present hypothesis.

More precisely, the method works as follows: After every 2 frames
of the live input a smoothed backward path is computed, starting at
the current position (i, j) of the forward path. By following this path
b steps backwards on the y-axis (the score) one gets a new point
which lies with a high probability nearer to the globally optimal
alignment than the corresponding point of the forward path (because
this backward computation takes into account information from the
‘future’ that was not available when computing the original forward
path). Starting at this new point another forward path is computed un-
til a border of the current matrix (either column i or row j) is reached.
If this new path ends in (i, j) again, this can be seen as a confirma-
tion of the current position. If the path ends in a column k < i, new
rows are calculated until the current column i is reached again. If the
path ends in a row l < j, the calculation of new rows is stopped until
the current row j is reached. In our specific implementation, two dif-
ferent backtracking lengths are used: after 4 short backtrackings of
length b = 10 a longer one of length b = 50 is performed.

The main effect of this strategy is increased robustness against
tempo changes and improved error tolerance: If there are extreme
tempo changes in the performance, or the performer makes large
errors – plays wrong notes and repeats or omits a whole bar – the
forward-backward strategy permits the system to correct the error
faster by waiting for the musician or jumping forward in the score.
This is because the re-computation of the backward path is not
limited by the MaxRunCount constraint that governs the on-line
forward path computation. A situation where the system ‘waits for’
the performer to catch up after a serious mistake is shown in Fig. 2.

Strategy 2: Utilising Musical Information

Given that the reference audio file to which a performance is
aligned was synthesised from a written score, we have additional in-
formation – beyond the pure audio representation – that can be ex-
ploited. In particular, for each note, we know precisely where it starts,
i.e., we know the precise onset times in the score audio; this is some-
thing that is not at all obvious from the audio itself (cf. Fig. 1). The
information can be used to bias the path to pass though points where
the performance signal is particularly similar to the sound expected
at note onsets, as follows: For every frame of the incoming live input

Figure 2. Part of a cost matrix (note that not the complete matrix, but only
a sub-band around the diagonal is computed). This particular situation shows

the system reacting to an additional bar of music (not present in the score)
erroneously played by the pianist. The live performance is on the x axis, the

score representation on the y axis. Crosses show the correct note onsets
according to the score. The grey path is calculated by Dixon’s original

algorithm, the white path is our performance tracker. Note how our algorithm
effectively ‘waits’ for the pianist (the horizontal segment) after having

noticed the error. This is made possible by the Backward-Forward Strategy.

a heuristic measure M is computed that tries to capture the likelihood
that the current frame corresponds to the next onset expected accord-
ing to the score. If M exceeds a given threshold, the current frame is
aligned with the corresponding onset frame on the score axis; other-
wise, forward path computation continues as usual. The measure M
combines three components: the sound similarity between the current
audio frame and the score audio frame representing the next onset; a
measure of “onset-ness” of the current frame (this is computed by a
simple onset detection measure based on spectral differences to the
previous frame); and the distance, on the y axis, of the forward path
to the score coordinate of the next onset (the closer, the more likely).
The details of the function are too complex to explain here (they can
be found in [1]), but the idea is fairly intuitive.

The main effect of this strategy is an increase in alignment
precision. In addition, strategy 2 also helps improve the robustness
of alignment, particularly during hard-to-track tempo changes: the
search for onsets adds the capability to catch onsets correctly even if
the forward path went wrong for some frames.

Strategy 3: Maintaining Multiple Hypotheses

The third strategy is aimed directly at the ‘structural changes’
problem, i.e., the possibility that a musician may choose to ignore
repeat signs or repeat or skip entire sections. This problem is solved
in a straightforward way: Instead of using just one instance of the
algorithm, up to 3 instances are started simultaneously at predefined
positions and work on different parts of the piece. After 500 frames
of the score representation (y) the path costs, normalised by the
number of frames processed, are compared and the instance of the
algorithm with the least cost is selected. The positions where this
‘forking’ is triggered are the boundaries of major sections as given
in the score. At each section boundary, one instance of the alignment
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Figure 3. Recovery time in beats after big mistakes by the musician (removing a bar [r], adding a bar [a] and changing a bar [c]) as cumulative frequencies
(“y% of the errors are below x beats”). The evaluation is based on 88 alignments of the Etude (4 bars changed) and 132 alignments of the Ballade (6 bars

changed), for each of the cases [r,a,c].

algorithm assumes that the musician will repeat the previous section
and skips back to the beginning of the section; one instance assumes
the musician will continue with the next section; and a third instance
assumes that the musician will skip the new section and jumps ahead
to the next one. As our experiments show (see Section 4.1), this
strategy works extremely well (and is still computationally feasible).

Other Improvements

Other changes that led to some improvement concern the optimisa-
tion of a few parameters. The weights in the path cost recursion were
set to wa = 1.3 while leaving wb = 2, which makes diagonal steps
cheaper. The original algorithm showed problems – e.g. uncontrolled
expansions of the path in one single direction – especially between
note onsets where there is no data for a reasonable alignment. That
was mostly solved by this reweighting. As a consequence, the path
computation now proved to be so stable that MaxRunCount could
be set to 6, which leads to more freedom in path computation and the
possibility to catch even large differences in tempo.

And finally, with regard to the adaptivity problem, the described
algorithm works entirely without pre-training (in contrast to, e.g.,
HMM-based approaches). The only information used is the score
represented as a (constant tempo) MIDI file. The only change relative
to Dixon’s original algorithm was to shorten the initial phase (where
the path is forced to follow the diagonal) to 1 second instead of 10. As
a consequence, the algorithm adapts much faster to the general play-
ing speed of the musician. From that point onwards, the above strate-
gies ensure that the system adapts very effectively to tempo changes,
delays and even insertions and deletions in the performance.

4 Experiments

4.1 Quantitative Experiments

A quantitative evaluation requires correct reference alignments. For
practical reasons, the systematic experiments were performed off-
line. The results are the same as for on-line alignment, except for a
small latency that would occur in real-time processing. In the follow-
ing we refer to Dixon’s original algorithm, which serves as a refer-
ence, as D; to the new algorithm that uses all our improvements ex-
cept strategy 2 (thus not relying on any music-specific information)
as A1; and to the new algorithm including strategy 2 as A2.

The algorithms were evaluated on 2 sets of 22 piano recordings of
the Etude in E major, Op.10 no.3, bars 1–21 and the Ballade Op.38,

Etude Ballade
D A1 A2 D A1 A2

Mean Error 0.23 0.10 0.07 0.32 0.19 0.15
1st Quartile 0.02 0.02 0.02 0.04 0.02 0.02
2nd Quartile 0.08 0.04 0.02 0.08 0.04 0.02
3rd Quartile 0.26 0.12 0.04 0.26 0.10 0.06
Largest Error 3.06 2.02 2.12 9.82 7.56 7.24

Table 1. Alignment errors of the algorithms on the Etude and the Ballade.
The results are based on the alignment of 3564 notes in the Etude and 4422

notes in the Ballade. The errors are given in seconds.

bars 1–45 by Frédéric Chopin, played on a computer-monitored
grand piano by skilled pianists. The audio recordings were aligned to
synthesised score audio files with constant tempo. As the computer-
monitored piano also records the precise (‘true’) note onset times,
the alignment error could then be calculated.

As Table 1 shows, both new algorithms A1 and A2 outperform D
by far. Further evaluations showed that especially the reweighting
towards cheaper diagonal steps improved the accuracy of A1. The
further improvement of A2 is due to the fact that strategy 2 is very
effective at correcting errors between 0.02 and 0.2 seconds.

The excerpt of the ballade ends at a phrase boundary, which due
to extreme variations in tempo and discontinuities in timing are the
most problematic parts in score following. This explains the large er-
rors on the Ballade in Table 1. After a phrase boundary the algorithm
recovers easily. Nonetheless if a page-turning mark happens to be in
the area of a phrase boundary this could cause a delayed or prema-
ture page-turning. Improvements on handling those boundaries are
among the main goals of future work.

The new algorithms not only increased the accuracy but also de-
creased the variability of the results, as can be seen in Figure 4. Fur-
thermore, there was no performance which was better aligned by D
than by A1 or which was better aligned by A1 than by A2.

Further tests were performed to evaluate the robustness against
performance errors. As it is not possible to change the performances,
the score representation was changed instead. For the case of the mu-
sician leaving out notes, notes are repeated in the score, for playing
additional notes, notes are deleted from the score, and for playing
wrong notes, score notes are replaced by an augmented fourth.

As Figure 3 shows, the new path computation recovers much faster
from mistakes than the old one, especially in the cases of adding

A. Arzt et al. / Automatic Page Turning for Musicians via Real-Time Machine Listening244



Figure 5. Some impressions from the second live experiment. Center panel: the page turning device.
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Figure 4. Variability, among 22 performances of the etude (left) and the
ballade (right), of the mean errors of the alignments (shown as boxplots).

notes (due to the capability of ’waiting’ for the musician, see Figure
2) and playing false notes (due to both the ’waiting’ and the reweight-
ing towards the diagonal). In correcting alignment errors due to omit-
ted notes the performance of the algorithms is about equal.

Strategy 3, ‘Considering Alternatives’, was evaluated on altered
scores of the Etude and the Ballade where a repeated section was in-
serted. For all 22 performances of both pieces, the omitted repetition
was recognised and the correct path through the piece was found.

4.2 Qualitative Evaluation

To evaluate the system under realistic conditions, two live experi-
ments were performed (for some impressions see Fig. 5). One was
done with a simple electronic piano, one with a grand piano. The
audio signal was recorded over the air with a single microphone. A
trained pianist from our research group played two Chopin pieces:
the Ballade Op.52 in A� major and the Etude Op.25 No.11 in A mi-
nor (cf. Fig. 1). In both tests the system worked very reliably, even
in the presence of errors (and even some re-starts) by the pianist. It
turned out that the more onsets are played (the faster the piece is),
the better the alignment. So even the very fast etude was aligned per-
fectly (or at least well enough for correct page turning).

5 Conclusions and Future Work

The paper has presented a general algorithm for robust, effective on-
line tracking of audio streams in real time, and has demonstrated its
usefulness for an interesting task: automatic page turning for musi-
cians. The algorithm may prove useful in many other score following
tasks, e.g. live visualisation and automatic accompaniment.

On the technical side there are some clear directions for future
work. The first concerns improvements in handling large, discontin-
uous tempo changes as they occur at phrase boundaries, or at the
ends of pieces. This may require explicit recognition and modeling
of musical structure. As the concept of multiple matchers is currently
limited to fixed parts of the piece, such flexible structure models
might also lead to more intelligent tracking of the performer (e.g.,
re-starting at a musically suitable place after a mistake).

So far, the system has only been tested on piano music. There are
no fundamental results why it should not perform well on other kinds
of music, though non-percussive instruments (like the violin) could
be more problematic because our audio features are strongly related
to note onsets. Investigations in this direction will be carried out.
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