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Abstract. Defining a suitable semantic similarity between concept
pairs of a subsumption hierarchy is becoming a generic problem
for many applications in knowledge engineering exploiting ontolo-
gies. In this paper, we define a generic framework which can guide
the proposition of new measures by making explicit the information
on the ontology which has not been integrated into existing defini-
tions yet. Moreover, this framework allows us to rewrite numerous
measures, originally proposed in various contexts, which are in fact
closely related to each other. From this observation, we show some
metrical and ordinal properties. Experimental comparisons on Word-
Net and on collections of human judgments complete the theoretical
results and confirm the relevance of our propositions.

1 Introduction

Semantic similarity is a generic issue in a variety of applications in
the areas of computational linguistics, artificial intelligence and bi-
ology, both in the academic community and the industry. Examples
include word sense disambiguation [20], detection and correction of
word spelling errors (malaproprisms) [4], image retrieval [23], infor-
mation retrieval [13] and biological issues [25].

Similarities have been widely studied for set representations. The
similarity σ(A, B) between two subsets of elements A and B is of-
ten defined as a function of the elements common to A and B and as
a function of the distinct ones. The Jaccard’s coefficient [12] and the
Dice’s coefficient [7], which have originally been defined for eco-
logical studies, are probably the most commonly used similarities
among a large family of coefficients [11][24]. Their theoretical prop-
erties have been carefully studied [10][6].

Another important issue is the evaluation of semantic similarity in
a network structure. With a long history in psychology [27][21], the
problem of evaluating semantic similarity in a network structure has
known a noticeable renewed interest linked to the development of
the semantic web. In the 1970’s many studies on categorization were
influenced by a theory which stated that, from an external point of
view, the categories in a set of objects were organized in a taxonomy
according to an abstraction process. It is a common principle of the
current knowledge representation systems to describe proximity rela-
tionships between domain concepts by a hierarchy, or more generally
by a graph, i.e. by the ontologies associated with the new languages
of the semantic Web –in particular OWL [1].

The tree-based similarities defined on a subsumption hierarchy
contain two categories of similarities: those which, like the Wu and
Palmer’s similarity [28], only depend on the hierarchical structure
(e.g., path lengths between concept pairs), and those which, like the
Lin’s similarity [14], additionally incorporate statistics on a corpus
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(e.g., concept occurrence frequencies). Some recent work has tried
to extend the tree-based definitions to graphs by simultaneously tak-
ing into account different semantic relationships [15]. But, despite
its pertinence, this attempt is faced with many open problems, and in
practice the set-based and the tree-based similarities still remain the
most widely used.

Our main purpose here is to show that these measures, which have
originally been proposed in various contexts, are closely related to
each other. Most set-based similarities σ (A, B) can be re-written as
functions f (|A| , |B| , |A ∩ B|) of the cardinalities of sets A and B
and of their intersection set A ∩ B. In data analysis, a classification
attempt, not widely used in knowledge engineering, has permitted to
gather numerous similarity definitions into two parametrized func-
tions that we denote by fα and fβ [6]. In this paper, we extend the
definitions of these functions to the tree-based similarities: we define
two generic functions efα and efβ with the same schema as fα and fβ .
Each function depends on a real parameter α or β, and on the “infor-
mation content” ψ(ci) = − log P (ci) initially introduced by Resnik
[19], where P (ci) is the probability of encountering an instance of
the concept ci. The operational computation of the theoretical prob-
ability P(ci) may vary according to the available information (e.g.,
a corpus). We show that numerous published tree-based similarities
are associated with a α or β value and an approximation of P.

The interests of this work are threefold. First, some partial pair-
wise comparisons have already been presented in the literature, but
our unified framework allows to precisely identify the theoretical dif-
ferences and commonalities of a large set of measures. Second, an
analysis of the combinatorics of the subsumption hierarchy has led
us to define new approximations of the probability P which exploit
information on the subsumption hierarchy which has not been inte-
grated into existing measures yet. Third, we show that ordinal and
metrical properties can be straightforwardly deduced from this uni-
fied framework.

We complete this theoretical study by numerical experiments on
WordNet samples (version 2.0) and on benchmarks on which human
judgments have been collected.

2 A typology of set-based similarities

In this section, we denote by S a finite set of elements and A,
B, C some subsets of S. We briefly recall that a similarity σ on
P(S) is a function σ : P(S) × P(S) → IR+ which satisfies
two properties: symmetry (σ(A, B) = σ(B, A)) and maximality
(σ(A, A) ≥ σ(B, C)). Most of the set-based similarities can be
grouped into two parametrized families.

The first one σα has been proposed by Caillez and Kuntz [6]. It is
defined by a ratio between the cardinality of the intersection |A ∩ B|
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and the Cauchy’s mean [5] of the cardinalities of the respective sets
|A| and |B|:

σα (A, B) = fα (|A| , |B| , |A ∩ B|) = |A∩B|
μα(|A|,|B|) (1)

where μα (|A| , |B|) =
“

|A|α+|B|α
2

” 1
α for α ∈ IR.

Note that the case α = 1 concides with the classical arithmetic
mean. The second family σβ has been studied by Gower and Legen-
dre [10]:

σβ (ci, cj) = fβ (|A| , |B| , |A ∩ B|) = β·|A∩B|
|A|+|B|+(β−2)·|A∩B| (2)

where β ∈ IR∗
+.

Table 1 shows the correspondence for different values of α and β
with well-known measures (see [24] for the original references of the
definitions).

Table 1. Correspondence between different parameter values and
well-known set-based similarities

α Mean μα Similarity σα

−∞ minimum Simpson
−1 harmonic Kulczinsky
0 geometric Ochiaı̈
1 arithmetic Dice

+∞ maximum Braun&Blanquet

β Similarity σβ

1/2 Sokal&Sneath
1 Jaccard
2 Dice

It is easy to check that the values of the similarities σα and σβ are
in the interval [0; 1].

3 A new formulation of tree-based similarities

In the following, we denote by C = {c1, c2, . . . , cn} a finite set of
concepts. Formally, an ontology can be modeled by a directed graph
where the nodes represent concepts and the arcs represent labeled
relationships. Here, like often in the literature, we restrict ourselves
to the subsumption relationship “is-a” on C × C. This relationship is
common to every ontology, and different papers have confirmed that
it is the most structuring one (e.g., [18]). In this case, if we assume
that each concept ci has no more than one parent (direct subsumer),
the ontology can be modeled by a rooted tree T (C) where the root
c0 is either an informative concept or a “dummy” concept just added
for the connectivity. We denote by cij the most specific common
subsumer of the concepts ci and cj in T (C).

In this section, we adapt the definitions 1 and 2 above to define
new tree-based similarity families using the information content no-
tion [19]. We also propose different ways to compute the information
content of a concept which aims at better exploiting the hierarchy.
Moreover, we show how our framework support the rediscovering
of existing tree-based similarities. Our proposition allows to better
understand both the relationships between the set-based similarities
and the tree-based similarities and between the tree-based similarities
themselves.

3.1 Two new generic functions

Like Lin in his seminal paper [14], let us suppose that a concept
ci references a subset Ii of an instance set I. By analogy with the
Shannon’s information theory, the information content of the concept
ci is measured by ψ(ci) = − log P(ci) where P(ci) ∈ [0, 1] is the
probability for a generic instance of ci to belong to Ii. Similarly,
the common information associated with a concept pair {ci, cj} is

the information content ψ(cij) = − log P(cij) of their most specific
common subsumer cij .

Consequently, from the definitions 1 and 2, we deduce two new
parametrized functions which define tree-based similarities:

eσα (ci, cj) = efα (ψ(ci), ψ(cj), ψ(cij)) =
ψ(cij)

μα(ψ(ci),ψ(cj))
(3)

where μα is the Cauchy’s mean and α ∈ IR, and

eσβ (ci, cj) = efβ (ψ(ci), ψ(cj), ψ(cij))

=
β·ψ(cij)

ψ(ci)+ψ(cj)+(β−2)·ψ(cij)

(4)

where β ∈ IR∗
+

Let us remark that eσα (ci, cj) = eσβ (ci, cj) when α = 1 and
β = 2. The parameter α allows to choose different definitions of the
mean (e.g., arithmetic, geometric). Formulation 4 explicitely shows
that the parameter β allows to weight the importance of the common
information associated with the most specific common subsumer.
The logarithm base has no influence over this similarity measure due
to the use of a ratio.

3.2 Information content computation

Let us remark that in practice the instance set I is never completely
described in extension. Consequently, the operational computation
of the probability P (ci) depends both on the information at our dis-
posal and on the hypothesis carried through the construction of the
ontology. We denote by bP (ci) the approximation of P (ci) in prac-
tice.

The approximation bPr proposed by Resnik is computed by the for-
mula: bPr(ci) = n(ci)

n(c0)
where n(ci) is the number of occurrences of

ci plus the number of occurrences of the concepts which are sub-
sumed by ci in T (C). This approximation considers the root as vir-
tual (bPr(c0) = 1).

The probability P(ci) can be approximated without considering
any additional information. We propose some approximations de-
duced from various hypothesis on the extension of the concepts. We
distinguish three approaches associated with different hypothesis:

• descending approach

– Hypothesis 1: exponential decreasing of the instance number
with concept depth in T (C) (bPd)

– Hypothesis 2: uniform distribution of the father’s instances on
its sons (bPs)

• ascending approach

– Hypothesis 3: exponential increasing of the instance number
with concept height in T (C) (bPh)

– Hypothesis 4: uniform distribution of the root’s instances on
leaves (bPg)

• combined approach

– bPdh: aggregation of bPd and bPh

– bPsg: aggregation of bPs and bPg

3.2.1 Approximation ̂Pd (Hypothesis 1)

The probability for an instance to be associated with a concept ci

decreases exponentially with the depth di of ci in T (C). Then,

bPd(ci) =
bPd(parent (ci))

k
=

bP(c0)

kdi
(5)
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where k is a fixed integer and parent (ci) is the parent (direct sub-
sumer) of ci.

Let us remark that when the logarithm base is set to k, the in-
formation content of a concept ci is equivalent to its depth plus the
information content of the root:

ψd(ci) = − logk
bPd(ci) = di + ψ(c0) (6)

3.2.2 Approximation ̂Ps (Hypothesis 2)

We consider a uniform distribution of the instances of a father con-
cept on its son concepts :

bPs(ci) =
bPs(parent(ci))

|Children(parent(ci))| (7)

where Children (ci) corresponds to the set of sons of ci.
The information content (ψs) deduced from this approximation

corresponds to the specificity degree in comparison with the root ;
the depth takes into account a part of the information exploited by
this specificity degree. This approximation refines bPd by considering
the number of sons of each subsumer.

3.2.3 Approximation ̂Ph (Hypothesis 3)

Each leaf has the same instance number and the probability of an
instance to be associated with a concept ci increases exponentially
with the height of ci. A leaf concept has a minimal probability which
depends on the height of the hierarchy and on the instance number of
the root. We can approximate P(ci) by:

bPh(ci) =
bP(c0)

kh0−hi
(8)

In the particular case of a logarithm base equal to k, the informa-
tion content of a concept ci is defined by:

ψh(ci) = − logk
bPh(ci) = h0 − hi + ψ(c0) (9)

3.2.4 Approximation ̂Pg (Hypothesis 4)

We consider a uniform distribution of the instances of the root con-
cept on the leaf concepts:

bPg(ci) = bP(c0) · |Leaves(ci)|
|Leaves(c0)| (10)

where Leaves (ci) corresponds to the leaf set subsumed by ci (when
ci is a leaf, Leaves (ci) = {ci}).

This case is dual to the previous bPs case. Here, the information
content (ψg) deduced from this approximation corresponds to the
generality degree in comparison with the leaves ; the height takes
into account a part of the information exploited by this generality de-
gree. This approximation refines bPh by considering the number of
sons of the concept and its subsumed concepts.

3.2.5 Approximations ̂Psg and ̂Pdh

We consider an alternative which simultaneously take into account
the specificity and the generality degrees:

bPsg(ci) =
bPs(ci)+bPg(ci)

2
(11)

The definition of bPsg is based on the arithmetic mean of bPs andbPg . This choice is forced by the preservation of the recursivity:bPsg(ci) =
P

cx∈Children(ci)
bPsg(cx).

A dual case is the aggregation of bPd and bPh:

bPdh(ci) =
bPd(ci)+bPh(ci)

2
(12)

3.3 Similarity definitions deduced from the
approximations

In this subsection, we show that the generic functions eσα and eσβ

describe a set of semantic similarities (e.g., Lin, Wu & Palmer). We
show that, in some cases, the approximations of P (ci) coincide with
known measures of the literature.

3.3.1 Lin’s similarity

The Lin’s similarity [14] is analogous to the Dice’s coefficient with
the Resnik’s approximation:

lin(ci, cj) =
2·ψr(cij)

ψr(ci)+ψr(cj)
(13)

Due to the Resnik’s approximation, the root concept is considered
as virtual (bP(c0) = 1).

3.3.2 Wu & Palmer’s similarity

The Wu & Palmer’s similarity [28] is analogous to the Dice’s coeffi-
cient with the approximation bPd:

wup(ci, cj) =
2·ψd(cij)

ψd(ci)+ψd(cj)
(14)

3.3.3 Stojanovic’s similarity

The approximation bPd allows to rewrite the Stojanovic’s similarity
[26] which is analogous to the Jaccard’s coefficient:

sto(ci, cj) =
ψd(cij)

ψd(ci)+ψd(cj)−ψd(cij)
(15)

3.3.4 Proportion of Shared Specificity

The Proportion of Shared Specificity (pss) proposed by Blanchard et
al. [2] coincides with the Dice’s coefficient with the bPs approxima-
tion:

pss(ci, cj) =
2·ψs(cij)

ψs(ci)+ψs(cj)
(16)

4 Metrical and ordinal properties

Most of the work on the mathematical properties of the similarities
are focused on their metrical aspect [18]. They usually resort to pre-
liminary transformations of the similarity into a dissimilarity of the
form δ = Maxσ −σ, where Maxσ is the maximal value reached by
σ, or δ = 1

σ
when Maxσ is not finite, in order to check the triangular

inequality δ (ci, cj) ≤ δ (ci, ck) + δ (ck, cj).
Here, Maxσα = Maxσβ = 1 and we can consider the transfor-

mations δα = 1 − σα and δβ = 1 − σβ . By studying the set-based
similarities, Caillez et al. [6] and Gower et al. [10] have proved that
the triangular inequality holds for α → +∞ and β ∈ [0, 1].

From a formal point of view, these questions are interesting; how-
ever, for practical applications in knowledge engineering, the devel-
oped approaches do not generally require this constraining property.
When comparing results with different similarities, we can remark
that specialists are more often concerned with the ordering associ-
ated with the obtained values than with the intrinsic values. Indeed,
they order the concept pairs according to the proximities quantified
by these measures.
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Proposition 1. The similarities of the family {eσβ}β∈IR∗
+

fol-

low the same ordering: for any ci, cj , ck, cl in C, eσβ (ci, cj) ≤eσβ (ck, cl) ⇔ eσβ′ (ci, cj) ≤ eσβ′ (ck, cl) for any β and β′ ∈ IR∗
+.

We show that eσβ (ci, cj) ≤ eσβ (ck, cl) ⇐⇒ eσ1 (ci, cj)
≤ eσ1 (ck, cl) for any β ∈ IR∗

+. When ψ(ci)+ψ(cj)−2 ·ψ(cij) = 0
then, eσ1(ci, cj) = eσβ(ci, cj) for any β > 0. Otherwise, it is easy to
check that, for ψ(ci) + ψ(cj) − 2 · ψ(cij) �= 0,

eσβ(ci, cj) =
β·eσ1(ci,cj)

1+(β−1)·eσ1(ci,cj)

Consequently, eσ1(ci, cj) ≥ eσ1(ck, cl) ⇐⇒ eσβ(ci, cj) ≥eσβ(ck, cl).

Proposition 2. The similarities of the family {eσα}α∈IR do not
follow the same ordering.

Let us consider the following counter-example on a set C =
{c1, c2, c3, c4}. We suppose that c1 is a subsumer of c2, and that
ψ(c1) = 1, ψ(c2) = 3, ψ(c3) = ψ(c4) = 2 and ψ(c34) = 2. In this
case, the Cauchy’s means are μα (ψ(c1), ψ(c2)) = ((1 + 3α)/2)

1
α

and μα (ψ(c3), ψ(c4)) = 2. Due to the convexity of the power func-
tion when α > 1, then μα(ψ(c1), ψ(c2)) > μα(ψ(c3), ψ(c4)) and
consequently eσα(c1, c2) < eσα(c3, c4). When α < 1, the inequality
is inverted.

Proposition 3. The similarities of the family {eσα}α∈IR are de-
creasing functions of α.

This is due to the fact that the α-means are increasing functions of
α (e.g., [5]).

5 Experimental results

In this section, we present two complementary comparisons based
on the subsumption hierarchy of WordNet 2.0 [8]. First, we com-
pare the information content restricted to the structural informa-
tion with the well-known Resnik’s information content which ad-
ditionally requires a corpus. This allows us to quantify the infor-
mation deduced from the corpus. Second, we use three well-known
benchmarks (Rubenstein & Goodenough [22], Miller & Charles [16],
Finkelstein et al. [9]) which gather human judgments on some con-
cept pairs. This allowed us to evaluate the relevance of the different
approximations.

5.1 Comparison on WordNet

This subsection presents a comparison between the information con-
tent based on different approximations. We restrict ourselves to
nouns and to the subsumption hierarchy (hyperonymy/hyponymy) of
WordNet. This hierarchy which contains 146690 nodes constitutes
the backbone of the noun subnetwork accounting for close to 80%
of the links [3]. The computations have been performed with the
Perl modules of Pedersen et al. [17] which allowed us to adapt tree-
based measures to the WordNet structure. Hence, although a synset
could have more than one hyperonym, we have represented it as a
tree model TWordNet (C). We have also added some Perl modules
to take into account all the new approximations presented in this pa-
per. The main interest of TWordNet (C) is to be large enough to al-
low computations of robust statistics and we do not enter here into

the discussion between experts concerning the ontological nature of
WordNet.

We have computed the information content for four different con-
cept sets: the whole set of WordNet (146690 concepts) and three
subsets of WordNet composed of the concept sets used respectively
in the Miller & Charles [16], Rubenstein & Goodenough [22] and
Finkelstein & Gabrilovich [9] benchmarks. We have compared the
approximations bPd, bPg and bPr . The correlations ρ (ψd, ψr) and
ρ (ψg, ψr) are reported in the figure 1 (the rank correlations not re-
ported here give similar results).

Figure 1. Correlation of ψd and ψg information content with the one of
Resnik ψr on WordNet concepts and four subsets

The approximation bPr which is a yardstick has been computed
with the British National Corpus with the Resnik counting method
and a smoothing by 1 [17].

We can remark that each benchmark uses a sample of concepts
which is not so representative of the whole set of concepts. Indeed,
the corpus effect on the information content is more important on the
whole set than on the three samples. From this point of view, the one
of Finkelstein & Gabrilovich is the worse benchmark.

Unsurprisingly, the information content based on the approxima-
tion bPd is the less correlated with bPr . However, the positive corre-
lations show the relationship between the ascending and descending
approximations: the depth tends to be conversely proportional to the
height.

The correlations between ψg and ψr show that the information
quantity deduced from the corpus is restricted comparatively to the
information deduced from the hierarchical structure. Nevertheless,
these results depend on the corpus and the structure of WordNet.
That’s why further work is required to generalize this conclusion to
a large set of ontologies.

5.2 Comparisons with human judgments

As showed in section 3.1, two components are essential when com-
paring two concepts ci and cj : the shared information content
(ψ∩(ci, cj) = ψ(cij)) and the distinguishing information content
(ψ�(ci, cj) = ψ(ci) + ψ(cj)− 2 ·ψ(cij)). To measure the specific
influence of these two components we have computed the correla-
tion of each of them with the human judgment. The considered hu-
man judgment evaluations are taken from the Miller & Charles [16],
Rubenstein & Goodenough [22], Finkelstein & Gabrilovich [9] ex-
periments and the approximation of P is the Resnik’s approximation.
The results (figure 2) closely depend on the test sets.

The contribution of ψ�
r is more important than the one of ψ∩

r for
the benchmarks of Miller & Charles and Rubenstein & Goodenough
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Figure 2. Contribution of ψ∩ and
ψ� with bPr to simulate human

judgment

Figure 3. Contribution of ψ∩ and
ψ� with bPg to simulate human

judgment

contrary to the Finkelstein & Gabrilovich benchmark. This tend to
express the variability of human sensibility which can be due to the
evaluation process of the three benchmarks.

Moreover the previous experiments have shown that bPg seems to
be the more efficient (better correlated with human judgments) ap-
proximation comparing to the Resnik’s approximation which uses a
corpus. Hence, we have computed the correlations of the two compo-
nents ψ∩ and ψ� with the human judgment with bPg (figure 3). The
results are very similar to those obtained with the Resnik’s approxi-
mation. This tend to suppose that the information deduced from the
corpus contain as much information as noise.

6 Conclusion

The concept of similarity is fundamental in numerous fields (e.g.,
classification, AI, psychology, ...). At the origin, the definitions are
often built to fulfill precise objectives in specific domains. However,
several measures (e.g., [12, 7]) have shown their relevance to very
different applications. Nowdays similarities know a significant re-
newed interest associated with the expansion of the ontologies in
knowledge engineering. In this framework, the most often used mea-
sures to quantify proximities between concept pairs are tree-based
similarities whose definitions may integrate or not additional infor-
mation from a textual corpus. In practice, the choice of a similarity is
a critical step since the results of the algorithms often closely depend
on this choice.

In this paper, we have built a new theoretical framework which al-
lows to rewrite homogeneously numerous similarity functions used
in knowledge engineering. We believe that such an approach, in the
spirit of the pioneer work of Lin, is important for two major rea-
sons. First, this rewriting highlights relationships both semantically
and structurally between a large set of measures which have been
originally defined for very different purposes. And, it has allowed to
deduce mathematical properties. Second, it can guide the proposition
of new measures by making explicit the information on the ontology
which has not been integrated into the definitions yet. In this way, we
have here proposed new approximations which allow to better ex-
ploit the information associated with the hierarchical structure of the
ontology.

We have also restricted ourselves to similarities for subsumption
hierarchies without multiple inheritance. We have started to extend
our approach to subsumption hierarchy with multiple inheritance.
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