
Chronicles for On-line Diagnosis of Distributed Systems
Xavier Le Guillou and Marie-Odile Cordier and Sophie Robin and Laurence Rozé 1

Abstract. The formalism of chronicles has been proposed to moni-
tor and diagnose dynamic physical systems. Even if efficient chroni-
cle recognition algorithms exist, it is now well-known that distributed
approaches are better suited to monitor real systems. In this article,
we adapt the chronicle-based approach to a distributed context and
illustrate this work on the monitoring of software components.

1 Introduction

Monitoring and diagnosing dynamic systems have become very ac-
tive topics in research and development for a few years. Besides con-
tinuous models based on differential equations, essentially used in
control theory and discrete event systems based on finite state ma-
chines (automata, Petri nets, . . .), a formalism commonly used for
on-line monitoring, in particular by people from the artificial intelli-
gence community, is the one of chronicles. This formalism, proposed
in [10], has been widely used and extended [7, 9, 6]. A chronicle de-
scribes a situation that is worth identifying within the diagnosis con-
text. It is made up of a set of events and temporal constraints between
those events. As a consequence, this formalism fits particularly well
problems that consider a temporal dimension. The set of interesting
chronicles constitutes the base of chronicles. Then, monitoring the
system consists in analyzing flows of events, and recognizing on fly
patterns described by the base of chronicles. Efficient algorithms ex-
ist and this approach has been used for industrial applications as well
as medical ones [7, 14, 2].

One of the key issues of model-based approaches for on-line moni-
toring is the size of the model which is generally too large when deal-
ing with real applications. Distributed or decentralized approaches
have been proposed to cope with this problem, like [5, 8, 1, 13]. The
idea is to consider the system as a set of interacting components in-
stead of a single entity. The behavior of the system is thus described
by a set of local component models and by the synchronization con-
straints between the component models.

Considering chronicle-based approaches, to our knowledge, no
distributed approaches exist and the contribution of this paper con-
sists in adapting the chronicle-based approach to distributed systems.

This work has been motivated by an application that aims at mon-
itoring the behavior of software components, and more precisely of
web services within the context of the WS-DIAMOND (Web Ser-
vice DIAgnosability, MONitoring and Diagnosis) European project.
In this context, a request is sent to a web service which collaborates
with other services to provide the adequate reply. Faults may prop-
agate from one service to another and diagnosing them is a crucial
issue, in order to react properly. We use a simplified example of an
e-foodshop to illustrate our proposal.

We first recall the principles of the chronicle recognition approach
and give basic definitions in section 2. We introduce in section 3 the

1 Irisa – Université de Rennes 1, France, email: xleguill@irisa.fr

simplified example that will be used all along this paper. In section 4,
we show how to extend the chronicle-based approach to distributed
systems. We first describe the architecture of a chronicle-based dis-
tributed system (4.1). Then we extend the chronicle formalism to deal
with synchronization constraints (4.2). We describe in 4.3 a push-
pull algorithm able to compute a global diagnosis from the local di-
agnoses, computed by locally distributed chronicle recognition sys-
tems, checking the synchronization constraints. After an illustrative
example in 4.4, we compare our proposal to related work in section 5
and conclude in section 6.

2 Chronicle recognition approach

The chronicle recognition approach (first introduced in [10]) relies
on a set of patterns, named chronicles, which constitutes the chron-
icle base. Let us recall the formalism and the chronicle recognition
algorithm.

2.1 Formalism of chronicles

A chronicle is a set of observable events which are time-constrained
and is characteristic of a situation.
An event type defines what is observed within the system, for
instance the name of an activity act, the name augmented with
the fact that the activity is starting (namely act−) or ending
(namely act+), the name enriched with observable parameters
act(?var1, . . . , ?varn) or a combination of those possibilities. E de-
notes the set of possible event types. An event is a pair (e, ?t) where
e ∈ E is an event type and ?t the occurrence date of the event.
A chronicle (model) C is a pair (S ,T) where S is a set of events and
T a set of constraints between their occurrence dates. When its vari-
ables and its occurrence dates are instantiated, a chronicle is called a
chronicle instance.

2.2 Chronicle recognition

A chronicle recognition tool, called CRS (Chronicle Recognition
System), has been developed by C. Dousson2. It is in charge of an-
alyzing the input stream of events and of identifying, on the fly, any
pattern matching a situation described by a chronicle. Chronicles are
compiled into temporal constraint networks which are processed by
efficient graph algorithms. CRS is based on a complete forecast of
the possible dates for each event that has not occurred yet. This set
(called temporal window) is reduced by propagation of the dates of
observed events through the temporal constraint network. When a
new event arrives in the input stream, new instances of chronicles
are generated in the set of hypotheses, which is managed as a tree.

2 http://crs.elibel.tm.fr/

ECAI 2008
M. Ghallab et al. (Eds.)

IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-891-5-194

194

Instances are discarded as soon as possible, when constraints are vi-
olated or when temporal windows become empty.

a b
[1,3] Chronicle model

time(a,1) (a,3) (b,5)

(a,1) b,[2,4] (a,1) b,[3,4] - Discarded -

b,[4,6](a,3) (a,3) b,[5,6]

(a,3) (b,5)

I2

I1

I3

Figure 1. Principle of chronicle recognition

Figure 1 shows the principle of the recognition algorithm on a
very simple example: a single chronicle model is defined, containing
only two events: (a, ?ta) and (b, ?tb), with ?ta + 1 ≤?tb ≤?ta + 3.
When event (a, 1) is received, instance I1 is created, which updates
the temporal window of the related node b. When a new event (a, 3)
occurs, a new instance I2 is created and the forthcoming temporal
window of I1 is updated. When event (b, 5) is received, instance I3
is created (from I2) and I1 is destroyed as no more event (b, ?tb)
could match the temporal constraints from now on. Instance I2 is
still waiting for another potential event (b, ?tb) before ?tb > 6. As
all the events of I3 are instantiated, this instance is recognized.

3 Motivating example

To illustrate the ideas developed in this paper, we consider an orches-
tration of three web services, a shop, a supplier and a warehouse, that
provide e-shopping capabilities to users. This application keeps the
essential properties of the applications we aim to monitor. In particu-
lar, we consider closed environments, where a workflow-like descrip-
tion of each web service (Figures 2 and 3) involved in the processing
of the request is supposed to be available.

A customer wants to place an order and selects items on the shop.
This list of items is transferred to a supplier which sends a reservation
request to a warehouse, for each item of the list. The warehouse re-
turns an acknowledgement to the supplier for each item request and,
at the end of the item list, the supplier sends a list of the available
items to the shop which forwards it to the customer. The customer
agreement terminates the process.

[ok] [cancel]

?SHOPlistOut

?SHOPlistIn

dataErr

timeout

ReceiveOrder

ChkNReserve

SendBill

ReceiveConfirm

ForwardOrder CancelOrder

Figure 2. Workflow of the SHOP service

Faults may happen during this process. Figure 2 shows two of
them (represented by pentagons), related with the shop. First, when

[next]

[end]

Available?
[no]

[yes]

?SUPPlistOut

?SUPPlistIn

?SUPPitemOut

?SUPPitemIn

timeout

Available?
[yes]

[no]

?WHitemIn

?WHitemOut

stockErr

hardErr

Figure 3. Simplified workflows of the SUPP and the WH

placing his order, the customer may make a data acquisition error,
which may result in unexpected items on his reservation list. Then, a
timeout may occur when calling the supplier.

We consider that only timeouts may occur on the supplier (Fig-
ure 3), when calling the warehouse. On the warehouse, things are
more complicated. First, an item may be out of stock, resulting in
an incomplete reservation list. Then, an internal error may happen,
resulting in a denial of service.

Figure 4 presents two processes that may result in the same obser-
vation on the shop, i.e. a cancellation of the order due to an incorrect
reservation list: (a) a data acquisition error, ordering “eggs and teak”
instead of “eggs and tea”, for instance, and (b) a stock error happen-
ing on the warehouse. Here, we notice that two distinct errors that
happen on two distinct services can result in the same local prob-
lem, hence the necessity of diagnosing the system globally in order
to repair in an adequate way.

SHOP SUPP WH

{eggs}

avail

{teak}

avail

{eggs,teak}

(a)

SHOP SUPP WH

{eggs}

avail

{tea}

notAvail

{eggs}

(b)

{eggs,teak} {eggs,tea}

Figure 4. Two scenarii that may result in a cancelled order

4 Extension to distributed environments

Diagnosing distributed systems thanks to chronicles requires to de-
fine a modular diagnosis architecture capable of merging diagnoses
provided by local chronicle-based diagnosers and to enrich the
chronicle formalism with synchronization constraints.

4.1 Architecture

Figure 5 summarizes our chronicle-based approach architecture. This
decentralized system is composed of a global diagnoser (or broker)
in charge of merging the local diagnoses sent by each service and
sending global diagnoses to a repair module. Services are composed
of the web service itself, logs generated in real time by the web ser-
vice, a base of chronicles generated off-line, a local diagnoser that
uses the logs to instantiate chronicles from the base.

X. Le Guillou et al. / Chronicles for On-Line Diagnosis of Distributed Systems 195

Broker
(global diagnoser)

Local diagnoser 1

logs 1 base of chronicles 1

...

Web service 1

Local diagnoser 2

logs 2 base of chronicles 2

Web service 2

...

Figure 5. General architecture of a distributed system

4.2 Extension of the formalism of chronicles

As a fault occurring on a service often propagates to other services,
we base our approach on the merging of local diagnoses. As a conse-
quence, we enrich the initial formalism of chronicles with synchro-
nization constraints that allow the broker to spot homologous chron-
icles and merge them.

4.2.1 Synchronization point

Before defining a distributed chronicle, let us firstly define what is a
synchronization point.
The status of a variable is a Boolean that denotes if the value of
a chronicle variable is normal (¬err) or abnormal (err) in a given
execution case. A synchronization variable is a pair (?var, status)
where ?var is a (non temporal) chronicle variable and status the
status of this variable inside a given chronicle model.
A synchronization point is a tuple (e, {vars}, servtype) where e

is an event type, {vars} a set of synchronization variables linked
with this event type and servtype a type of remote service the local
service communicates with. An instance of a synchronization point
is a synchronization point in which variables are instantiated, and
servtype is instantiated as the effective address of the remote service.
A synchronization point is incoming if it corresponds to a
servremote → servlocal communication, outgoing for the contrary
(see example chronicle in section 4.2.2).

Referring to Figure 2 and section 3, here is one of the two synchro-
nization points on the SHOP, which is instantiated as follows, in the
execution case of an external error (see Figure 7):
(ChkNReserve+, {(?SHOPlistIn, err)}, SUPP).

It expresses the fact that the error is coming from the supplier,
through the ?SHOPlistIn variable, which is received by the SHOP at
the end of the ChkNReserve activity.

4.2.2 Distributed chronicle

A distributed chronicle is a classical chronicle enriched with a
“color” and a “synchronization” part, so that we can merge it with
chronicles from adjacent services.
The color of a chronicle K represents the degree of importance of a
chronicle and its capacity to trigger a global diagnosis process. Two
colors are used: red for faults that may trigger the broker and green

for normal behaviors and non critical faults.
Distributed chronicle: a distributed chronicle is a tuple CD =
(S ,T ,O, I,K) where S is a set of events, T a graph of constraints
between their occurrence dates, O and I are respectively two sets of
outgoing and incoming synchronization points, and K is the color of
the chronicle.

Let us consider the chronicle describing the external error case. We
have the distributed chronicle model CD = (S ,T ,O, I,K):
S = { (ReceiveOrder−(), ?t1),

(ChkNReserve−(?SHOPlistOut), ?t2),
(ChkNReserve+(?SHOPlistIn), ?t3),
(SendBill+(), ?t4),
(ReceiveConfirm+(), ?t5),
(ForwardOrder+(), ?t6)

}

T = {?t1 <?t2, ?t2 <?t3, ?t3 <?t4, ?t4 <?t5 <?t6}
O = {(ChkNReserve−, {(?SHOPlistOut,¬err)}, SUPP)}
I = {(ChkNReserve+, {(?SHOPlistIn, err)}, SUPP)}
K = red

This chronicle triggers the broker, hence its red color. Having
defined chronicles for each behavior of each service taking part in
the foodshop orchestration, we have the tables shown in Figure 7, in
which we only give the synchronization part of the chronicles. red

chronicles are written in bold case.

4.3 Algorithms

Our approach consists in merging local chronicles in order to com-
pute a set of candidate global diagnoses. This set of diagnoses is rep-
resented by a diagnosis tree as explained in section 4.3.2. There are
two steps in the global diagnosis process (Figure 6). In a first step,
at “push” time, local diagnosers send recognized chronicles to the
broker, which triggers the global diagnosis process. In a second step,
at “pull” time, i.e. when the global diagnoser needs information, it
queries local diagnosers about their chronicles recognized previously
or in future. This push-pull mechanism is implemented through a fil-
ter as explained below.

logs base of chronicles

Chronicle filter

Instances of applicant
chronicles (CRS)

integration

push pull

Global diagnoser

Diagnosis tree

grafting

push pull

(a) (b)

Figure 6. Operation of the (a) local and (b) global diagnosers

4.3.1 Local diagnosis and filtering

The computation of the local diagnosis relies on a CRS module fed
by the logs of the web service and sending its recognized chronicles
to the global diagnoser (Figure 6.(a)).

In order to avoid sending useless chronicles, a filter M is set for
each running process. In filter mode, only red recognized chroni-
cles are sent to the global diagnoser. Green chronicles are stored in
a chronicle buffer Cbuf . Nevertheless, at “pull” time, the global di-
agnoser can change M from filter to open, which flushes Cbuf in
order to provide the global diagnoser with all the available informa-
tion. In open mode, both red or green newly recognized chronicles
will be directly sent to the global diagnoser. Algorithm 1 illustrates
this operation.

X. Le Guillou et al. / Chronicles for On-Line Diagnosis of Distributed Systems196

init: mode M := filter, chronicle set Cbuf := ∅;
on event chronicle c recognized do

if (M = filter ∧ c.color = red) ∨M = open then
Broker.push(c);

else
Cbuf := Cbuf ∪ {c};

end
end
on event LocalDiagnoser.pull() do

foreach c ∈ Cbuf do Broker.push(c);
Cbuf := ∅, M := open;

end
Algorithm 1: Local diagnoser management

4.3.2 Global diagnoser algorithm

The global diagnoser algorithm relies on a diagnosis tree Dt in
charge of treasuring all the candidate diagnoses under the shape of
partially recognized global chronicles (Figure 6.(b)). Each candidate
diagnosis is represented by a path leading to a constraintless node in
Dt. The global diagnoser algorithm (Algorithm 2) manages this tree
and queries local diagnosers in order to make it grow and complete
the pending paths.

The initial diagnosis tree only contains the emptynode which,
being constraintless, is compatible with any recognized chronicle.
When a recognized chronicle c is sent by a service s to the global
diagnoser, two operations are performed. First,Dt is traversed, trying
to combine each node n with c thanks to the status of corresponding
variables. In case of a compatibility between n and c, a child node
containing c and the synchronization constraints that remain to check
is grafted under n in Dt. Then, the global diagnoser changes to open

the mode of all the services mentioned in c in order to collect all the
information needed for a global diagnosis (Algorithm 2).

init: diagnosis tree Dt := emptynode;
on event Broker.push(chronicle c) do

foreach node n of Dt do
if c compatible with n then

n.addChild(c);
end

end
foreach service s mentioned in c do

s.LocalDiagnoser.pull();
end

end
Algorithm 2: Global diagnoser management

When a candidate diagnosis (i.e. a constraintless node) is com-
puted in Dt, the broker forwards it to an external repair module and
proceeds with the exhibition of other candidate diagnoses.

4.4 Illustration on the example

We consider a customer placing an order on the SHOP, order which
is forwarded to the SUPPlier. For each product of the item list, the
SUPP calls the WareHouse so as to book the corresponding product.
Unfortunately, a product is missing which provokes the recognition
of the WH:stockErr chronicle, the color of which is green, because
the WH doesn’t consider being out of stock as an error. The broker is
not triggered and the execution goes on. But when the SUPP receives
the negative answer of the WH, the red chronicle SUPP:extErr is

recognized and the SUPP “pushes” this chronicle towards the bro-
ker, triggering a global diagnosis process while the service execution
goes on.

SHOP ?listOut ?listIn
normal ¬err ¬err

dataErr err err
extErr ¬err err
timeout ¬err undef

SUPP ?listIn ?itemOut ?itemIn ?listOut
normal ¬err ¬err ¬err ¬err
fwdErr err err err err
extErr ¬err ¬err err err
timeout ¬err ¬err undef undef

WH ?itemIn ?itemOut
normal ¬err ¬err
fwdErr err err

stockErr ¬err err
hardErr ¬err undef

Figure 7. Chronicles of the three web services

Dt only contains the empty root node, at this point. This node
is compatible with the constraints of SUPP:extErr, listed in Figure7,
and a new node containing SUPP:extErr and its constraints is grafted
under the root node. After this, the broker changes to open the mode
of WH, “pulling” the previously recognized WH:stockErr chronicle
towards it.

Dt now contains two nodes. WH:stockErr is compatible with the
empty root node, which results in the grafting of a child node under
the root, containing WH:stockErr and its constraints. WH:stockErr
is also compatible with SUPP:extErr, as the homologous variables
have the same status: ?SUPPitemOut and ?WHitemIn are
¬err, ?SUPPitemIn and ?WHitemOut are err. This way, a
child node is grafted under SUPP:extErr, containing WH:stockErr
and the remaining unchecked constraints (Figure 8).

The “pulling” process goes on, interrogating the SHOP and wait-
ing for its recognized chronicles. At the end of the orchestra-
tion execution, Dt exhibits a single constraintless node, which is
then the unique candidate diagnosis: SHOP:extErr, SUPP:extErr,
WH:stockErr.

WH:stockErr

?WH:itemIn(notErr)
?WH:itemOut(err)

WH:stockErr+SUPP:extErr

?SUPP:listIn(notErr)
?SUPP:listOut(err)

SUPP:extErr

?SUPP:listIn(notErr)
?SUPP:itemOut(notErr)

?SUPP:itemIn(err)
?SUPP:listOut(err)

[]

Figure 8. Intermediate diagnosis tree

4.5 A word about complexity

Let us consider the complexity of such an approach. On the local
side, the complexity only depends on CRS, which has already been
successfully used in large scale systems. Some basic rules about

X. Le Guillou et al. / Chronicles for On-Line Diagnosis of Distributed Systems 197

chronicle writing allow to optimize the use of CRS: PID filtering
avoids the recognition of useless cross-process chronicles, delays in
chronicle models flush chronicle instances automatically, etc.

On the broker side, the size of the tree only depends on the number
of chronicles recognized on each service, hence a need for discrimi-
nating and exclusive chronicles. In the worst case, considering all the
chronicles are compatible, we demonstrate that the maximum num-
ber of nodes in Dt is

nmax =
Y

s∈S

(|Cs| + 1)

with S the set of implied services and Cs the set of chronicles recog-
nized on s.

5 Related work and discussion

Within the context of the supervision of dynamic systems, many ap-
proaches use the formalism of chronicles [2, 7, 9, 6, 15] but few deal
with using chronicles in a distributed context.

The way we approach the problem of monitoring dynamic systems
from a distributed chronicle-based modeling of the system may be
compared with distributed approaches of monitoring discrete-event
systems, such as [1, 5, 16, 13]. In each of those works, local diag-
noses computed by the different components of the system are syn-
chronized in order to compute a diagnosis taking into account the
constraints between components. For instance, the approach of [1]
is not so far away from ours, as it fits parts together to build the
system diagnosis, like in a puzzle. Those parts, called tiles, are la-
belled by alarms and represent pieces of trajectories. The main dif-
ference between the two approaches, apart from the Petri-net-based
formalism they use, is that the architecture they adopted is fully dis-
tributed, without supervisor. In our decentralized case, a supervisor
is in charge of fitting local chronicles together after having synchro-
nized them, which results in the computation of a global chronicle,
aiming at taking a repair decision.

Concerning the monitoring of software components and more pre-
cisely web services, we can cite among others [11, 3, 4, 12]. The au-
thors of [4] are interested in checking on line the consistency between
what a web service should do, called a contract, and its effective exe-
cution. Contracts are expressed in a constraint-oriented language, and
integrated into the web services files under the shape of annotations.
Then, monitors, implemented as web services, observe the behavior
of the web services and are capable of detecting timeout problems
or functional errors. In [3], the decentralized architecture is close to
ours. Each web service is equipped with a local diagnoser generating
hypotheses that are consistent with the local model and the observa-
tions. A supervisor merges local diagnoses to compute a global one,
by propagating hypotheses from a local diagnoser to its neighbors.
The main difference is that they rely on a static diagnosis approach:
using dependencies between state variables, their approach consists
in explaining the alarms that have arisen at a given time. In our case,
we monitor the behavior of the components as it evolves.

6 Conclusion

Our contribution in this paper is to propose a distributed chronicle-
based monitoring and diagnosis approach. Even if it is now recog-
nized that distributed approaches are the only realistic way to mon-
itor large-scale systems, no work exists, to our knowledge, as far as
chronicle-based approaches are concerned. We propose a distributed
architecture in which a broker service is in charge of synchroniz-
ing the local diagnoses computed from chronicles at the component

level. We extend the formalism of chronicles and introduce synchro-
nization points that express the synchronization constraints which
are checked by the broker according to a push-pull mechanism. We
describe the main algorithms and illustrate them on a simplified e-
shopping example. A platform has been developed and allows us to
make experiments in the framework of the WS-DIAMOND European
project, dedicated to the monitoring of software components.

The main perspectives are twofold. The first one is to couple the
diagnosis service with a repair service, the goal being to ensure a
good QoS, even in case of fault occurrences. The second one is to
build acquisition tools to help building the set of local chronicles,
starting from workflow descriptions. A first step in this direction can
be found in [17].

REFERENCES
[1] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and C. Jard,

‘Fault detection and diagnosis in distributed systems : an approach by
partially stochastic petri nets’, Discrete Event Dynamic Systems, 8(2),
203–231, (1998).

[2] J. Aguilar, K. Bousson, C. Dousson, M. Ghallab, A. Guasch, R. Milne,
C. Nicol, J. Quevedo, and L. Travé-Massuyès, ‘Tiger: real-time situa-
tion assessment of dynamic systems’, Technical report, (1994).

[3] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan,
and D. Theseider Dupré, ‘Cooperative model-based diagnosis of web
services’, in Proceedings of DX05, International Workshop on the Prin-
ciples of Diagnosis, Pacific Grove, California, (2005).

[4] L. Baresi, C. Ghezzi, and S. Guinea, ‘Smart monitors for composed
services’, in Proc. of the 2nd Int. Conf. on Service-Oriented Computing
(ICSOC’04), pp. 193–202, (2004).

[5] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, ‘Diagnosis of a
class of distributed discrete-event systems’, IEEE Transactions on sys-
tems, man, and cybernetics, 30(6), 731–752, (2000).

[6] M.-O. Cordier and C. Dousson, ‘Alarm driven monitoring based on
chronicles’, in Proc. of Safeprocess’2000, pp. 286–291, (2000).

[7] M.-O. Cordier, J.-P. Krivine, P. Laborie, and S. Thiébaux, ‘Alarm pro-
cessing and reconfiguration in power distribution systems’, in Proc. of
IEA-AIE’98, pp. 230–240, (1998).

[8] R. Debouk, S. Lafortune, and D. Teneketzis, ‘Coordinated decentral-
ized protocols for failure diagnosis of discrete event systems’, Discrete
Event Dynamic Systems, 10(1-2), 33–86, (2000).

[9] M. Dojat, N. Ramaux, and D. Fontaine, ‘Scenario recognition for
temporal reasoning in medical domains.’, Artificial Intelligence in
Medicine, 14(1-2), 139–155, (1998).

[10] C. Dousson, P. Gaborit, and M. Ghallab, ‘Situation recognition: repre-
sentation and algorithms’, in Proc. of the Int. Joint Conf. on Artificial
Intelligence (IJCAI’93), pp. 166–172, (1993).

[11] I. Grosclaude, ‘Model-based monitoring of component-based software
systems’, in Proc. of the 15th Int. Workshop on Principles of Diagnosis
(DX’04), pp. 51–56, (2004).

[12] A. Lazovik, M. Aiello, and M. Papazoglou, ‘Planning and monitoring
the execution of web service requests’, in Proc. of the 1st Int. Conf.
on Service-Oriented Computing (ICSOC’03), volume 2910 of Lecture
Notes in Computer Science, pp. 335–350, (2003).

[13] Y. Pencolé and M.-O. Cordier, ‘A formal framework for the decen-
tralised diagnosis of large scale discrete event systems and its appli-
cation to telecommunication networks’, Artificial Intelligence Journal,
164(1-2), 121–170, (2005).

[14] Y. Pencolé, M.-O. Cordier, and L. Rozé, ‘Incremental decentralized di-
agnosis approach for the supervision of a telecommunication network.’,
in IEEE Conf. on Decision and Control (CDC’02), (2002).

[15] R. Quiniou, M.-O. Cordier, G. Carrault, and F. Wang, ‘Application of
ilp to cardiac arrhythmia characterization for chronicle recognition’, in
ILP’2001, volume 2157 of LNAI, pp. 220–227, (2001).

[16] N. Roos, A. Teije, A. Bos, and C. Witteveen, ‘An analysis of multi-
agent diagnosis’, in Proc. of the 1st Int. Joint Conf. on Autonomous
Agents and MultiAgent Systems (AAMAS’02), (2002).

[17] Y. Yan, Y. Pencolé, M.-O. Cordier, and A. Grastien, ‘Monitoring web
service networks in a model-based approach’, in 3rd European Conf.
on Web Services (ECOWS), (2005).

X. Le Guillou et al. / Chronicles for On-Line Diagnosis of Distributed Systems198

