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Abstract. Model-based diagnosis of discrete event systems (DESs)
is more and more active in artificial intelligence. However, there has
been always a very restrictive assumption in the previous works that
the model of a given DES is complete, including all nominal behav-
iors and all possible failure behaviors of the system. In order to relax
this so restrictive assumption, in this paper, model-based diagnosis
of a DES with an incomplete system model is investigated. A new
concept of “P-synchronization product” of finite state automata is
proposed, by which the P-diagnosis of the DES with an incomplete
system model is easily put forward. It is also shown that the tradi-
tional synchronization product of finite state automata can be seen as
a special situation of P-synchronization product. In addition, an ideal
heuristic way from theoretical view to improve the P-synchronization
product is discussed as well.

1 Introduction

Model-based diagnosis is one of the active branches of artificial in-
telligence. Since a formalization of model-based diagnosis with first-
order logic given by R. Reiter [26], it has been widely studied. Ear-
lier, static systems were studied by researchers (e.g. [13, 12, 33, 25],
etc.), and then researches on dynamic systems have begun since
the last decade (see [6, 16, 22, 31], etc.). Especially, model-based
diagnosis of DESs has arisen increasing interests, as DESs cover
continuous-variable systems which, after quantization, are repre-
sented as discrete systems [21] for the purpose of diagnosis at a
higher level of abstraction, as well as “discrete by nature” systems.

This domain is more and more active since the seminal work of
[29, 30], which has been the basis not only for subsequent contri-
butions in the control engineering field [14], but also for further re-
search in artificial intelligence [27]. A number of model-based ap-
proaches for diagnosing DESs have been proposed in both fields
literature. And they have been widely applied, particularly in large
scale telecommunication networks in [9, 24, 28] and power trans-
mission networks in [1, 4, 17, 18, 19, 20].

Model-based diagnosis of DESs consists in finding what happened
to the system from existing observations. A diagnosis is defined as
the set of trajectories consistent with the observations. There have
been different terminologies used as histories [1], narratives [2], con-
sistent paths [5], trajectories [10] or scenarios [11]. In this paper, we
mainly concern the diagnosis of DESs [3] where the system behavior
is modeled by automata. Then a usual formal way of representing the
diagnosis problem is to express it as the synchronized product of the
system model automaton and an observation automaton.
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However, there has been always an assumption in the previ-
ous works that the model of the given DES is complete, including
all nominal behaviors and all possible failure behaviors. Generally
speaking, the assumption is very restrictive, as it is difficult to be as-
sured that the model is complete practically. Also inspired from the
paper [7], which copes with an incomplete system model for static di-
agnosis, in this paper, we mainly concern model-based diagnosis of
a DES with an incomplete system model similarly. A novel concept
of “P-synchronization product” of finite state automata is proposed,
by which the diagnosis of the DES with an incomplete system model
is easily presented. It is also shown that the traditional synchroniza-
tion product can be seen as a special situation of P-synchronization
product.

This paper is organized as follows: Some preliminary knowledge
about model-based diagnosis of DESs is introduced in the second
section. The concepts of P-synchronization product and P-diagnosis
are proposed in section three. Section four presents a heuristic way to
refine P-diagnosis. Related works are compared in section five. And
in the last section, we give a conclusion.

2 Preliminaries

2.1 Automata and synchronization

An automaton is represented as a tuple (Q, E, T , I , F ) where Q is
the set of states, E the set of events, T the set of transitions (q, l, q′)
with l ⊆ E, I the set of initial states, and F the set of final states. For
each state q ∈ Q, generally we suppose (q, φ, q) ∈ T .

A trajectory denotes a path in the automaton joining an initial state
to a final state. And we use Traj(A) to denote the set of trajectories
of an automaton A correspondingly. Moreover, in the following, we
consider trim automata only, where the trim operation transforms an
automaton by removing the states that do not belong to any trajectory.

The synchronization operation on any two automata A1 and A2

can build the trim automaton, where all the trajectories of both au-
tomata which cannot be synchronized according to the synchroniza-
tion events (i.e. E1 ∩ E2) will be removed. Formally, suppose given
two automata A1 = (Q1, E1, T1, I1, F1) and A2 = (Q2, E2, T2, I2,
F2), the synchronization of A1 and A2, denoted by A1 ⊗ A2, is the
trim automaton A = Trim(A′) with A′ = (Q1 × Q2, E1 ∪ E2, T ′,
I1 × I2, F1 × F2) such that: T ′ = {((q1, q2), l, (q′1 , q′2)) | ∃ l1, l2:
(q1, l1, q′1) ∈ T1 ∧ (q2, l2, q′2) ∈ T2 ∧ (l1 ∩ (E1 ∩ E2) = l2 ∩ (E1 ∩
E2))∧ l = l1 ∪ l2 }.

2.2 Diagnosis

Thanks to the definition of the synchronization operation, the defini-
tions used in the domain of DES diagnosis where the model of the
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system is represented by an automaton can be given directly. Let t0
be the starting time and tn be the ending time of diagnosis in the fol-
lowing. And more details about the synchronization of automata can
be found for instance in [9, 24].

Definition 1 (Model). The model of the system, denoted by Mod,
is an automaton, in which the behaviors of the system are described
and the trajectories of Mod represent the evolutions of the system.

The set of initial states IMod is the set of possible states of the
system at t0. As all the states of the system may be final, we suppose
as usual that F Mod = QMod. And the set of observable events is
denoted by EMod

o , a subset of EMod, and the other part of EMod is
the set of all the unobservable events EMod

uo .
Observations can be uncertain [17] and can be represented by

an automaton, where the transition labels are observable events of
EMod

o in the complete system model Mod.
Definition 2 (Observation automaton). The observation automa-

ton, denoted by Obs, is an automaton describing all possible obser-
vation sequences emitted by the system during the period [t0, tn].

The diagnosis of a DES therefore can be represented as the set of
all the trajectories of the model that are consistent with the obser-
vation sequences practically emitted by the system during the period
[t0, tn]. The automaton obtained by the synchronization of the model
and the observations denotes all these trajectories.

Definition 3 (Diagnosis). The diagnosis of a DES model Mod and
the obtained observations Obs, denoted by Δ, is a trim automaton
such that: Δ = Mod ⊗ Obs.

For a simple example, consider the system model Mod1 and the
observation automaton Obs1 shown in Figure 1.(a) and Figure 1.(b)
respectively. Then we can get the diagnostic results in Figure 1.(c)
by the synchronization of Mod1 and Obs1.

In the previous related works, generally speaking, the system
model Mod is assumed to be complete, including all the nominal be-
haviors and all possible faulty behaviors. However, the assumption is
rather restrictive, and that is only an ideal situation. It is difficult to
be assured that the system model is complete practically. Therefore,
some diagnostic solutions would be missed by the synchronization
operation ⊗ when the system model is incomplete, even any diag-
nostic result can not be found. For instance, given the incomplete
system model Mod′

1 and the observation automaton Obs1 shown in
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(a) The complete system model Mod1.

(b) The real observation Obs1.
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(c) The synchronization of Mod1 and Obs1.

Figure 1. The Model, observation, and their synchronization.
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Figure 2. The incomplete system model Mod′1.

Figure 2 and Figure 1.(b) respectively. If we still use the synchroniza-
tion operation ⊗ to obtain the diagnoses, clearly, the result will be the
null automaton. As a result, even some of the approximate diagnostic
solutions to explain the observations would have been missed.

3 P-synchronization Product and Diagnosis

3.1 Related concepts

In order to obtain the approximate diagnostic results under an incom-
plete model of the system and the real complete emitted observation
sequences, a new concept of “P-synchronization product” of finite
state automata is proposed in the following.

Definition 4 (P-synchronization product). Given two finite state
automata A1 and A2, where A1 = (Q1, E1, T1, I1, F1) and A2 =
(Q2, E2, T2, I2, F2), such that: E1 = Σo1 ∪ Σuo1, Σo1 ∩ Σuo1 = φ,
Q1 = F1, and E2 = Σo2. The P-synchronization product of A1 and
A2 is the automaton A1 ⊗p A2 = Trimp(A′, p), in which “ ⊗p ”
denotes the P-synchronization operation. And A′ = (Q1 × Q2, E1 ∪
E2, T ′, I1 × I2, F1 × F2) such that: T ′ = {((q1, q2), l, (q′1, q′2))| ∃
l1, l2: (q1, l1, q′1) ∈ T1 ∧ (q2, l2, q′2)∈ T2 ∧ Constraint(l, l1, l2)}.
Moreover, Constraint(l, l1, l2) is defined as follows:

l =

{
l1 : l1obs = l2
l2 : l1 = φ

Where l1obs denotes the set: { e | e ∈ l1 ∧ e ∈ Σo1}, i.e. the set of
all the observable events in l1 when the system model is considered
to be as A1 in the following. And l1obs can be φ when l1 ⊆ Σuo1.

In addition, the trimp is a more restrictive trim operation, and it is
based on the original trim operation and a new concept of the degree
of the synchronization, which will be described in the following:

Definition 5 (Synchronization degree). The synchronization
degree of a trajectory traj in Trim(A′) is denoted by
Syn degree(traj), and defined as: Syn degree (traj) = | Esyn

|/| Eobs |, where Esyn = {l | lobs 	= φ ∧ l1obs = l2 ∧ lobs ⊆ Σo1 ∧ l
∈ traj }, Eobs = {l | lobs 	= φ ∧ lobs ⊆ Σo2 ∧ l ∈ traj }.

Note: here l ∈ traj means that l is one of the transition labels on
traj; l1obs and l2 are the corresponding ones in Definition 4.

With the definition of synchronization degree above,
Trimp(A′, p) can be described as follows: ∀ trajectory traj ∈
Trimp(A′, p), such that: traj ∈ Trim(A′) and Syn degree(traj)
≥ p. In a word, the Trimp(A′, p) operator deletes all the trajectories
from Trim(A′) whose synchronization degree is less than p.

With the P-synchronization product, given the synchronization de-
gree p, we can present a definition of diagnosis of a DES, when the
model of the DES is incomplete.

Definition 6 (P-diagnosis). Let Mod be an automaton, which rep-
resents the incomplete system model, Obs be another automaton,
which denotes all the real observation sequences. Obs is supposed
to be complete. Then the P-diagnosis of the DES, denoted by Δp, a
trim automaton, can be defined as follows:

Δp = Mod ⊗p Obs.
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Note: in Mod, the corresponding Σo1 is the set of all the observ-
able transition events EMod

o , and Σuo1 is the set of all the rest un-
observable transition events EMod

uo , in which failure events are in-
cluded. Whereas in Obs, the corresponding Σo2 is the set of all the
transition events, for each transition event is observable in Obs.

In addition, as to the synchronization operation “⊗” and the P-
synchronization operation “⊗p”, we have the following proposition:

Proposition 1. Let A1, A2 be any two finite state automata, then
we have A1⊗A2 = A1⊗pA2 with the synchronization degree p = 1.

The proposition can be simply explained as follows: When p = 1,
i.e. it is required in the P-synchronization product that each obser-
vation event in the automaton Obs must be synchronized with the
set of all the observable events of the automaton Mod, thus the P-
synchronization product is the same as the synchronization product.

From proposition 1 and the definitions above, it is clear that the
⊗p operator, used for the P-synchronization product, can be seen as
a generalization of ⊗ operator, used for the synchronization product
(i.e. the P-synchronization product when p = 1).

Moreover, when p = 1, the Constraint(l, l1, l2) will become the
following constraints:

l = l1 : l1obs = l2.
Obviously, the value of l is more restrictive than before.

3.2 The impact of the synchronization degree p

Generally, P-diagnosis is affected by the value of synchronization
degree p (0≤ p ≤ 1). On the one hand, if p is bigger, some diagnostic
results would be missed, while the obtained results might be more
reduced. On the other hand, if p is set to be smaller, more diagnostic
results may be produced, while more of them would be spurious.

Let us give an example to show the impact on diagnostic results
when the synchronization degree p is different in the following.

Example 1: Given an automaton of a DES model and an automa-
ton of the real observation sequences shown in Figure 2 and Figure
1.(b), respectively, then we can obtain the P-diagnosis of the sys-
tem shown in Figure 3 according to different values of p, where all
the trajectories, each of whose synchronization degree is less than p,
have been cut off, and only the events on the solid line transitions in
any trajectory are the synchronized events by the observation and the
incomplete system model (i.e. l1obs = l2).

From example 1, by comparing each of the sub-figures in Figure
3 with Figure 1.(c) (the synchronization product when the model is
complete), we can see clearly that when p = 2/3, i.e. Figure 3.(e) is the
best synchronization in Figure 3. And when p < 2/3 in Figure 3(a),
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Figure 3. The P-synchronization of incomplete system model Mod′1 and
the real observation Obs1.
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Figure 3.(b), Figure 3.(c) and Figure 3.(d), respectively, though all
the possible trajectories are included in each of them, many spurious
results are produced, too. While in Figure 3.(f), a practical possible
trajectory is missed as a result of the high value of p.

3.3 An ideal heuristic way to refine P-diagnosis

It is clearly seen that it is a difficult problem how to set the value of
the synchronization degree p for better diagnosis. In fact, how to set
a better value of the synchronization degree p still depends on how
complete the system model is. Therefore, an ideal heuristic way from
theoretical view to refine P-diagnosis is proposed as follows.
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(a) A complete system model.
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Figure 4. The P-synchronization of incomplete system model and the real
observation, with the synchronization degree and the complete degree

considered.

Definition 7 (Completeness degree). Let the automaton M be an
ideal complete system model, M ′ be an incomplete system model,

traj′ be any trajectory in M ′, and trajset be the set of correspond-
ing complete trajectories in M . The completeness degree of the tra-
jectory traj′ in M ′ is denoted by compl degree(traj′), and de-
fined as: compl degree(traj′) = min({|traj′obs|/|trajobs|}), where
traj′obs is the set: {l | lobs 	= φ ∧ lobs ⊆ EM

o ∧ l ∈ traj′}, lobs is
the set: {e | e ∈ l ∧ e ∈ EM

o }, and for any traj ∈ trajset, trajobs

is the set: {l | lobs 	= φ ∧ lobs ⊆ EM
o ∧ l ∈ traj}.

Note: like before, l ∈ traj means that l is one of the transition
labels of traj. Here we use the minimum value of all the ratios be-
tween the incomplete trajectory and all the corresponding complete
trajectories, to represent the completeness degree to further refine di-
agnosis, with keeping as many approximate trajectories as possible.

Suppose that we can give the completeness degree of each trajec-
tory (such as approximately by experience, etc.) in the given incom-
plete system model. If the synchronization degree of a trajectory is
not less than the completeness degree of the corresponding trajectory
in the system model projected by the synchronized trajectory, then
the synchronized trajectory can be still kept as a candidate diagnos-
tic result. Or else, it will be removed.

Example 2: Given the complete system model shown in Figure
4.(a), and an incomplete system model and the real observation se-
quences are shown in Figure 4.(b) and Figure 4.(c), respectively.

If we only use the synchronization degree to obtain the approxi-
mate diagnostic results, from Figure 4.(d), we can see that some of
the real possible synchronization trajectories have been missed when
p = 3/4. While if p = 1/4, all the possible synchronization trajectories
have been kept in Figure 4.(e). However, there are more spurious tra-
jectories in Figure 4.(e). In order to reduce the spurious trajectories
in Figure 4.(e) and at the same time keep all the real possible trajecto-
ries, the completeness degree of the trajectory is introduced, and the
diagnostic results will be shown in Figure 4.(f), which is obtained as
follows: We suppose here the completeness degree of the trajectory
<1, {f1}, 2, {o2}, 4, {f2}, 5> is 1/4, and the completeness degree
of the trajectory <1, {f1}, 2, {f3}, 9, {o2}, 10, {f4}, 11, {o3}, 12,
{o4}, 13> is 3/4. Then we add the constraint of the completeness
degree to Figure 4.(e), and the more precise synchronization results
are obtained shown in Figure 4.(f).

In a word, we can use the completeness degree of a trajectory as a
heuristic way to refine the P-diagnosis results.

4 Related Works and Comparisons

One of the classical approaches in monitoring dynamic systems is
knowledge-based techniques that directly associate a diagnosis to a
set of symptoms, such as expert systems [23], or chronicle recogni-
tion systems [8, 15]. However, the main weakness of the approach
is the lack of generality: once the system changes (new components,
new connections, new technologies, etc.), a new expertise has to be
acquired. Instead, model-based techniques used in this paper rely on
a behavioral model of the system, which are known to be better suited
to diagnosing DESs than expertise-based approaches.

In [32], stochastic automaton is used to represent the model of
a DES, where probabilistic information is added into each transi-
tion. The main purpose of [32] is to extend the logic finite-state ma-
chines to stochastic automata to represent uncertainty of transitions.
Whereas we mainly concern the incompleteness of a DES model in
this paper, as usual we suppose the transitions are certain in the sys-
tem model. In addition, the computation is more complex by the in-
troduction of probability information in [32].

As to diagnosis of static system earlier (e.g. [26]), usually each di-
agnostic result is represented by a set of failure components. Whereas
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we use all the trajectories consistent with observation sequences to
explain the evolutions of DESs. As a result of the incompleteness
of the DES model, maybe there would be not much more failure in-
formation in the produced trajectories. However, suppose when all
the failure behaviors are complete in the incomplete DES model, the
failure information provided by the trajectories will be more precise.

5 Conclusion and Future Work

An attempt is made on diagnosis of a DES with an incomplete system
model in this paper. A new concept of P-synchronization product of
finite state automata is firstly proposed, which can be seen as a gener-
alization of the traditional synchronization product, and by which the
P-diagnosis of the DES is put forward as well. It is also shown that
the P-diagnosis of a DES can approximately represent the diagnostic
results based on the given synchronization degree p. In addition, the
completeness degree of a trajectory used to improve the P-diagnosis
as an ideal heuristic way is discussed as well.

In this paper, the given DES model is supposed to be global, how
to process the P-diagnosis of the DES, considering the decentralized
model of the system is worth doing some research in future, and the
main problem may be the design of the synchronization degree of
each subsystem and the corresponding sub-observations.

Once we can obtain more and more observations, the incomplete
model may be complemented to be more complete by learning to
discover the missed system transitions and the corresponding states.
This direction can be seen as another interesting future work.
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[28] L. Rozé and M.-O. Cordier, Diagnosing discrete-event systems: extend-
ing the “diagnoser approach” to deal with telecommunication networks,
Discrete Event Dynamic Systems, 12(1) (2002), 43-81.

[29] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, Diagnosability of discrete event systems, IEEE Transactions
on Automatic Control, 40(9) (1995), 1555-1575.

[30] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, Failure diagnosis using discrete-event models, IEEE Trans-
actions on Control Systems Technology, 4(2) (1996), 105-124.

[31] P. Struss, Fundamentals of model-based diagnosis of dynamic systems,
in: 15th International Joint Conference on Artificial Intelligence - IJ-
CAI’97, Nagoya, Japan, 1997, pp. 480-485.

[32] D. Thorsley and D. Teneketzis, Failure diagnosis of stochastic automata,
in: 14th International Workshop on Principles of Diagnosis - DX’03,
Washington, DC, USA, 2003.

[33] F. Wotawa, On the relationship between model-based debugging and pro-
gram slicing, Artificial Intelligence, 135(1-2) (2002), 125-143.

X. Zhao and D. Ouyang / Model-Based Diagnosis of Discrete Event Systems 193


