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Abstract.

The analysis of large and complex networks, or graphs, is becom-
ing increasingly important in many scientific areas including ma-
chine learning, social network analysis and bioinformatics. One nat-
ural type of question that can be asked in network analysis is “Given
two sets R and T of individuals in a graph with complete and miss-
ing knowledge, respectively, about a property of interest, which in-
dividuals in T are closest to R with respect to this property?”. To
answer this question, we can rank the individuals in T such that the
individuals ranked highest are most likely to exhibit the property
of interest. Several methods based on weighted paths in the graph
and Markov chain models have been proposed to solve this task. In
this paper, we show that we can improve previously published ap-
proaches by rephrasing this problem as the task of property predic-
tion in graph-structured data from positive examples, the individuals
in R, and unlabelled data, the individuals in T , and applying an inex-
pensive iterative neighbourhood’s majority vote based prediction al-
gorithm (“iNMV”) to this task. We evaluate our iNMV prediction al-
gorithm and two previously proposed methods using Markov chains
on three real world graphs in terms of ROC AUC statistic. iNMV ob-
tains rankings that are either significantly better or not significantly
worse than the rankings obtained from the more complex Markov
chain based algorithms, while achieving a reduction in run time of
one order of magnitude on large graphs.

1 Introduction

The analysis of large and complex networks or graphs is becoming
increasingly important in a variety of scientific disciplines. Graphs
allow us to model various tasks for graph-structured data which con-
sist of individuals that are connected to each other in terms of, e.g.,
a shared interest or common function. In a graph G = (V,E), the in-
dividuals are modelled as nodes v ∈ V , and the connection between
the individuals as links e ∈ E ⊆V ×V between the nodes.

One prominent task in the analysis of graph-structured data is to
rank one fraction T ⊂V of target nodes in a graph relative to another
fraction R ⊂V of root nodes exhibiting a certain property of interest
φ, in order to answer the question how close or similar they are to
the ones in R with respect to φ. Here, we focus on co-authorship
graphs where the nodes are papers which are linked to each other by
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an undirected weighted edge iff the papers have one or more author
in common; R ⊂ V is a set of papers having scientific topic φ, and
T ⊂ V is a set of papers with unknown topics for which we want to
know how similar they are to the papers in R with observed topic φ.

To answer such a question, we can attempt to rank the nodes in T
such that the nodes ranked highest are most likely to exhibit φ and
can thus be assumed to be closest to R with respect to φ. A number
of approaches have been proposed in different scientific areas to de-
termine a node’s importance in a graph, such as, e.g., numerous node
centrality measures in social network analysis [19], and ranking al-
gorithms motivated by the necessity to sort Web pages in a specific
Web search task (e.g., HITS [11] and PageRank [3]). However, while
these algorithms operate on a global level, the task we are interested
in is to rank nodes on a local level, i.e., with respect to a given set R
of nodes exhibiting property φ which can be interpreted as existing
background knowledge, or ranking bias.

Several such local ranking methods which answer the question of
relative importance for graph structured data have been proposed in
[20]. These methods are based on weighted paths and Markov chain
models and thus computationally expensive which makes their appli-
cation for large graphs inefficient. We can improve these approaches
by rephrasing the ranking problem as the task of property predic-
tion in graph-structured data from positive examples, the nodes in
R, and unlabelled data, the nodes in T , and applying an inexpensive
iterative neighbourhood’s majority vote based prediction algorithm
(“iNMV”) that allows an effective and efficient ranking of the nodes
in T with respect to the nodes in R. Given a set R ⊂V of papers in a
co-authorship graph G with an observed topic φ ∈ Φ, one can predict
– on the basis of the known topics and the graph’s link structure –
the probability that for a given set T of papers with unknown topics,
t ∈ T has topic φ, and rank the nodes in T according to this predicted
probability, i.e., according to their similarity to R with respect to φ.

The remainder of the paper is organised as follows. We discuss
two Markov chain based methods proposed in [20] for ranking indi-
viduals in graphs in Section 2. In Section 3, we present our iNMV
prediction algorithm and detail how we obtain a ranking of T . In Sec-
tion 4, we show that on three real world graphs the iNMV prediction
algorithm achieves rankings that are either significantly better or not
significantly worse than the rankings obtained from the two methods
described in Section 2, and at the same time reduces the run time on
large graphs by one order of magnitude. We review related work in
Section 5 and conclude in Section 6.
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2 Local Ranking Methods based on Markov
Chains

White and Smyth propose in [20] several local ranking methods –
based on weighted paths and Markov chain models – which an-
swer the question of the relative importance of a set T of nodes in
a graph G with respect to another set R in G. Here, we discuss two
of their proposed methods that are based on Markov chains. In a
Markov chain based approach G is viewed as representing a first-
order Markov chain. The idea is to traverse the graph in a Markov
random walk, i.e., to start at some node and then randomly follow
an outgoing edge to the next node from where the process then re-
peats itself. The first-order Markov chain, or the transitions between
the nodes, is characterized by a transition probability matrix P. The
descriptions in the next two sections are based on [20].

2.1 Inverse Average Mean First Passage Time

The mean first passage time mrt from a node r to a node t in a first-
order Markov chain is defined as the expected number of steps in an
infinite-length Markov random walk starting at r until the first arrival
at t, i.e., as

mrt =
∞

∑
n=1

n f (n)
rt , (1)

where f (n)
rt denotes the probability that the random walk starting at r

reaches t after exactly n steps. [20] defines the importance I1(t|R) of
a node t with respect to a set R in terms of the inverse average mean
first passage time, i.e., as

I1(t|R) =
1

1
|R| ∑r∈R mrt

(2)

That is, important nodes are relatively close to all the nodes in R.
A so-called mean first passage time matrix M with entries mi j for

all pairs of nodes (vi,v j) in the graph can be obtained as follows. The
fundamental matrix is defined as Z = (I−P−eπT )−1, where P is the
Markov transition probability matrix, e a column vector containing
all ones, and π a column vector of the stationary distribution for the
Markov chain. The mean first passage time matrix is then obtained
as

M = (I −Z +EZdg)D, (3)

where I is the identity matrix, E a matrix containing all ones, Zdg the
matrix that agrees with Z on the diagonal but is 0 elsewhere, and D
the diagonal matrix with elements dii = 1

π(i) for node i’s stationary
distribution π(i) for the Markov chain.

2.2 K-Step Markov Approach

An alternative approach investigated in [20] defines the importance
I2(t|R) of a node t with respect to a set R on the basis of a Markov ran-
dom walk of fixed length K, i.e., as the probability that the Markov
random walk starting at r and ending after exactly K steps reaches
t. The value K determines the bias towards the set R: the smaller K
the larger is R’s influence, the larger K the more we approach the
Markov chain’s stationary distribution.

I2(t|R) can be computed as

I2(t|R) = [PpR +P2 pR + · · ·+PK pR]t , (4)

where P is the Markov transition probability matrix, pR is a column
vector containing the initial probabilities for the set R, and [X ]t de-
notes the t-th entry of the column vector X .

3 Rephrasing the Task of Local Ranking in Terms
of Property Prediction

Our main contribution in this paper is to show that we can solve the
local ranking problem more efficiently by rephrasing it as the task of
property prediction from positive and unlabelled examples. Specif-
ically, let G = (V,E) be a given co-authorship graph with a set of
nodes (papers) V and a set E ⊆V ×V of undirected (co-authorship)
edges (vi,v j) with weight wi j , and let Φ be a set of topics that each
paper can have (we assume that a paper can have several topics). Fur-
thermore, let V = R∪T,R∩T = /0, where R is a set of root nodes,
or positive examples, for which we have observed the topics, and T
is a set of target nodes, or unlabelled examples, for which we do not
know the topics. The task is to rank the nodes in T for each φk ∈ Φ
separately on the basis of the set R of root nodes and the graph’s link
structure given by E according to their probability of exhibiting topic
φk.

3.1 Iterative Neighbourhood’s Majority Vote based
Property Prediction

To this end, we apply our iterative neighbourhood’s majority vote
prediction algorithm iNMV which is based on a simple majority vote
of directly linked nodes, or neighbours, and which consists of an ini-
tialisation step and an update step which can be applied iteratively.

In the initialisation step, we assign for each target node an initial
estimate to its topic probability on the basis of the topics observed for
the root set R. In an update step, a node’s existing estimate is mod-
ified based on the neighbouring nodes’ current estimates. This way,
entities are classified in dependence of each other, and mutual influ-
ence of the predictions is accounted for. The more often the update
step is iterated, the more the predictions are propagated through the
graph.

Since papers can have multiple topics, we consider for each topic
φk ∈ Φ a binary learning problem where nodes having topic φk con-
stitute the positive examples. For each topic φk ∈Φ separately, iNMV
derives for each target node vi ∈ T , an estimate of the probability of
observing φk for vi. We denote the set of topics of paper vi as its topic
set yi ⊆ Φ.

Our approach assumes that nodes in the same neighbourhood of
the graph tend to have similar properties, and that the predicted topic
for one node in the graph depends on the topic of the nodes directly
linked to it. Therefore, we assume that the probability of observing
topic φk for node vi ∈ T given G is equal to the probability of observ-
ing φk for vi given vi’s neighbourhood Ni := {v j ∈ V |(vi,v j) ∈ E}
consisting of those nodes in V that are directly linked to vi. We base
the prediction of an unlabelled node’s topic probability both on la-
belled and unlabelled neighbours in the graph, and thus derive a topic
probability estimate from the known topics and topic probability es-
timates of directly linked root and target nodes, respectively.

To predict the probability of observing φk for a node vi ∈ T with
unknown topic set yi, we assign to vi an initial estimate p(1)

ik :=
P(φk ∈ yi|R), where P(φk ∈ yi|R) denotes the probability that paper
vi has topic φk, conditioned on the topics observed in R. This esti-
mate is based on the number nk of times that φk is observed in R
using the maximum likelihood based m-estimate where the observa-
tions are augmented by m additional samples which are assumed to
be distributed according to p:

p(1)
ik := P(yi = φk|R) =

nk + p ·m
|R|+m

, (5)
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where |R| denotes the cardinality of set R. We choose m = 1 and
p = 0.5 (each topic is equally likely to be present or absent).

For a node vi ∈ R with observed topic, let p(1)
ik := 1 for every topic

φk that is observed for vi.
For each topic φk, we update the initial probability estimates p(1)

ik
for each node vi ∈ T based on its neighbourhood’s estimates: the
modified estimate p(t+1)

ik := P(t+1)(yi = φk|Ni) is derived on the basis

of the estimates p(t)
jk := P(t)(y j = φk|Nj) for observing φk for vi’s

neighbours v j ∈ Ni in the t-th update step:

p(t+1)
ik := P(t+1)(yi = φk|Ni) =

1
∑n j∈Ni

wi j
∑

n j∈Ni

wi j p(t)
jk , (6)

where wi j is the weight of the edge between the nodes vi and v j .
As we are dealing with an undirected graph, equation (6) is recur-

sive. To account for the mutual influence between linked nodes, the
estimates can be propagated through the graph by iterating equation
(6) several times. With more iterations, predictions are propagated
further through the graph.

3.2 Ranking the Target Set using ROC Analysis

iNMV obtains for every topic φk ∈ Φ and every node vi ∈ T an esti-
mate pik of the probability of observing φk for vi. We interpret pik as
a score which we use to order the target nodes T . iNMV learns from
positive and unlabelled examples, i.e., from root and target nodes.
However, for each topic φk ∈Φ we have originally positive and nega-
tive examples, i.e., those examples which exhibit φk and those which
do not. To generate unlabelled examples, we delete for each topic
and each target node the label indicating to which topic the paper be-
longs, but use it, after we have obtained the ranking of the nodes, to
compute the ranking’s AUC.

The area under the ROC Curve statistic, or AUC, is a measure
based on the pairwise comparisons between the results of a binary
prediction problem, and is often used to evaluate the performance of
a prediction or ranking algorithm. It can be interpreted as the prob-
ability that for a pair (+,−) of a positive and a negative example
that are both drawn uniformly at random, a higher score will be as-
signed to the positive example than to the negative (which means that
these two examples are ranked correctly relative to each other). An
algorithm’s AUC is the fraction of (+,−)-pairs that it correctly ranks
relative to each other, and is defined as

AUC =
∑m

i=1 ∑n
j=1 1(+i>− j)

m ·n , (7)

where +1, · · · ,+m are the scores assigned to the m positive examples,
−1, · · · ,−n are the scores assigned to the n negative examples, and
1(+i>− j) is the indicator function which is equal to 1 if +i >− j, and
0 otherwise. An algorithm’s AUC is maximal, i.e., equal to 1, iff it
ranks all positive examples higher than the negative examples. Any
misranked (+,−)-tuple decreases the AUC.

4 Empirical Evaluation

We evaluate the three methods described in Sections 2 and 3
on co-authorship graphs induced from the bibliographic data sets
“IPLNet2” [1] and “Cora” [14]. The weighted links between the
nodes are modelled in terms of an adjacency matrix A which holds
for each pair (vi,v j) of connected nodes vi,v j ∈ V a non-zero entry

wi j according to the overlap of the papers’ author lists. We obtain the
Markov transition probability matrix P from A by normalising the
rows in A.

4.1 Data and Experimental Setup

The ILPNet2 bibliographic database contains hand-selected ILP-
related references from 1970 onwards. Our co-authorship graph con-
sists of the largest connected component of 406 nodes with known
topics and 6354 links (on average ≈ 15 links per node). We restrict
our evaluation to the 10 topics that include at least 20 papers each.

For each topic φ, we generate in 10 trials 4 distinct root and target
set partitions. In each partition, the root set consists of 75% of the
positive examples, i.e., the papers which have topic φ. The target set
contains the remaining 25% of the positive examples and all negative
examples, i.e., the papers which do not have topic φ.

The target nodes are distinct in each of the 4 root and target set
partitions, and their union results in the complete set of nodes. Thus,
each node serves for each topic and trial exactly once as an unlabelled
example, or target node. For each topic, we apply the three methods
to the 40 distinct data partitions. From this we yield for each topic
φ and each node v ∈ T an estimated degree to which v belongs to φ.
We interpreted these values as scores and use them to rank the nodes
as detailed in Section 3.2, where a higher score indicates a higher
probability of exhibiting φ.

Cora is a collection of ≈ 34,000 computer science research pa-
pers that have been automatically collected from the web [14]. Our
co-authorship graph consists of the largest connected component of
10,513 nodes with known topics and 87,438 links (on average ≈ 8
links per node). The topics establish a hierarchy with general com-
puter science topics at the top level which branch out into several
sub-levels. We restrict our evaluation to the 6 top-level topics with
the highest number of positive examples (“6 Top”), and to the 7 Ma-
chine Learning sub-topics on the lowest hierarchy level (“7 ML”).

For each topic φ, we generate in 5 trials 2 distinct root and tar-
get set partitions, where a root set consists of 50% of the positive
examples, and a target set of the remaining 50% of the positive ex-
amples and all negative examples. For each topic, we apply the three
methods to 10 “6 Top” and “7 ML” root and target set partitions, re-
spectively, and use the resulting scores to generate rankings of the
target nodes which we evaluate in terms of ROC AUC statistic.

4.2 Results

In Figure 1, we show for the three methods described in Sections
2 and 3 and the three domains described in Section 4.1 boxplots of
the AUCs for all topics averaged over all partitions and trials. We
show for the ILPNet2 data from left to right boxplots for the AUCs
obtained from the inverse average mean first passage time (iaMFPT)
method, iNMV with 1, 5, and 10 iterations, respectively, and the K-
Step Markov method for K = 1,2,5,10,25. Each boxplot shows the
median, lower and upper quartile, and the lower and upper limit of
the AUCs for the single topics, for one method.

Since the iaMFPT method has been found numerically too com-
plex for the large Cora graph, results for this method are only shown
for the small ILPNet2 graph. We think that this is justified since the
ranking of this method is significantly worse than the rankings of all
other methods (see below). We have also performed experiments for
the K-Step Markov method for K > 25 but found that the AUCs are
further decreasing and significantly lower than those for iNMV with
1, 5 or 20 iterations, and thus omit these results.

S. Hoche et al. / A Fast Method for Property Prediction in Graph-Structured Data from Positive and Unlabelled Examples164



For the two Cora domains, we show in Figure 1 from left to
right boxplots for the AUCs obtained from iNMV with 1, 5, and
10 iterations, respectively, and the K-Step Markov method for K =
1,2,5,10,25. For the two Cora domains and all methods, the sin-
gle topics’ AUCs are in close range to each other. In contrast, the
AUCs of the ILPNet2 topics exhibit large differences for all meth-
ods. In all the domains, nodes belonging to some topics form het-
erogeneous clusters in the graph, while nodes belonging to others
topics are spread more widely over the graph. This seems to be more
problematic when only a small number of positive examples exists.

We perform a significance test to answer the question whether the
results are significantly different. When comparing more than two
classifiers, the non-parametric Friedman test [9] is widely recom-
mended [6]. The Friedman test compares k algorithms over N data
sets by ranking each algorithm on each data set separately, with the
best result receiving rank 1, etc., and assigning average ranks in case
of ties. The test then compares the average ranks of all algorithms
on all data sets. If the null-hypothesis – that all algorithms are per-
forming equivalently – is rejected under the Friedman test statistic,
post-hoc tests such as the Nemenyi test [15] can be used to deter-
mine which algorithms perform statistically different. Note that for
each topic φ, distinct root and target set partitions are generated, and
that the Friedman test can thus be applied to these N = |φ| mutually
independent data sets.

According to the Friedman test, the AUCs averaged over all trials
and partitions for the ILPNet2 data set obtained from the iaMFPT
method are significantly worse than the rankings obtained from any
other method. The AUC of the ranking obtained from the iaMFPT
is most likely so much smaller because a target node t’s importance
I1(t|R) is equally influenced by all root nodes in R. By contrast, a
target node’s ranking obtained from iNMV or the K-Step Markov
method for small K depends on a much smaller neighbourhood. This
seems to indicate that the set of root nodes has to be rather coherent
in order for the iaMFPT to produce a good ranking as, e.g., in the
data sets evaluated in [20] (e.g., a set of collaborating authors, or
interacting terrorists, where |R| = 2). In the ILPNet2 data, where the
root set consists of a set of papers which have the topic of interest
but which most likely belong to different “co-authorship cliques”,
this assumption does not seem to hold, but rather the neighbourhood
assumption that directly linked papers tend to be on the same topic.

For the Cora “6 Top” data, the Friedman test reports for the AUCs
averaged over all trials and partitions that both iNMV with 5 and 20
iterations are significantly better than the K-Step Markov method for
both K = 1 and K = 25. No significant differences have been found
for the rankings on the Cora “7 ML” data.

4.3 Discussion

For iNMV, we obtain with 5 iterations on all three domains rankings
with the highest AUCs. Equally, the K-Step Markov method yields
for small K (2 or 5) the best AUCs. This indicates that on the domains
we are investigating, the rankings benefit from a mixture of local
patterns from small neighbourhoods in the graph rather than from
a global method that considers information from large areas of the
graph (as, e.g., the K-step Markov with larger K, or iaMFPT).

The K-Step Markov method considers for a target node t ∈ T all
nodes r ∈ R that are K hops in G away from t. In contrast, iNMV
with K iterations of the update step considers for the estimate of t’s
topic probability all nodes r ∈ R that are K hops in G away from t,
and additionally all nodes t ′ ∈ T that are K hops in G away from t,
where the topic probability estimate of t ′ itself is modified in each

iteration of the update step on the basis of its direct neighbourhood.
This way, mutual influence of the unlabelled nodes is also taken into
account which seems to be advantageous for the ranking of T with
respect to R and φ.
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Figure 1. Boxplots for the AUCs of the rankings resulting from the
methods described in Sections 2 and 3 on the ILPNet2, Cora “6 Top” and “7
ML” data sets for all topics averaged over all partitions and trials. For each

domain, we show – from left to right – a boxplot for iNMV with 1, 5, and 20
Iterations, and for the K-Step Markov method for K = 1,2,5,10,25,

respectively. For the ILPNet2 data, the leftmost boxplot is for the iaMFPT
method. Each boxplot shows the median, lower and upper quartile, and the
lower and upper limit of the data points (not considered to be outliers), i.e.,

the AUCs for the single topics, for one method. An outlier is depicted as “+”.

For the domains investigated in this paper, the obtained AUCs do
not seem to depend on the percentage of positive examples for a
topic. Rather, the main factors seem to be the number of intra- and
inter-topic neighbours, respectively, that a node is linked to, and the
way that the nodes with the same topic are positioned in the graph G.
The more the nodes in G establish areas homogeneous with respect
to their topics the more successful can a method be that assumes
similar nodes in the neighbourhood of each other and thus bases its
prediction for a node v on a small region around v in the graph.

iNMV  
1It

iNMV  
5 Its 

iNMV  
20 Its 

1-Step  
Markov 

2-Step  
Markov 

5-Step  
Markov 

10-Step  
Markov 

25-Step  
Markov 

inv.  
avg  
MFPT 

ILPNet2 2.3±0.06 13.4±0.7 34±1.6 7.5±0.6 7.5±0.6 7.6±0.6 7.9±0.7 8.6±0.6 17.5±1.6 
Cora6Top 216±12 252±15 414±29 1477±2 1479±2 1638±27 2309±23 4446±6 n/a 
Cora7ML 218±6 266±7 465±16 1508±27 1555±33 1649±29 2312±21 4460±19 n/a 

Figure 2. Run time complexity and standard deviations of the compared
methods in seconds on a Intel(R) Xeon(TM) MP CPU 3.16GHz processor.

In Figure 2, we report the run time complexity for the iNMV and
K-Step Markov methods and all domains, and that of the iaMFPT
method for ILPNet2. On the small ILPNet2 co-authorship graph,
iNMV is with 5 and 20 iterations 2 to 5 times slower than the K-Step
Markov method. However, all methods’ run time lies in the range
of a a few seconds only. For the large graphs, the K-Step Markov
method’s run time is 6 to 10 times larger than that of iNMV, i.e., in
the range of hours rather than minutes.
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5 Related Work

Closely related to our work with respect to prediction methods in
graph-structured data are the publications in the fields of link-based
object classification, collective inference, and iterative classification.
[4] and [17] were among the first to study the effects of using re-
lated objects’ attributes to enhance classification in graph-structured
domains. [4] proposes a relaxation-labelling based method for topic
prediction in hyperlinked domains. [17] incrementally classifies a
collection of encyclopedia articles and take into account the classes
of unlabelled documents only after they have been classified on the
basis of neighbouring documents. [2] introduces conditional random
fields for link-based object classification, e.g. for part-of-speech tag-
ging, while [18] extends this approach to a setting of arbitrary graphs
instead of chains. [16] proposes the use of relational dependency
networks and Gibbs sampling to collectively infer labels for linked
instances. [12] proposes an iterative link-based object classification
method based on modelling link distributions which describe the
neighbourhood of directed links around an object. [13] investigates
the effectiveness of relaxation labelling based methods for classifica-
tion of graph-structured data similar to the one proposed in [4].

However, none of these works consider the task of ranking a set
of target nodes with respect to a set of root nodes exhibiting a spe-
cific property. Although we have for all domains that we investigate
in this paper both positive and negative labelled examples, we only
consider the positive examples as labelled. We argue that it is real-
istic to assume a paper that is not labelled as belonging to a specific
topic to be unlabelled rather than to be a negative example.

In the areas of social network analysis and Web mining, several ap-
proaches have been proposed to determine a node’s importance in a
graph. Freeman developed several measures of node centrality which
express how important a node is in a graph [7, 8]. A comprehensive
overview about centrality measures in graphs is given in [19].

Several algorithms have been proposed to rank the nodes in a
graph of Web pages. Well known examples are HITS [11] and
PageRank [3] – which operate on a global level – and personalised
variants thereof, e.g., a topic-sensitive PageRank [10] where the
ranking of Web pages is biased towards a set of specific topics, and a
personalised version of HITS [5] which adjusts the measure of an au-
thoritative source on the basis of incorporating user feedback. These
personalised variants bias the standard ranking towards a set of a-
priori defined root nodes. However, they have been designed specifi-
cally for the context of Web queries.

6 Conclusion

We presented an effective and efficient algorithm to solve the task of
ranking a set of target nodes in a graph with respect to a pre-defined
set of root nodes which exhibit a specific property of interest. To
this end, we rephrased the ranking problem as the task of property
prediction in graph-structured data from positive and unlabelled ex-
amples, and proposed an inexpensive iterative neighbourhood’s ma-
jority vote based prediction algorithm, iNMV. On three real-world
co-authorship networks, iNMV obtains rankings that are either sig-
nificantly better or not significantly worse with respect to AUC than
the rankings obtained from two previously published Markov chain
based algorithms, and at the same time achieves a reduction in run
time of one order of magnitude on large graphs. For a local ranking
method, it seems to be advantageous to not only account for the root
nodes’ influence on the prediction for a target node but to also con-
sider, as iNMV with several iterations of the update step does, the

mutual influence of linked target nodes.
In future work we plan to investigate whether there are benefits in

learning a joint model for two or more topics. Topics are likely to
be correlated (overlapping or disjoint), and we may be able to take
advantage of that. We are furthermore investigating the time depen-
dency of co-authorship networks and paper topics.
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