
Exploiting locality of interactions using a policy-gradient
approach in multiagent learning

Francisco S. Melo1

Abstract.

In this paper, we propose a policy gradient reinforcement learn-
ing algorithm to address transition-independent Dec-POMDPs. This
approach aims at implicitly exploiting the locality of interaction ob-
served in many practical problems. Our algorithms can be described
by an actor-critic architecture: the actor component combines natu-
ral gradient updates with a varying learning rate; the critic uses only
local information to maintain a belief over the joint state-space, and
evaluates the current policy as a function of this belief using com-
patible function approximation. In order to speed the convergence of
the algorithm, we use an optimistic initialization of the policy that
relies on a fully observable, single agent model of the problem. We
illustrate our approach in some simple application problems.

1 INTRODUCTION

One of the main topics of research in artificial intelligence is the de-
velopment of autonomous intelligent agents. The ability of an agent
to fulfill a certain task in a given environment greatly depends on
that agent’s ability to perceive its environment and interact with it.
As new and demanding applications appear, there is a natural inter-
est in developing more complex intelligent agents, able to interact not
only with the environment but with other agents existing in the same
environment. In such multiagent applications, it is desirable that a
each agent be able to adapt and coordinate with the other agents.

Reinforcement learning (RL) provides an appealing approach to
address such adaptability issues. The “traditional” RL approach to
multiagent systems makes use of game theoretic models such as
Markov games [8]. This approach has fostered many interesting al-
gorithms in which independent decision-makers are able to success-
fully adapt their policy to that of other agents and coordinate towards
a common goal (e.g., [4, 17]).

However, the Markov game approach is generally unsuited to ad-
dress problems in which the agents have sensorial limitations, since
they rely on several joint-observability assumptions inherent to these
models that seldom hold in practice. In fact, many problems found
in practice require models that can accomodate for some form of
partial observability, such as partially observable stochastic games
[7] or decentralized-MDPs/POMDPs [2]. Unfortunately, such mod-
els are inherently too complex to be solved exactly [2]. It is in face of
this inherent complexity of multiagent problems that policy gradient
methods may prove of use [4, 14].

In this work, we address multiagent decision problems using a
policy-gradient approach. In particular, we adopt an actor-critic ar-
chitecture similar to that considered in several single-agent works

1 School of Computer Science, Carnegie Mellon University, USA. E-mail:
fmelo@cs.cmu.edu

[6, 12] and extend this to multi-agent problems with partial observ-
ability. We consider cooperative multiagent tasks in which each agent
has only local imperfect perception of its state and cannot observe
the actions of other agents. We use a decentralized POMDP (Dec-
POMDP) to model the group of agents, but consider several assump-
tions that aim at exploring the locality of interaction present in many
problems in practice. Namely, we admit the state transitions of each
agent to depend only on its own actions, and the observations of each
agent to depend only on the joint state of the agents.

We apply our actor-critic algorithm to this transition-independent
Dec-POMDP. Our critic-component uses TD-learning with function
approximation to evaluate the policy currently implemented by the
actor; the actor, in turn, uses this evaluation to update the policy us-
ing an estimate of the natural gradient [5] and a win-or-learn-fast
(WoLF) update schedule [4]. The setting considered in this work is
distinct from other approaches in the literature in that we assume no
joint-state or joint-action observability. Our method is, to the extent
of our knowledge, the first learning algorithm for Dec-POMDPs.

The paper is organized as follows. In Section 2 we review the ba-
sic models used in the paper, such as MDPs, POMDPs and Dec-
POMDPs. We proceed in Section 3 by introducing our actor-critic
algorithm for transition independent Dec-POMDPs. In Section 4 we
illustrate the application of our method in simple multi-robot navi-
gation problems and conclude in Section 5 by discussing how this
approach can be extended to more complex problems.

2 MARKOV MODELS

In this section we review the basic models used throughout the paper.
We start by reviewing Markov decision processes (MDPs) and their
partially observable counterparts (POMDPs). We then move to mul-
tiagent models such as Markov games and their cooperative, partially
observable counterparts, Dec-POMDPs.

2.1 Markov decision processes

A Markov decision process (MDP) is a tuple M = (X ,A, P, r, γ)
where X is a finite set of possible states and A is a finite set of possi-
ble actions. Pa(x, y) represents the probability of moving from state
x ∈ X to state y ∈ X by choosing a particular action a ∈ A. The
function r : X × A → R is a bounded reward function, assigning
the agent a numerical reward r(x, a) for choosing action a in state
x. The purpose of the agent is to maximize the expected total sum of
discounted rewards, where 0 ≤ γ < 1 is a discount-factor assign-
ing greater importance to rewards coming earlier in the future and
Xt and At denote the state and action at time t. The optimal value
function V ∗ is defined for each state x ∈ X as

V ∗(x) = max
{At}

E

[∞∑
t=0

γtr(Xt, At) | X0 = x

]
(1)

ECAI 2008
M. Ghallab et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-157

157

and verifies the well-known Bellman optimality equation. The opti-
mal Q-values Q∗(x, a) are defined for each pair (x, a) as

Q∗(x, a) = r(x, a) + γ
∑
y∈X

Pa(x, y)V ∗(y) (2)

The optimal decision rule can be obtained from Q∗ as π∗(x) =
arg max

a∈A
Q∗(x, a) and the map π∗ is the optimal policy for the MDP.

More generally, a policy is any mapping πt defined over X×A that
generates a control process {At} verifying P [At = a | Xt = x] =
πt(x, a). We write V πt(x) instead of V ({At} , x) if the control pro-
cess {At} is generated by a policy πt. A stationary policy is a policy
π that does not depend on t. A deterministic policy is a policy assign-
ing probability 1 to a single action in each state.

2.2 Partially observable MDPs

We refer to a partially observable Markov decision process, or
POMDP, as a tuple M = (X ,A,Z, P, O, r, γ), where X , A, P,
r and γ are as defined before. The fundamental difference between
POMDPs and MDPs is that, in the former, the agent is no longer able
to decide based on the state Xt at time instant t, since this state not
observable. Instead, the agent has access to an observation Zt that
depends on Xt according to the observation probabilities2

O(x, z) = P [Zt = z | Xt = x] .

A common approach to address POMDPs is to maintain a belief on
the current state of the process. The belief at time t, which we denote
by bt, is a vector representing the probability of being in each state
x ∈ X given the history at time t, i.e., bt(x) = P [Xt = x | Ht].
This belief-vector summarizes all information so far and, for the pur-
pose of decision-making, is a sufficient statistic for the history of the
process. In fact, as in MDPs, it is possible to define for each policy π
a value function

V π(b) = Eπ

[∞∑
t=0

γtr̂(Bt, At) | X0 ∼ b

]
,

where X0 ∼ b indicates that X0 is distributed according to the belief
vector b and Bt denotes the (random) belief vector at time t. The
function r̂ is defined from r simply as:

r̂(b, a) =
∑
x∈X

b(x)r(x, a).

Repeating the development in the previous subsection, we obtain
similar definitions for Qπ and also for V ∗ and Q∗, now in terms
of beliefs. In fact, a POMDP can be redefined in terms of beliefs
as an MDP with continuous state-space (the belief-space). We con-
clude by remarking that, due to the computational complexity of ex-
act POMDP methods [11], most methods used in practice to solve
POMDPs rely on some form of approximation.

2.3 Markov games

A Markov game is a tuple M =
(
n,X , (Ak), P, (rk), γ

)
, where n

is the number of agents, X is the state-space, A = ×n
k=1Ak is the

set of joint actions, P represents the controlled transition probabil-
ities and rk is the reward function for agent k, k = 1, . . . , n. As
in (PO)MDPs, in a Markov game each agent tries to maximize its
individual expected total discounted reward.

2 In this paper we ignore the dependence of the observations on the actions.

In this paper we focus only on cooperative settings. In cooperative
settings, where all agents share the same reward (i.e., r1 = . . . =
rn), there are deterministic joint policies that maximize the total ex-
pected reward for all agents. We henceforth refer to such (joint) poli-
cies as the optimal policies. Also, for this class of games, the defi-
nitions of value-function, Q-function and policy carry without great
modification from those of MDPs, bearing in mind that, in Markov
games, the action-choices depend on n independent agents.

2.4 Dec-POMDPs

We consider a Dec-POMDP as being described by a tuple M =(
n,X , (Ak), (Zk), P, (Ok), r, γ

)
, where n, X , A, P, r and γ are

defined as in a Markov game,3 Zk is the set of possible observations
for agent k and Ok describes the observation probabilities for agent
k. At each time t, each agent k, k = 1, . . . , n, takes an action ak ∈
Ak and receives an observation Zk according to the probabilities

Ok(x, zk) = P

[
Zk

t = zk | Xt = x
]
.

As in all previous frameworks, the purpose of each agent is to maxi-
mize the expected total discounted reward.

In this paper, we consider transition independent Dec-POMDPs.
This means that the state-space X can be partitioned (factored)
into individual state-spaces X k verifying X = ×n

k=1X k. At each
time step t, the state of the Dec-POMDP is thus a tuple Xt =
(X1

t , . . . , Xn
t). Each Xk

t describes the state of agent k at time t.
Furthermore, this state depends only on the actions of agent k, i.e.,

P

[
Xk

t+1 = yk | Xt = x, At = a
]

=

= P

[
Xk

t+1 = yk | Xk
t = xk, Ak

t = ak
]
.4

This allows each agent k, k = 1, . . . , n, to maintain at each time
step t an individual belief bk regarding its individual state, updated
as

bk
t+1(y

k) =

∑
xk bk

t (xk)Pk
ak (xk, yk)Oak (yk, zk)∑

xk,wk bk
t (xk)Pk

ak (xk, wk)Ok
ak (wk, zk)

, (3)

where ak is the individual action taken at time t and zk was the
individual observation received at time t + 1.

3 POLICY GRADIENT APPROACH TO
MULTIAGENT LEARNING

We now describe our learning algorithm for Dec-POMDPs. This al-
gorithm can be seen as an extension of the algorithm in [3] to multi-
agent settings, using a WoLF policy update schedule and optimistic
initialization.

3.1 The actor-critic architecture

Before going into the detailed description of our algorithm, we re-
view some important concepts regarding policy-gradient/actor-critic
algorithms. Further details can be found in [16, 6].

Let M = (X ,A, P, r, γ) be a MDP with a compact state-space
X ⊂ Rp. Let πθ be a stationary policy parameterized by some

3 A Dec-POMDP describes, by definition, a cooperative group of agents.
Therefore, all agents share the same reward r.

4 This is often the case, for example, in multi-robot navigation tasks, where
the moving actions of one robot do not affect the position of the other
robots.

F.S. Melo / Exploiting Locality of Interactions Using a Policy-Gradient Approach in Multiagent Learning158

ENVIRONMENT

AGENT 1

State:
Xt = (x1

t , . . . , x
n
t)

A1
t An

t

Z1
t Zn

t

AGENT n

CriticCritic

Policy evaluation:
Âθ(b, a1) = φθ(b, a1)w

Actor

Policy update:
θt+1 = θt + αtw

Actor

Policy evaluation:
Âθ(b, an) = φθ(b, an)w

Policy update:
θt+1 = θt + αtw

Rt

Figure 1. The actor-critic architecture. Each agent maintains at each
time-step a belief bt on the joint state of the process. The critic component
estimates the Q-function associated with each local belief and each action.
The actor component uses this evaluation to perform a policy update in the

direction of the natural gradient, using a WoLF policy update schedule.

finite-dimensional vector θ ∈ RM . We assume that π is continu-
ously differentiable with respect to θ and henceforth write V θ in-
stead of V πθ to denote the corresponding value function. Define
ρ(θ) =

∫
X V θ(x)p0(x)dx, where p0 is the distribution for the ini-

tial state. Notice that we abusively write ρ(θ) instead of ρ(πθ) to
simplify the notation. The value ρ(θ) denotes the total expected dis-
counted reward associated with policy πθ given the initial state dis-
tribution p0. As shown in [16, 6],

∇ρ(θ) =

∫
X

∑
a

p(x)
∂πθ

∂θ
(x, a)Qθ(x, a)dx, (4)

where ∇ denotes the gradient with respect to (w.r.t.) θ and

p(x) =

∫
X

∞∑
t=0

γt
P [Xt = x | X0 = y, πθ] p0(y)dy. (5)

We can now introduce the overall architecture of our actor-critic
algorithm, as depicted in Figure 1. Each agent k follows an individual
parameterized policy πk

θ . At each time step t, agent k receives a local
observation Zk

t , used to update the belief bt on the joint state of the
process. The critic component of the architecture uses this belief and
the history of individual actions and collected rewards to evaluate
πk

θ , by computing the associated Q-function (or, equivalently, the
associated advantage function). This Q-function is then used in the
actor-component to estimate the gradient ∇ρ(θ) and update πk

θ using
the gradient direction.

In the following subsections we describe in greater detail the dif-
ferent components of the algorithm.

3.2 Exploiting local interaction

In many problems found in practice, the interaction/coordination be-
tween the several agents occurs only in very particular situations
(e.g., when sharing a resource or in avoiding undesirable states). Sev-
eral recent works have proposed new models [1, 15] and methods
[13, 10] that seek to take advantage of this locality of interaction in

order to efficiently tackle the prohibitive complexity of general de-
centralized decision-making problems.

In our algorithm, local interactions are exploited at three different
levels, to know:

Optimistic initialization Optimistic initialization consists in “ig-
noring” partial observability to initialize the parameterized policy.
In particular, we compute the optimal Q-function for the fully ob-
servable Markov game initialize the policy as a soft-max version
of Q-MDP. Q∗(x, a) is a |X|×|A| matrix, that we consider as the
adjustable parameters for the policy. Therefore, the general form
of the policies considered is

πk
θ (b, ak) =

∑
a�ak e

∑
x b(x)θ(x,a)∑

u∈A e
∑

x b(x)θ(x,u)
, (6)

where θ is a |X| × |A| real parameter matrix that is initialized
to the values of Q∗. Notice that, in problems where the agents
need only to interact in few, very particular situations, the policy
described above can be implemented (most of the time) indepen-
dently of the other agents’ states and policies.

Independent belief tracking In independent belief tracking, each
agent maintains an individual belief estimate for every other
agent. Therefore, each agent k maintains at each time t a vector of
beliefs bt = (b1

t , . . . , b
n
t), estimating the individual state of each

agent. Since the agent has no knowledge of the actions of the other
agents, the estimates regarding their individual state will often be
very innacurate. However, in most situations, the action choice of
agent k can be carried out independently of the other agents and,
therefore, the innacuracy in the belief estimates bj with j �= k
does not affect the action-choice for agent k.
On the other hand, in those situation where interaction must oc-
cur, the innacuracy in other agents’ belief estimates may have a
negative impact on the performance of agent k (and, thus, of the
group). Notice, however, that the observation model as described
in Section 2 depends on the joint state of the process. It is possi-
ble to “minimize” the innacuracy in the belief estimates of other
agents if, at those situations where interaction occurs, the observa-
tions for each agent k provide it information on the state of other
agents that leads to a more accurate belief estimate.5

Optimistic policy estimation Finally, in conducting independent
belief tracking, each agent k can estimate the policy followed by
other agents, thus trying to include more information that may
possibly yield more accurate belief estimates. As in the optimistic
policy initialization, each agent k will estimate agent j’s policy,
j �= k, as

πk(b, ak) = arg max
ak∈Ak

∑
a�ak

∑
x∈X

b(x)Q∗(x, a),

where b is the joint belief estimate.

3.3 The actor: Combining natural gradients and
WoLF updates

From (4) it is evident that, in order to compute the gradient ∇ρ(θ),
the function Qθ needs to be computed. However, since our pol-
icy is defined in terms of beliefs (which are continuous quanti-
ties), so is Qθ , and some form of function approximation is needed.

5 Consider, for example, multirobot navigation tasks, where each robot can
move, most of the time, relying only on its own position estimates. Only
when two or more robots are close must they coordinate to avoid colli-
sions. However, in these situations, sensorial information allows accurate
estimates of the position of the other robots.

F.S. Melo / Exploiting Locality of Interactions Using a Policy-Gradient Approach in Multiagent Learning 159

Let {φi, i = 1, . . . , M} be a set of M linearly independent func-
tions and L (φ) its linear span. Let Q̂θ be the best approximation
of Qθ in L (φ).6 As any function in L (φ), Q̂θ can be written as
Q̂θ(x, a) = φ�(x, a)w. The following result can be found in [16].

Theorem 1 Given an MDP M = (X ,A, P, r, γ) and a set of basis
functions {φi, i = 1, . . . , M} as defined above, if

φ(x, a) =
∂ log(πθ)

∂θ
(x, a) (7)

then
∇ρ(θ) =

∑
x,a

d(x)
∂πθ

∂θ
(x, a)Q̂θ(x, a).

Now, as observed in [5], the parameterized policy space can be
seen as a manifold that can be endowed with an adequate Riemannian
metric. From this metric, a natural gradient is defined, expressed in
terms of the Fisher information matrix. Peters et al. [12] showed the
natural gradient of ρ(θ) w.r.t. θ is, simply, ∇̃ρ(θ) = w, where w is
the parameter vector corresponding to Q̂θ . Bearing all this in mind,
the update rule for our algorithm becomes:

θt+1 = θt + αtw.

The step-size αt is chosen according to the WoLF (win-or-learn
fast) schedule: when “winning”, a smaller learning rate is used; when
“loosing”, a larger learning rate is used. In other words, if the perfor-
mance of the current policy is better than that of an “average” policy,
a smaller learning rate is used (indicating that the policy may be close
to a locally optimal policy). If, on the other hand, the performance of
the current policy is worse than that of an average policy, the learning
rate is set to a higher value, leading to a faster learning. In practical
terms, we use a step-size sequence similar to that in [4]:

αt =

{
αw if

∑
a πθ(bt, a)Q̂θ(bt, a) >

∑
a π̄(bt, a)Q̂θ(bt, a)

αl otherwise

where αl > αw are, respectively, the loosing and winning learning
rates and π̄ is the “average” policy, obtained by using in (6) the aver-
age parameter vector over time.

3.4 The critic: Advantage estimation in belief space

In the gradient expressions (4) and in Theorem 1, one can add an
arbitrary function F (x) to Qθ and Q̂θ . Such function is known as
a baseline function and, as shown in [3], if F is to be chosen so
as to minimize the mean-squared error between Q̂θ and Qθ , the
optimal choice of baseline function is F (x) = V θ(x). Recalling
that the advantage function associated with a policy π is defined as
Aπ(x, a) = Qπ(x, a) − V π(x, a), the performance of the overall
algorithm can be improved by estimating the advantage function in-
stead of the Q-function [3], .

As seen in the previous subsection, the actor component will up-
date the parameter along the direction of the parameter vector w
corresponding to the orthogonal projection of Qθ (or, equivalently,
Aθ) on the linear space spanned by the compatible basis functions,

6 We take Q̂θ as the orthogonal projection of Qθ on L (φ) with respect to
the inner product

〈f, g〉 =

∫
B

∑
a

f(b, a) · g(b, a)πθ(b, a)p(b)db,

where B denotes the belief-space and p is the distribution introduced in (5),
with the beliefs b playing the role of x.

a) Grid world b) Dec-Tiger problem

Tiger?
Treasure?

Tiger?
Treasure?

Figure 2. Two simple problems used to illustrate the application of our
algorithm.

defined in (7). However, unlike Qθ or V θ , the advantage function
does not verify a Bellman-like recursion and, therefore, it is nec-
essary to independently estimate the value function V θ . for which
we also consider a linear approximation. In particular, we admit that
Aθ(b, a) ≈ φ�

θ (b, a)w and V θ(b) ≈ ξ�(b)v, where φθ are the com-
patible basis functions defined according to (7) and each component
ξi belongs to a second set of linearly independent basis functions that
we use to approximate the value function.

Since we are considering multiagent problems, where multiple in-
dependent decision makers interact in a common environment, it is
best that each agent k computes this estimate online, since the transi-
tion data sampled from the process reflects (although implicitly) the
eventual learning process taking place in the other agents. Therefore,
our critic uses a TD-based update to estimate both the value func-
tion V θ and the advantage function Aθ by means of the following
recursion (similar in spirit to that in [3])7

vt+1 = vt + βtξ
�
t

[
rt + γξt+1vt − ξtvt

]
;

wt+1 = (I − βtφ
�
t φt)wt + βtφt

[
rt + γξt+1vt − ξtvt

]
,

where I is the identity matrix, ξt is the row-vector ξ�(bt), ξt+1 =
ξ�(bt+1) and φt = φ�

θ (bt, at).

4 EXPERIMENTAL RESULTS

To illustrate the working of our algorithm, we tested it in several very
simple Dec-POMDPs scenarios.

The first set of results was obtained in a small grid-world problem,
as represented in Figure 2.a. In this problem, each of two robots must
reach the opposite corner in a 3×3 maze. When both agents reach the
corresponding corners, they receive a common reward of 20. If they
“collide” in some state, they receive a reward of −10. Otherwise,
they receive a reward of −1. The robots can move in one of four di-
rections, N , S, E and W . The transitions in each direction have some
uncertainty associated: with probability 0.8 the movements succeeds
and, with probability 0.2 it fails. The robots can observe “Null”, in-
dicating that nothing is detected; “Goal” indicating that the robot has
reached its individual target position; and “Crash”, indicating that
both robots are in the same position. After successfully reaching the
goal, the position of the robots is reset.

We ran the algorithm for 104 learning steps and then tested the
learnt policy on the environment for 50 time-steps. In Figure 3.a, we
present the total discounted reward obtained during a sample run. No-
tice that the robots are able to quickly reach the goal, which clearly
indicates that they were able to learn the desired task. Notice also
that the robots are able to avoid collisions, which indicates that they

7 We remark, however, that we are using a discounted framework, unlike the
average per-step reward framework featured in [3].

F.S. Melo / Exploiting Locality of Interactions Using a Policy-Gradient Approach in Multiagent Learning160

5 10 15 20 25 30 35 40 45 50
−10

0

10

20

30

40

50

60

70

80

Time steps

T
ot

al
 d

is
c.

 r
ew

ar
d

(Sampled) discounted performance

5 10 15 20 25 30 35 40 45 50
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Time steps

T
ot

al
 d

is
c.

 r
ew

ar
d

(Sampled) discounted performance

a) Grid world b) Dec-Tiger

Figure 3. Sample runs with the learnt policies in the two test problems.

were able to coordinate without communicating and using only local
information during learning.

The second problem is the well-known Dec-Tiger problem [9]. In
this problem, two agents must choose between two doors, behind
one of which is hidden a tiger. The other door hides a treasure. The
purpose of the two agents is to figure out behind which door the
treasure is hidden, by listening the noises behind the doors. They
must act in a coordinated fashion at all times, since their performance
greatly depends on this ability to coordinate.

We remark that this problem, unlike the grid-world problem, is
not particularly suited to be addressed by our algorithm. In fact, the
Dec-Tiger problem is not transition independent: the state-space can-
not be factored and the actions of each agents have a large influence
on both states, observations and rewards received by the other agent.
Nevertheless, we applied our algorithm to this problem, to better un-
derstand the general applicability of the method.

Once again, we ran the algorithm for 104 learning steps and then
tested the learnt policy on the environment for 50 time-steps. In Fig-
ure 3.b, we present the total discounted reward obtained during a
sample run. Notice that, although some miscoordinations sometimes
occur (which are impossible to overcome since each agent only has
available local information), the agents are, nevertheless, able to at-
tain many coordinated action choices. And, the remarkable thing is
that, once again, this was achieved without communication and using
only local information during learning (and execution).

Finally, to conclude this section, we summarize in Table 1 the av-
erage total discounted reward obtained during a 50-step run. The re-
sults presented correspond to the average over 2, 000 independent
Monte-Carlo trials.

Environment Total disc. reward

Grid world 34.001
Dec-Tiger 11.049

Table 1. Total discounted reward obtained in the two problems. The results
correspond to the average over 2, 000 independent Monte Carlo runs.

5 CONCLUSIONS

We conclude the paper with several important remarks. First of all,
the algorithm introduced here is closely related to the Gra-WoLF al-
gorithm in [4]. The main differences lie on our usage of natural gra-
dients and on our ability to address problems with partial state ob-
servability and no joint-action observability. Partial observability is
addressed by considering the problem to be described by a transition
independent Dec-POMDP. We take advantage of this fact by propos-
ing several strategies that allow the agents to maintain independent
beliefs that can be used for decision-making.

Another important observation is that the optimistic initialization
considered will naturally bias the initial policy of the agents towards

the goal. This bias may potentially lead to more frequent initial vis-
its to the rewarding states and thus allowing the learning process to
converge more rapidly.

Finally, it is important to remark that the results presented herein
allow for little comprehension of the actual potential of the algo-
rithm. We are currently testing this algorithm in much larger prob-
lems, which will allow us to infer how well our algorithm can cope
with the high dimensionality arising from the consideration of large
problems. We remark, however, that the fact that our algorithm does
not take into account any global information, it is reasonable to ex-
pect that its complexity to grow linearly with the number of agents
(instead of the exponential growth in fully coupled approaches).

It is also important to somehow compare the performance of our
algorithm with that of the several planning methods in the literature,
in the particular class of problems that can adequately be addressed
by our algorithm. We remark, however, that these algorithms com-
pute the policy off-line which difficults direct comparison.

ACKNOWLEDGEMENTS

This research was partially sponsored by the Portuguese Fundação
para a Ciência e a Tecnologia under the Carnegie Mellon-Portugal
Program and the Information and Communications Technologies In-
stitute (ICTI), www.icti.cmu.edu. The views and conclusions con-
tained in this document are those of the author only.

References

[1] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman, ‘Transition-
independent decentralized Markov decision processes’, in Proc. AA-
MAS, pp. 41–48, (2003).

[2] D. Bernstein, S. Zilberstein, and N. Immerman, ‘The complexity of de-
centralized control of Markov decision processes’, Mathematics of Op-
erations Research, 27(4), 819–840, (2002).

[3] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, ‘Incremental
natural actor-critic algorithms’, in Proc. NIPS 20, pp. 105–112, (2007).

[4] M. Bowling and M. Veloso, ‘Scalable learning in stochastic games’, in
Workshop on Game & Decision Theor. Agents, pp. 11–18, (2000).

[5] S. Kakade, ‘A natural policy gradient’, in Proc. NIPS 14, pp. 1531–
1538, (2001).

[6] V. Konda and J. Tsitsiklis, ‘On actor-critic algorithms’, SICON, 42(4),
1143–1166, (2003).

[7] H. Kuhn, ‘Extensive games and the problem of information’, Annals of
Mathematics Studies, 28, 193–216, (1953).

[8] M. Littman, ‘Value-function reinforcement learning in Markov games’,
J. Cognitive Systems Research, 2(1), 55–66, (2001).

[9] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella, ‘Tam-
ing decentralized POMDPs: Towards efficient policy computation for
multiagent settings’, in Proc. IJCAI, pp. 705–711, (2003).

[10] F. Oliehoek, M. Spaan, S. Whiteson, and N. Vlassis, ‘Exploiting lo-
cality of interaction in factored Dec-POMDPs’, in Proc. AAMAS, pp.
517–524, (2008).

[11] C. Papadimitriou and J. Tsitsiklis, ‘The complexity of Markov chain
decision processes’, Mathematics of Operations Research, 12(3), 441–
450, (1987).

[12] J. Peters, S. Vijayakumar, and S. Schaal, ‘Natural Actor-Critic’, in Proc.
ECML, pp. 280–291, (2005).

[13] M. Roth, R. Simmons, and M. Veloso, ‘Exploiting factored represen-
tations for decentralized execution in multi-agent teams’, in Proc. AA-
MAS, pp. 469–475, (2007).

[14] S. Singh, M. Kearns, and Y. Mansour, ‘Nash convergence of gradient
dynamics in general-sum games’, in Proc. UAI, pp. 541–548, (2000).

[15] M. Spaan and F. Melo, ‘Interaction-driven Markov games for decen-
tralized multiagent planning under uncertainty’, in Proc. AAMAS, pp.
525–532, (2008).

[16] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, ‘Policy gradient
methods for reinforcement learning with function approximation’, in
Proc. NIPS 13, pp. 1057–1063, (2000).

[17] X. Wang and T. Sandholm, ‘Reinforcement learning to play an optimal
Nash equilibrium in team Markov games’, in Proc. NIPS 15, pp. 1571–
1578, (2002).

F.S. Melo / Exploiting Locality of Interactions Using a Policy-Gradient Approach in Multiagent Learning 161

