122

ECAI 2008

M. Ghallab et al. (Eds.)

10S Press, 2008

© 2008 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-891-5-122

MTForest: Ensemble Decision Trees based on
Multi-Task Learning

Qing Wang and Liang Zhang and Mingmin Chi and Jiankui Guo '

Abstract. Many ensemble methods, such as Bagging, Boosting,
Random Forest, etc, have been proposed and widely used in real
world applications. Some of them are better than others on noise-
free data while some of them are better than others on noisy data.
But in reality, ensemble methods that can consistently gain good per-
formance in situations with or without noise are more desirable. In
this paper, we propose a new method namely MTForest, to ensem-
ble decision tree learning algorihms by enumerating each input at-
tribute as extra task to introduce different additional inductive bias
to generate diverse yet accurate component decision tree learning
algorithms in the ensemble. The experimental results show that in
situations without classification noise, MTForest is comparable to
Boosting and Random Forest and significantly better than Bagging,
while in situations with classification noise, MTForest is significantly
better than Boosting and Random Forest and is slightly better than
Bagging. So MTForest is a good choice for ensemble decision tree
learning algorithms in situations with or without noise. We conduct
the experiments on the basis of 36 widely used UCI data sets that
cover a wide range of domains and data characteristics and run all
the algorithms within the Weka platform.

1 Introduction

Decision-tree is one of the most successful and widely used learning
algorithms, due to its various attractive features: simplicity, compre-
hensibility, no parameters, and being able to handle mixed-type data.
The most widely used decision tree learning algorithm is C4.5 [1]
which recently had been ranked 1st in the “top10 algorithms in data
mining” [16].

Ensemble methods train a collection of learners and then combine
their predictions to make final decision. Since the generalization abil-
ity of an ensemble could be significantly better than that of a single
learner, so studying the methods for constructing good ensembles has
become one of the most active research areas in supervised learning
[8]. And a lot of ensemble methods to improve the generalization
ability of decision tree learning algorithms have been proposed and
widely used in real word applications.

Typically, an ensemble is built in two steps, that is, generating
multiple component learners and then combining their predictions.
According to the styles of training the component learners, cur-
rent ensemble learning algorithms can be roughly categorized into
two classes, that is, algorithms where component learners must be
trained sequentially and algorithms where component learners could
be trained in parallel [9]. The representative of the first category is
Boosting [4], which sequentially generates a series of component

1 Department of Computer and Information Technology, Fudan University,
Shanghai, China. Email:{wangqing,lzhang,mmchi,gjk } @fudan.edu.cn

learners and iteratively increases the weights on the instances most
recently be misclassified by the former component learner. The rep-
resentative of the second category is Bagging [2] which indepen-
dently generates many samples from the original training set via
bootstrap sampling and then trains the component learners from each
of these samples. Other representatives of this category include Ran-
dom Forest [3], Randomized C4.5 [5], Random Subspace [6], etc.

Many ensemble methods for decision trees have been proposed
and widely used in real world applications. Some of them are bet-
ter than others on noise-free data while some of them are better than
others on noisy data, such as Boosting and Random Forest are bet-
ter than Bagging in situations without noise, while Bagging is more
robust to noise and is better than Boosting and Random Forest in sit-
uations with noise [7]. But in reality, due to time and cost reason,
ensemble methods that can consistently gain good performance in
situations with or without noise is more desirable.

In this paper, we propose a new way to ensemble decision tree
based on multi-task learning which generates diverse but accurate
component decision tree learners in the ensemble through using dif-
ferent input attribute as extra task to introduce different inductive bias
to the decision tree learning process. The resulting forest can achieve
better performance on both noise-free and noisy data and have the
following desirable characteristics:

1. Its accuracy is as good as Random Forest and Boosting and
can achieve significantly improvement over Bagging in situations
without noise.

2. Its accuracy is slightly better than Bagging and significantly better

than Random Forest and Boosting in situations with an amount of
noise.

3. Itis simple and easy to parallelize.

The rest of this paper is organized as follows. In Section 2, we
introduce the related works for ensemble decision tree learning algo-
rithms. In Section 3, we introduce our ensemble method for decision
tree learning. In Section 4, we describe the experimental setup and
results in detail. Finally, we make a conclusion and outline our main
directions for further research.

2 Related works

Bagging [2] is one of the older, simpler, and better known methods
for creating an ensemble of classifiers which independently generates
many samples from the original training set via bootstrap sampling
and then trains a component learner from each of these samples. The
Bagging algorithm has achieved great success in building ensembles
of decision trees, neural networks and other unstable learning algo-
rithms. Boosting [4] sequentially generate component classifiers by

Q. Wang et al. / MTForest: Ensemble Decision Trees Based on Multi-Task Learning 123

iteratively increases the weights on the instances most recently be
misclassified and have gain great success on both stable and unstable
learning algorithms. Both Bagging and Boosting are methods that
generate a diverse ensemble of classifiers by manipulating the train-
ing data.

Ho’s random subspace technique [6] selects random subsets of the
available features to be used in training the individual decision trees
in an ensemble. Ho’s approach randomly selects one half of the avail-
able features for each decision tree and creates ensembles of size 100.
Ho summarized the results as follows: The subspace method is better
in some cases, about the same or worse in other cases when compared
to the other two forest building techniques Bagging and Boosting [6].
One other conclusion was that the subspace method is best when the
data set has a large number of features and samples, and that it is not
good when the data set has very few features coupled with a very
small number of samples or a large number of classes [6].

Dietterich introduced an approach termed randomized C4.5 [5] to
ensemble C4.5 learning algorithm. In this approach, at each node in
the decision tree, the 20 best splits are determined and one of them
is randomly selected for use at that node other than select the best
split. For continuous attributes, it is possible that multiple tests from
the same attribute will be in the top 20. Through experiments with 33
data sets from the UCI repository, it was found that randomized C4.5
can gain substantial improvement over bagging but is not comparable
to Boosting on noise-free data, while randomized C4.5 is more robust
than Boosting on noisy data.

Breiman’s Random Forest [3] technique incorporates elements of
random subspaces and bagging and is specific to using decision trees
as the base classifier. At each node in the tree, a subset of the avail-
able features is randomly selected and the best split available within
this subset is selected for split. Also, bagging is used to create the
training set of data items for each individual tree. The number of fea-
tures randomly chosen (from n total) at each node is a parameter of
this approach. Through experiments with 16 data sets from the UCI
repository and 4 synthetic data sets, it was found that Random Forest
is comparable to Boosting and sometimes better on noise-free data
and is more robust than Boosting on noisy data.

Empirical study [5, 7] on these ensemble methods for decision tree
learning have shown that Boosting and Random Forest are the best
ensemble methods for decision tree in situation without noise, while
Bagging is best ensemble methods in situations with noise. So in this
paper, we use Bagging, Boosting and Random Forest as benchmark
ensemble methods to compare with our method.

3 Ensemble decision trees based on multi-task
learning

Multi-Task Learning (MTL) [11] trains multiple tasks simultane-
ously while using a shared representation and has been the focus
of much interest in the machine learning community over the last
decade. It has been empirically [11, 15] as well as theoretically
[13, 15] shown to often significantly improve performance relative
to learning each task independently. When the training signals are
for tasks other than the main task, from the point of view of the main
task, the other tasks are serving as a bias [11]. This multi-task bias
causes the learner to prefer hypotheses that explain more than one
task, i.e. it must be biased to prefer hypotheses that have utility across
multiple tasks.

Because in multi-task learning extra task is serve as additional in-
ductive bias, we can use different extra task to bias each compo-
nent learner in the ensemble to generate different component learn-

ers [11, 14]. The multi-task learning theory guarantees that the com-
ponent learner will be with high accuracy if the extra task is related to
the main task and the component learner will be with high diversity
if the each extra task represents different bias. But in most learning
environments, we are only given the training data which is composed
of a vector of input attributes {A1, Ao, ..., An} and the class vari-
able C and we do not have any other extra related tasks information.
In [12], it has shown that some of the attributes that attribute selection
process discards can beneficially be used as extra outputs for induc-
tive bias transfer. So in our method, we treat each input attribute as
extra task to bias each component decision tree in the ensemble. It
obvious that we can generate a good ensemble in which component
learners could be with high accuracy as well as high diversity given
that each attribute (task) highly correlated with the class attribute and
not highly correlated with each other. So it does better if we using a
feature selection step to choose these attributes subset as extra tasks,
but to make the algorithm simple and easy to implement, in this pa-
per, we simply use each attribute in the input as an extra task to bias
each component decision tree learning algorithm in the ensemble.

3.1 The MTForest algorithm

Our ensemble method is described in Algorithm 1. In MTForest, we
generate different component decision trees by use different input at-
tribute as extra task together with the main classification task. We
call this two-task decision tree algorithm below. The two-task deci-
sion tree learning process is similar to standard C4.5 decision tree
learning algorithm except that the Information Gain and Gain Ratio
criteria of each split S; is calculated by combine the main classifica-
tion task and the extra task, showing below.

MTIG(S;) = MainTaskIG(S;) + weight * ExtraTaskIG(S;) (1)

MTGR(S;) = MainTaskGR(S;) +weight « ExtraTaskGR(S;) (2)

The parameter weight is served as an trade-off parameter between the
classification accuracy and the diversity of each component two-task
decision trees. In our experiments, we set the value of weight as 2. To
further enhance the diversity among the component decision trees in
the ensemble, we grow each two-task decision tree to maximum size
and do not prune and incorporate our algorithm with Bagging, i.e.
constructing each two-task decision tree on a new training set using
bootstrap sampling from original training set.

Our ensemble method enumerates each attribute in the input as an
extra task to bias each component decision tree learning algorithm in
the ensemble, so its ensemble size is equal to the number of attribute
in the input which is different from most of other ensemble methods
such as Bagging, Boosting, Random Forest that need to specify the
ensemble size. Also the building process of each two-task decision
tree learning algorithm do not depend on each other, so MTForest
can easily be parallelized.

For numeric attributes, in our implementation, we process in the
following way. When a numeric attribute be choose as extra task, we
first discretize this attribute by k-bin discretization where k =10, then
in selecting the splitting attribute, this numeric attributes (task) are
treated the same as non-numeric class attributes.

4 Experimental methodology and results

In this section, we describe the experimental methodology, the data
sets, and the obtained results.

124 Q. Wang et al. / MTForest: Ensemble Decision Trees Based on Multi-Task Learning

Algorithm 1 The MTForest Algorithm
Input: Training instances set D, k, weight
Output: A collection of two-task decision tree classifiers S
S={}
for each attribute A; in the input
If A; is numeric
discretize attribute A; by k-bin discretization;
D; = bootstrap sampling from D with the same size;
Using A; as extra task together with the main classification
task C' to create an unpruned two-task decision tree T;using
Eq.1 and Eq.2 on the training instances set D;;
§=S U Ti;
return §

4.1 Methodology

We conduct experiments under the framework of Weka[18]. For the
purpose of our study, we use the 36 well-recognized data sets from
the UCI repositories [17] which represent a wide range of domains
and data characteristics. There is a brief description of these data sets
in Table 1. We adopted the following three steps to preprocess data
sets.

1. First, missing values in each data set are filled in using the unsu-
pervised filter ReplaceMissingValues in Weka;

2. Second, numeric attributes are discretized using the unsupervised
filter Discretize in Weka,

3. Itis well known that, if the number of values of an attribute is al-
most equal to the number of instances in a data set, this attribute
does not provide any information to the class. So,we use the unsu-
pervised filter Remove in Weka to delete attribute does not provide
any information to the class. Two occurred within the 36 data sets,
namely Hospital Number in data set colic. ORIG and Animal in
data set zoo.

In our experiments, we compare MTForest to Bagging C4.5,
Boosting C4.5 and Random Forest in terms of classification ac-
curacy in both noise-free and noisy situations. We use the im-
plementation of C4.5 (weka.classifiers.trees.J48), Random Forest
(weka.classifiers.trees.RandomForest), Bagging (weka.classifiers.
meta.Bagging) and Boosting (weka.classifiers.meta.AdaBoostM1) in
Weka, and implement our algorithms under the framework of Weka.
For Bagging and Boosting, we set the ensemble size as 50; while for
Random Forest we set the ensemble size as 100. We done this for two
reasons, first because it is large enough to ensure convergence of the
ensemble effect with most of our data sets, second it is the same en-
semble sizes used in [3]. To Random Forest, an important parameter
is the number of features randomly selected at each node; in our ex-
periments we use the default value because it can achieve best results
in most case [7]. For our methods, the ensemble size is the number
of input attributes which is often far smaller than 50 except on two
data set(audiology, sonar) and we set the value of parameter weight
as 2.

In all experiments, the classification accuracy of each algorithm
on a data set was obtained via 10 runs of ten-fold cross validation.
Runs with the various algorithms were carried out on the same train-
ing sets and evaluated on the same test sets. To compare two en-
semble algorithms across all domains, we employ the statistics used
in [5], namely the win/draw/loss record. The win/draw/loss record
presents three values, the number of data sets for which algorithm A
obtained better, equal, or worse performance than algorithm B with
respect to classification accuracy. We report the statistically signifi-

Table 1. Description of the data sets used in the experiments.

Datasets Size Attribute Classes ~ Missing ~ Numeric
anneal 898 39 6 Y Y
anneal.ORIG 898 39 6 Y Y
audiology 226 70 24 Y N
autos 205 26 7 Y Y
balance-scale 625 5 3 N Y
breast-cancer 286 10 2 Y N
breast-w 699 10 2 Y N
car 1728 7 4 N N
colic 368 23 2 Y Y
colic.ORIG 368 28 2 Y Y
credit-a 690 16 2 Y Y
credit-g 1000 21 2 N Y
diabetes 768 9 2 N Y
glass 214 10 7 N Y
heart-c 303 14 5 Y Y
heart-h 294 14 5 Y Y
heart-statlog 270 14 2 N Y
hepatitis 155 20 2 Y Y
hypothyroid 3772 30 4 Y Y
ionosphere 351 35 2 N Y
iris 150 5 3 N Y
kr-vs-kp 3196 37 2 N N
labor 57 17 2 Y Y
letter 20000 17 26 N Y
lymph 148 19 4 N Y
mushroom 8124 23 2 Y N
primary-tumor 339 18 21 Y N
segment 2310 20 7 N Y
sick 3772 30 2 Y Y
sonar 208 61 2 N Y
soybean 683 36 19 Y N
tic-tac-toe 958 10 2 N N
vehicle 846 19 4 N Y
vote 435 17 2 Y N
yeast 1484 10 10 N Y
700 101 18 7 N Y

cant win/draw/loss record; where a win or loss is only counted if the
difference in values is determined to be significant at the 95% level
by a paired #-test.

4.2 Results

Table 2 shows the comparison results of two-tailed #-test with a 95%
confidence level between each pair of algorithms, in which each en-
try w/t/l means that the algorithm at the corresponding row wins in
w data sets, ties in ¢ data sets, and loses in / data sets, compared to
the algorithm at the corresponding column. Table 4 shows the de-
tailed experimental results of the mean classification accuracy and
standard deviation of each algorithm on each data set, and the aver-
age values are summarized at the bottom of the table. From Table 2
and 4 we can see that MTForest can achieve substantial improvement
over C4.5 on most data set (13 wins and 2 losses) which suggest that
MTForest is potentially a good ensemble technique for decision tree.
MTForest can also gain significantly improvement over Bagging (7
wins and 2 losses) and is comparable to two state-of-the-art ensem-
ble technique for decision trees, Boosting (8 wins and 8 losses) and
RandomForest (3 wins and 4 losses). An interesting phenomenon on
iris data set is that, MTForest is the only ensemble method which can
gain improvement over the C4.5 while other three ensemble methods
used to compare all decrease the accuracy over C4.5.

An important issue of an ensemble method is the question of how
well it performs in situations when there is a large amount of classifi-
cation noise, i.e., training examples with incorrect class labels. Since

Q. Wang et al. / MTForest: Ensemble Decision Trees Based on Multi-Task Learning 125

Table 2. Summary of experimental results on noise-free data with
two-tailed t-test with 95% confidence level. Each cell contains the number of
wins, ties and losses between the algorithm in that row and the algorithm in
that column.

w/t/l C4.5 Bagging Boosting Random Forest
Bagging 11/24/1

Boosting 16/17/3 12/1717

Random Forest ~ 15/19/2 9/22/5 6/25/5

MTPForest 13/21/2 712712 8/20/8 3/29/4

Table 3. Summary of experimental results on noisy data with two-tailed
t-test with 95% confidence level. Each cell contains the number of wins, ties
and losses between the algorithm in that row and the algorithm in that

column.
w/t/l C4.5 Bagging Boosting Random Forest
Bagging 15/21/0
Boosting 10/14/12 3/13/20
Random Forest 13/17/6 6/19/11 15/21/0
MTForest 18/14/4 52714 20/15/1 9/23/4

some noise in the outputs is often present, robustness with respect
to noise is a desirable property. Following Breiman [3], the follow-
ing experiment was done which changed about one in twenty class
labels (i.e., injecting 5% noise). For each data set in the experiment,
we randomly split off 10% of the data set as a test set, and runs are
made on the remaining training set. The noisy version of the training
set is gotten by changing, at random, 5% of the class labels into an
alternate class label chosen uniformly from the other labels. We re-
peat this process 100 times to compute the classification accuracy of
each algorithm in this noisy situation.

Table 3 shows the comparison results of two-tailed #-test with a
95% confidence level between each pair of algorithms in this noisy
situations, in which each entry w/#// has the same meanings as in Ta-
ble 2. Table 5 shows the detailed experimental results of the mean
classification accuracy and standard deviation of each algorithm on
each data set in this noisy situation, and the average values are sum-
marized at the bottom of the table. From Table 3 and 5 we can see that
MTForest can achieve substantial improvement over C4.5 on most
data set (18 wins and 4 losses) which suggest that MTForest is po-
tentially a good ensemble technique for decision tree in this noisy
situations. And MTForest can significantly outperform Boosting (20
wins and 1 losses) and Random Forest (9 wins and 1 losses) and
is slightly better than Bagging in this noisy situation (5 wins and 4
losses). From Table 5, we can also see that MTForest has the best
average value (83.30) over all the data sets used.

5 Conclusion and Future Work

We address the problem of ensemble decision trees learning algo-
rithms that can consistently gain good performance in situations with
or without noise. Previous study has shown that Bagging can always
improve the classification performance of decision tree learning al-
gorithms on both noise-free and noisy data, but its performance on
noise-free data is not comparable to Boosting and Random Forest.
In this paper, we propose a new ensemble method for decision tree
learning algorithms by enumerating each input attribute as extra task
together with the main classification task to generate different com-
ponent decision trees in the ensemble. The experimental results show
that the performance of our algorithm can comparable to Boosting
and Random Forest on noise-free data and as good as Bagging on
noisy data.

Dietterich [8] indicated that roughly there are four ensemble

schemes, that is, perturbing the training set, perturbing the input at-
tributes, perturbing the output representation, and injecting random-
ness to the learning algorithm. The success of MTForest suggests that
we can also inject different additional inductive bias to the learning
algorithm to create an ensemble of classifiers.

It will be interesting to explore whether or not we can using se-
lective ensemble technique [10] to select a subset of the two-task
decision trees created to improve the performance; exploiting task re-
latedness to assign different weight to each component decision tree
classifiers in the ensemble; extending multi-task ensemble technique
to ensemble stable classifier (such as Naive Bayes, KNN) where bag-
ging can not work well. These have been left to be investigated in the
future.

ACKNOWLEDGEMENTS

This research is partially supported by the National Key Basic Re-
search Program (973) of China under grant No.2005CB321905. We
thank the anonymous reviewers for their great helpful comments.

REFERENCES

[1] J.Quinlan, C4.5:Programs for Machine Learning, Morgan Kaufmann,
(1993).

[2] L.Breiman, Bagging Predictors, Machine Learning, 24, pp.123-140,
(1996).

[3] L. Breiman, Random Forests, Machine Learning, 45, pp.5-32, (2001).

[4] R.E. Schapire, A Brief Introduction to Boosting, In Proc.16th Interna-
tional Joint Conference on Artificial Intelligence, pp.1401-06, (1996).

[5] T.G. Dietterich. An experimental comparison of three methods for con-
structing ensembles of decision trees: bagging, boosting, and random-
ization. Machine Learning, 40, 139-157, (2000).

[6] T.Ho, The Random Subspace Method for Constructing Decision
Forests, IEEE Trans. Pattern Analysis and Machine Intelligence, 20,
832-844, (1998).

[71 R.E.Banfield, L.O. Hall, K. W. Bowyer, and W.P. Kegelmeyer, A Com-
parison of Decision Tree Ensemble Creation Techniques. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 29, 173-180,
(2007).

[8] T.G. Dietterich. Ensemble learning. In: The Handbook of Brain Theory
and Neural Net-works, 2nd edition, M.A. Arbib, Ed. Cambridge, MA:
MIT Press, (2002).

[9] Z.H.Zhou and Y. Yu, Adapt Bagging to Nearest Neighbor Classifiers,
Journal of Computer Science and Technology, 20, 48-54, (2005).

[10] Z.H. Zhou, J.X. Wu, W. Tang. Ensembling neural networks: Many
could be better than all. Artificial Intelligence, 137, pp.239-263 (2002).

[11] R.Caruana,Multi-Task Learning, Machine Learning, 28, pp.41-75,
(1997).

[12] R.Caruana, Virginia R. Benefitting from the Variables that Variable Se-
lection Discards. Journal of Machine Learning Research, 3, pp.1245-
64, (2003).

[13] J. Baxter, A model for inductive bias learning, Journal of Artificial In-
telligence Research, 12, pp.149-198, (2000).

[14] Qiang Ye and P.W. Munro. Improving a Neural Network Classifier En-
semble with Multi-task Learning, In Proc International Joint Confer-
ence on Neural Networks, (2006).

[15] R.K. Ando and T. Zhang. A framework for learning predictive struc-
tures from multiple tasks and unlabeled data. Journal Machine Learn-
ing Research, 6, pp.1817-1853, (2005)

[16] Xindong Wu, Vipin Kumar, Ross, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey Mclachlan, Angus Ng, Bing Liu, Philip Yu, Zhi-Hua
Zhou, Michael Steinbach, David Hand, Dan Steinberg, Top 10 algo-
rithms in data mining, Knowledge and Information Systems, 14, pp.
1-37, (2008).

[17] Blake. C., Merz. C. J. UCI repository of machine learning
databases. In Department of ICS, University of California,
Irvine.http://www.ics.uci.edu/ mlearn/MLRepository.html.

[18] Witten, I. H., Frank, Data Mining:Practical Machine Learning Tools
and Technology with Java Implementation, Morgan Kaufmann, (2000).

126

Q. Wang et al. / MTForest: Ensemble Decision Trees Based on Multi-Task Learning

Table 4. The detailed experimental results of the classification accuracy
and standard deviation on data without additionally introduced noise.

Table 5. The detailed experimental results of the classification accuracy
and standard deviation on data with 5% randomly introduced noise.

Datasets C4.5 Bagging Boosting Random Forest MTForest Data Set C4.5 Bagging Boosting Random Forest MTForest
anneal 98.65+0.97 98.684+0.92 99.55+£0.68 99.35+0.79 99.23+0.80 anneal 98.61£0.98 98.70+0.92 95.71£2.25 98.01£1.32 98.51+1.18
anneal. ORIG 90.361+2.51 91.86+2.48 92.32+2.16 91.67+2.37 92.65£2.41 anneal. ORIG 90.28+2.74 91.48+2.69 90.27+2.73 90.06+2.52 91.5442.58
audiology 77.2247.69 80.97+7.50 84.82+7.13 79.974+6.85 82.13£6.98 audiology 76.61£8.13 80.37+£7.39 80.63+8.41 78.03+7.66 81.21+£7.73
autos 81.544-8.32 85.47+6.81 87.69+7.55 84.97+7.68 83.11£8.03 autos 76.014+10.12 83.42+8.32 81.364+8.55 82.30+8.57 80.35+8.54
balance-scale 64.14+4.16 75.09+£4.94 71.894+4.32 78.47+3.85 79.85£3.92 balance-scale 65.95+4.85 74.35+5.50 68.83+£4.87 77.16+4.31 78.92+4.16
breast-cancer 75.26£5.04 73.761+5.85 66.04+8.21 70.07£7.36 69.49+6.96 breast-cancer 74.08+5.64 73.23+£6.42 65.52+8.05 68.13£7.64 68.44+7.48
breast-w 94.01+£3.28 95.4442.71 96.70£2.08 96.34+2.44 95.67+2.49 breast-w 92.861+3.49 94.794+2.94 93.81£3.09 95.724+2.53 94.99+2.68
car 92.2242.01 93.59+1.80 96.72£1.50 94.70+1.66 92.37+1.95 car 91.51£1.95 92.83+1.86 93.69+1.82 94.03£1.62 92.851+2.00
colic 84.314+6.02 84.83+£5.81 82.56+£5.85 84.37+5.47 85.65+£5.36 colic 84.15+5.89 84.624+6.00 79.18+£7.23 83.58+5.98 84.65+5.65
colic.ORIG 71.7645.63 68.08+3.53 71.67+£5.45 72.584+5.00 68.09£3.43 colic.ORIG 66.23+£1.40 66.31+1.23 66.28+1.23 72.12+4.72 67.90+3.31
credit-a 85.061+4.12 85.714£3.91 82.99+4.15 85.014+3.81 85.83+4.00 credit-a 84.85+4.14 85.77+4.14 79.97+4.18 84.00+4.52 84.51+4.14
credit-g 72.61£3.49 74.044+4.03 73.64£3.15 75.53+3.21 74.031+2.86 credit-g ~ 72.16£3.41 73.79+3.96 72.1843.46 74.81£3.49 73.641+2.97
diabetes ~ 73.89+4.70 73.924+4.53 72.07£4.67 73.15+£3.96 72.57+4.69 diabetes 74.01+£4.87 74.37+4.66 70.62£5.13 72.64+£4.77 71.741+4.31
glass 58.14+£8.48 59.9049.33 56.51£9.50 60.55+8.94 61.56+8.98 glass 55.60+8.89 59.2948.81 56.50£8.64 59.63+8.61 60.08+8.84
heart-c ~ 79.144+6.44 79.98+6.66 78.15+£7.29 78.78+7.12 79.48+6.94 heart-c ~ 78.18+6.65 80.07+6.28 77.20+6.97 78.78+£7.06 78.10£6.65
heart-h ~ 80.10+7.11 80.974+6.92 79.34£7.14 80.10+6.03 79.2446.90 heart-h 80.23+7.69 80.53+7.19 78.01£6.90 79.87+6.20 78.46+7.03
heart-statlog 79.78+7.71 79.74+6.89 78.26+7.34 79.25+6.45 79.59+£7.01 heart-statlog 77.59+7.13 79.224+7.00 76.67£7.23 78.37+7.00 77.70+7.50
hepatitis ~ 81.124:8.42 81.83£7.64 83.53£8.77 82.141+6.51 82.39+8.34 hepatitis ~ 81.2449.50 81.77+8.04 82.02£8.57 82.00+7.34 82.60+8.08
hypothyroid 93.2440.44 93.2610.44 92.26+0.94 92.58+0.78 93.144+0.65 hypothyroid 93.23+0.44 93.25+0.44 91.95+0.85 91.69+0.90 92.91+£0.67
ionosphere 87.47£5.17 89.40+£4.69 92.224+4.53 90.86+£4.69 91.451+4.40 ionosphere 87.61£4.92 89.52+4.51 90.714£5.04 90.89+£4.51 91.88+4.20
iris 95.99+4.64 95.674+5.05 94.53+£6.24 95.27+5.04 96.27+4.28 iris 95.27+£4.77 95.33+5.23 91.93+6.31 93.40£6.80 94.871+5.09
kr-vs-kp 99.4440.37 99.46£0.37 99.60+0.31 99.274+0.44 99.46+0.36 kr-vs-kp 99.254+0.46 99.30+£0.40 94.78+1.32 98.28+0.69 99.21+0.45
labor 84.971+14.2484.994+14.0686.30+£14.78 89.76+12.12 89.47+12.53 labor 83.80+14.6285.601+13.2689.27+12.88 88.89+12.77 89.30+12.37
letter 81.31£0.78 84.2440.83 89.89+0.78 89.78+0.68 90.8110.61 letter 80.56+0.83 83.7440.87 85.77£0.89 87.491+0.76 89.81+0.62
lymph 78.21£9.74 79.704+9.61 83.26+8.85 83.04+9.49 80.3149.60 lymph 77.84£9.62 78.79+8.82 81.7649.55 82.82£9.26 79.72%10.26
mushroom 100£0.00 100+0.00 100£0.00 100£0.00 10040.00 mushroom 99.991+0.01 99.9940.01 96.31£0.66 99.95+0.07 99.87+0.12
primary-tumor 41.014+6.59 45.19£6.16 42.63£6.61 41.294+6.05 43.66£6.77 primary-tumor 41.89+£6.88 44.14+5.81 41.39+6.81 40.97+6.33 42.711+6.13
segment 93.42+1.67 94.03+1.47 95.24+1.37 96.07+1.23 95.32+1.27 segment 92.924+1.71 93.90+1.56 92.65£1.80 94.36+1.65 94.83+1.46
sick 98.16+0.68 98.251+0.68 98.15+£0.73 98.22+0.65 98.28+0.74 sick 98.04£0.78 98.11+0.77 96.75+0.98 97.22+0.77 97.9910.77
sonar 71.09+£8.40 74.084+8.95 79.21£9.02 78.58+9.06 78.5949.14 sonar 71.32£9.79 74.094+9.30 75.164+9.05 77.31£8.75 77.09+9.01
soybean 92.631+2.72 94.05+2.61 94.04+2.61 93.80£2.72 93.86£2.82 soybean 92.1942.97 94.04+2.76 89.88+£3.26 92.244+2.67 93.4543.05
tic-tac-toe 85.574+3.21 94.73+2.04 98.92£1.03 97.05+1.76 95.88+1.89 tic-tac-toe 83.8143.55 92.79+2.47 95.53£2.10 94.804+2.23 93.20£2.57
vehicle ~ 70.7443.62 72.104£3.82 72.55£4.02 72.63+3.56 73.05+3.76 vehicle 68.56+£4.41 71.594+3.88 70.54+3.81 71.49+£3.76 72.3243.32
vote 96.27£2.79 96.274+2.67 94.80£3.05 96.18+2.85 96.25+2.58 vote 95.60£3.10 96.11+£2.81 93.184+3.80 95.15+£3.18 96.151+2.86
yeast 52.56+3.44 54.354+3.89 52.93+£3.74 52.43+3.53 53.2543.52 yeast 51.724+3.45 53.394+3.85 51.87£3.78 51.184+3.42 52.44+3.60
700 92.61£7.33 93.2047.37 97.34£5.75 94.65+6.03 94.48+6.64 700 92.394+6.71 93.304+6.97 81.85+16.47 93.16+6.69 95.17+6.03
mean 82.061+4.77 83.52+4.64 83.84+£4.76 84.12+4.45 84.07+4.54 mean 81.2844.90 83.11+4.67 81.10£5.24 83.07+4.75 83.30%4.65

